Semi-supervised clustering with discriminative random fields

Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particula...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 45; no. 12; pp. 4402 - 4413
Main Authors: Chang, Chin-Chun, Chen, Hsin-Yi
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.12.2012
Elsevier
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particularly useful for the application where a traditional clustering is designated to use. In the proposed framework, discriminative random fields (DRFs) are employed to model the consistency between the result of a traditional clustering algorithm and the supervised information with the assumption of semi-supervised learning. The semi-supervised clustering problem is thus formulated as finding the label configuration with the maximum a posteriori (MAP) probability of the DRF. A procedure based on the iterated conditional modes algorithm and a metric-learning algorithm is developed to find a suboptimal MAP solution of the DRF. The proposed approach has been tested against various data sets. Experimental results demonstrate that our approach can enhance the clustering accuracy, and thus prove the feasibility of the proposed approach. ► We plan a framework capable of integrating with a traditional clustering algorithm seamlessly for semi-supervised clustering. ► We find that discriminative random fields are useful for semi-supervised clustering. ► The proposed framework is a hybrid approach, which makes better use of supervised information for semi-supervised clustering.
AbstractList Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particularly useful for the application where a traditional clustering is designated to use. In the proposed framework, discriminative random fields (DRFs) are employed to model the consistency between the result of a traditional clustering algorithm and the supervised information with the assumption of semi-supervised learning. The semi-supervised clustering problem is thus formulated as finding the label configuration with the maximum a posteriori (MAP) probability of the DRF. A procedure based on the iterated conditional modes algorithm and a metric-learning algorithm is developed to find a suboptimal MAP solution of the DRF. The proposed approach has been tested against various data sets. Experimental results demonstrate that our approach can enhance the clustering accuracy, and thus prove the feasibility of the proposed approach. ► We plan a framework capable of integrating with a traditional clustering algorithm seamlessly for semi-supervised clustering. ► We find that discriminative random fields are useful for semi-supervised clustering. ► The proposed framework is a hybrid approach, which makes better use of supervised information for semi-supervised clustering.
Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particularly useful for the application where a traditional clustering is designated to use. In the proposed framework, discriminative random fields (DRFs) are employed to model the consistency between the result of a traditional clustering algorithm and the supervised information with the assumption of semi-supervised learning. The semi-supervised clustering problem is thus formulated as finding the label configuration with the maximum a posteriori (MAP) probability of the DRF. A procedure based on the iterated conditional modes algorithm and a metric-learning algorithm is developed to find a suboptimal MAP solution of the DRF. The proposed approach has been tested against various data sets. Experimental results demonstrate that our approach can enhance the clustering accuracy, and thus prove the feasibility of the proposed approach.
Author Chang, Chin-Chun
Chen, Hsin-Yi
Author_xml – sequence: 1
  givenname: Chin-Chun
  surname: Chang
  fullname: Chang, Chin-Chun
  email: cvml@mail.ntou.edu.tw
– sequence: 2
  givenname: Hsin-Yi
  surname: Chen
  fullname: Chen, Hsin-Yi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26212537$$DView record in Pascal Francis
BookMark eNqFkMFKJDEQhoO44DjrG3joi-Cl26pkutMtIoi4qyDsYddzSCcVzdDTPSaZkX17IyMePCh1yKG-v_jzHbL9cRqJsWOECgGbs2W11slMjxUH5BXUFXDcYzNspShrXPB9NgMQWAoO4oAdxrgEQJkXM3bxl1a-jJs1ha2PZAszbGKi4MfH4sWnp8L6aIJf-VEnv6Ui6NFOq8J5Gmz8yX44PUQ6en_n7OHXzb_r2_L-z--766v70oimS2Xf2U4uWtC9k711DrsOyYpGI8CCIE9PoubYy77RuVkrRO2kdp2Tpu3AiTk73d1dh-l5QzGpVW5Fw6BHmjZRIbSco2y6NqMn76iORg8u9zU-qnX-gg7_FW848lrIzC12nAlTjIHcB4Kg3qSqpdpJVW9SFdQqS82x808x41M2M40paD98F77chSm72noKKhpPoyHrA5mk7OS_PvAKES-Xbw
CODEN PTNRA8
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2963306
crossref_primary_10_1109_TKDE_2017_2695615
crossref_primary_10_1007_s10844_013_0264_5
crossref_primary_10_1016_j_ipl_2019_01_015
crossref_primary_10_1016_j_neunet_2014_11_006
crossref_primary_10_1016_j_patcog_2014_08_017
crossref_primary_10_1109_TKDE_2018_2818729
Cites_doi 10.1016/0031-3203(95)00120-4
10.1137/1.9781611972740.31
10.1007/s11263-006-7007-9
10.1109/ICDM.2008.65
10.1016/j.knosys.2009.06.009
10.1016/j.neucom.2009.03.012
10.1016/j.patcog.2007.10.004
10.1016/j.fss.2006.02.015
10.1007/s10618-009-0157-y
10.1016/S0167-8655(03)00177-6
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.patcog.2006.04.006
10.1109/CVPR.2008.4587451
10.1109/TPAMI.1979.4766903
10.1109/34.990138
10.1007/s10115-008-0134-6
10.1145/1281192.1281242
10.1007/s10618-005-0019-1
10.1016/j.patrec.2009.09.011
10.1111/j.2517-6161.1986.tb01412.x
10.1016/j.patcog.2005.12.012
10.1109/TNN.2005.845141
10.1016/j.neucom.2009.12.009
10.1145/1015330.1015360
10.1016/j.patcog.2010.02.022
10.1016/j.patcog.2007.04.010
10.1080/10556789908805766
10.1007/s10618-008-0103-4
10.1007/s10618-008-0104-3
10.1080/01969727308546046
10.1016/j.patcog.2009.11.005
10.1109/TPAMI.2004.1262179
10.1145/331499.331504
10.1007/s11222-007-9033-z
10.1007/s10994-008-5084-4
10.1007/978-3-540-24673-2_21
10.3233/IDA-2009-0399
10.1145/1014052.1014118
10.1145/1014052.1014062
10.1016/j.ijar.2007.03.008
10.1145/1823746.1823752
10.1109/TKDE.2007.190715
10.1137/1038003
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2012.05.021
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 4413
ExternalDocumentID 26212537
10_1016_j_patcog_2012_05_021
S0031320312002671
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-b9d97480abf7bdff1991ed36a1004e0e0ebe3521b7b6a0018335f7af9f7c890f3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308271000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Sep 27 21:19:47 EDT 2025
Mon Jul 21 09:14:47 EDT 2025
Sat Nov 29 07:27:42 EST 2025
Tue Nov 18 21:14:54 EST 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Discriminative random fields
Semi-supervised clustering
Discriminant analysis
Automatic classification
Iterative method
Signal classification
Supervised classification
Random field
Accuracy
Posterior probability
Supervised learning
A posteriori estimation
Feasibility
Metric
Learning algorithm
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-b9d97480abf7bdff1991ed36a1004e0e0ebe3521b7b6a0018335f7af9f7c890f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082217698
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1082217698
pascalfrancis_primary_26212537
crossref_primary_10_1016_j_patcog_2012_05_021
crossref_citationtrail_10_1016_j_patcog_2012_05_021
elsevier_sciencedirect_doi_10_1016_j_patcog_2012_05_021
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chapelle, Schölkopf, Zien (bib18) 2006
Haralick (bib55) 1979
Jain, Murty, Flynn (bib1) 1999; 31
S. Basu, A. Banerjee, R.J. Mooney, Active semi-supervision for pairwise constrained clustering, in: Proceedings of the 2004 SIAM International Conference on Data Mining SDM-04, 2004, pp. 333–344.
Kulis, Basu, Dhillon, Mooney (bib44) 2009; 74
L. Xu, J. Neufeld, B. Larson, D. Schuurmans, Maximum margin clustering, in: Advances in Neural Information Processing Systems, vol. 17, 2005, pp. 1537–1544.
Y. Hu, J. Wang, N. Yu, X.-S. Hua, Maximum margin clustering with pairwise constraints, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 253–262.
Xu, Wunsch (bib2) 2005; 16
D. Cohn, R. Caruana, A. McCallum, Semi-supervised Clustering with User Feedback, Technical Report TR2003-1892, Cornell University, 2003.
Jain (bib3) 2010; 31
Baghshah, Shouraki (bib51) 2010; 73
Davidson, Ravi (bib22) 2009; 18
J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 282–289.
Baghshah, Shouraki (bib52) 2010; 43
Ceccarelli, Maratea (bib33) 2008; 47
Bouchachia, Pedrycz (bib34) 2006; 157
A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, vol. 14, 2001, pp. 849–856.
S. Basu, M. Bilenko, R. J. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 59–68.
Grira, Crucianu, Boujemaa (bib32) 2008; 41
Baghshah, Shouraki (bib50) 2009; 13
Sturm (bib59) 1999; 11–12
Luxburg (bib9) 2007; 17
K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl, Constrained k-means clustering with background knowledge, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 577–584.
E. Hayman, B. Caputo, M. Fritz, J.-O. Eklundh, On the significance of real-world conditions for material classification, in: Proceedings of the Eighth European Conference on Computer Vision, vol. 4, 2004, pp. 253–266.
H. Zeng, Y. Cheung, Semi-supervised maximum margin clustering with pairwise constraints, IEEE Transactions on Knowledge and Data Engineering.
Li (bib56) 2009
M. Bilenko, S. Basu, R. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 81–88.
R. Bekkerman, M. Sahami, Semi-supervised clustering using combinatorial MRFs, in: Proceedings of the ICML-2006 Workshop on Learning in Structured Output Spaces, 2006.
Xia (bib26) 2009; 18
Zhang, Lu (bib35) 2009; 22
Kumar, Kummamuru (bib27) 2008; 20
Xia, Cao, Zhang, Li (bib42) 2009; 72
Bouchachia, Pedrycz (bib29) 2006; 12
Figueiredo, Jain (bib7) 2002; 24
E.P. Xing, A.Y. Ng, M.I. Jordan, S.J. Russell, Distance metric learning with application to clustering with side-information, in: Advances in Neural Information Processing Systems, vol. 15, 2002, pp. 505–512.
S. Basu, M. Bilenko, R.J. Mooney, Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering, in: Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, Washington DC, 2003, pp. 42–49.
Dempster, Laird, Rubin (bib6) 1977; 39
Chang, Yeung (bib40) 2008; 41
N. Grira, M. Crucianu, N. Boujemaa, Unsupervised and semi-supervised clustering: a brief survey, in: A Review of Machine Learning Techniques for Processing Multimedia Content, Report of the MUSCLE European Network of Excellence FP6, 2004.
Vandenberghe, Boyd (bib57) 1996; 38
Y. Liu, R. Jin, A.K. Jain, BoostCluster: boosting clustering by pairwise constraints, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 450–459.
Besag (bib58) 1986; 48
D. Klein, S.D. Kamvar, C.D. Manning, From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 307–314.
Yin, Chen, Hu, Zhang (bib28) 2010; 43
I.S. Dhillon, Y. Guan, B. Kulis, Kernel
Chen, Rege, Dong, Hua (bib43) 2008; 17
Hastie, Tibshirani, Friedman (bib60) 2001
N. Shental, T. Hertz, A. Bar-Hillel, D. Weinshall, Computing Gaussian mixture models with EM using side-information, in: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), 2003.
Bezdek (bib5) 1981
Yu, Shi (bib38) 2004; 26
Z. Lu, M.Á. Carreira-Perpiñán, Constrained spectral clustering through affinity propagation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: Proceedings of the 19th International Conference on Machine Learning (ICML-2002), Sydney, Australia, 2002, pp. 19–26.
Chang, Yeung, Cheung (bib48) 2006; 39
Ruiz, Spiliopoulou, Menasalvas (bib12) 2010; 21
means, spectral clustering and normalized cuts, in: Proceedings of the 10th International conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556.
S.D. Kamvar, D. Klein, C.D. Manning, Spectral learning, in: Proceedings of the International Joint Conference on Artifical Intelligence, 2003, pp. 561–566.
Hoi, Liu, Chang (bib53) 2010; 6
A. Asuncion, D. Newman, UCI machine learning repository, 2007
Bensaid, Hall, Bezdek, Clarke (bib30) 1996; 29
Liu, Huang (bib31) 2003; 24
Chang, Yeung (bib47) 2006; 39
Dunn (bib4) 1973; 3
Kumar, Hebert (bib17) 2006; 68
Chapelle (10.1016/j.patcog.2012.05.021_bib18) 2006
10.1016/j.patcog.2012.05.021_bib39
10.1016/j.patcog.2012.05.021_bib41
10.1016/j.patcog.2012.05.021_bib45
10.1016/j.patcog.2012.05.021_bib46
Bouchachia (10.1016/j.patcog.2012.05.021_bib34) 2006; 157
Ruiz (10.1016/j.patcog.2012.05.021_bib12) 2010; 21
Figueiredo (10.1016/j.patcog.2012.05.021_bib7) 2002; 24
Bouchachia (10.1016/j.patcog.2012.05.021_bib29) 2006; 12
Xia (10.1016/j.patcog.2012.05.021_bib26) 2009; 18
Liu (10.1016/j.patcog.2012.05.021_bib31) 2003; 24
Chen (10.1016/j.patcog.2012.05.021_bib43) 2008; 17
10.1016/j.patcog.2012.05.021_bib49
Dunn (10.1016/j.patcog.2012.05.021_bib4) 1973; 3
Kumar (10.1016/j.patcog.2012.05.021_bib27) 2008; 20
Yu (10.1016/j.patcog.2012.05.021_bib38) 2004; 26
10.1016/j.patcog.2012.05.021_bib10
10.1016/j.patcog.2012.05.021_bib54
10.1016/j.patcog.2012.05.021_bib11
Xu (10.1016/j.patcog.2012.05.021_bib2) 2005; 16
Baghshah (10.1016/j.patcog.2012.05.021_bib51) 2010; 73
10.1016/j.patcog.2012.05.021_bib14
10.1016/j.patcog.2012.05.021_bib8
10.1016/j.patcog.2012.05.021_bib15
Jain (10.1016/j.patcog.2012.05.021_bib3) 2010; 31
10.1016/j.patcog.2012.05.021_bib13
Jain (10.1016/j.patcog.2012.05.021_bib1) 1999; 31
Sturm (10.1016/j.patcog.2012.05.021_bib59) 1999; 11–12
Chang (10.1016/j.patcog.2012.05.021_bib40) 2008; 41
10.1016/j.patcog.2012.05.021_bib19
10.1016/j.patcog.2012.05.021_bib16
Besag (10.1016/j.patcog.2012.05.021_bib58) 1986; 48
10.1016/j.patcog.2012.05.021_bib21
Li (10.1016/j.patcog.2012.05.021_bib56) 2009
10.1016/j.patcog.2012.05.021_bib20
10.1016/j.patcog.2012.05.021_bib25
Kulis (10.1016/j.patcog.2012.05.021_bib44) 2009; 74
Hoi (10.1016/j.patcog.2012.05.021_bib53) 2010; 6
Luxburg (10.1016/j.patcog.2012.05.021_bib9) 2007; 17
10.1016/j.patcog.2012.05.021_bib23
10.1016/j.patcog.2012.05.021_bib24
Haralick (10.1016/j.patcog.2012.05.021_bib55) 1979
Kumar (10.1016/j.patcog.2012.05.021_bib17) 2006; 68
10.1016/j.patcog.2012.05.021_bib61
Chang (10.1016/j.patcog.2012.05.021_bib48) 2006; 39
10.1016/j.patcog.2012.05.021_bib62
Xia (10.1016/j.patcog.2012.05.021_bib42) 2009; 72
Dempster (10.1016/j.patcog.2012.05.021_bib6) 1977; 39
Yin (10.1016/j.patcog.2012.05.021_bib28) 2010; 43
Bensaid (10.1016/j.patcog.2012.05.021_bib30) 1996; 29
Vandenberghe (10.1016/j.patcog.2012.05.021_bib57) 1996; 38
Davidson (10.1016/j.patcog.2012.05.021_bib22) 2009; 18
Ceccarelli (10.1016/j.patcog.2012.05.021_bib33) 2008; 47
Baghshah (10.1016/j.patcog.2012.05.021_bib52) 2010; 43
10.1016/j.patcog.2012.05.021_bib36
10.1016/j.patcog.2012.05.021_bib37
Hastie (10.1016/j.patcog.2012.05.021_bib60) 2001
Baghshah (10.1016/j.patcog.2012.05.021_bib50) 2009; 13
Bezdek (10.1016/j.patcog.2012.05.021_bib5) 1981
Grira (10.1016/j.patcog.2012.05.021_bib32) 2008; 41
Chang (10.1016/j.patcog.2012.05.021_bib47) 2006; 39
Zhang (10.1016/j.patcog.2012.05.021_bib35) 2009; 22
References_xml – volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib3
  article-title: Data clustering 50 years beyond k-means
  publication-title: Pattern Recognition Letters
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: bib9
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– reference: D. Klein, S.D. Kamvar, C.D. Manning, From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 307–314.
– reference: S. Basu, M. Bilenko, R.J. Mooney, Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering, in: Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, Washington DC, 2003, pp. 42–49.
– volume: 47
  start-page: 45
  year: 2008
  end-page: 57
  ident: bib33
  article-title: Improving fuzzy clustering of biological data by metric learning with side information
  publication-title: International Journal of Approximate Reasoning
– year: 2009
  ident: bib56
  article-title: Markov Random Field Modeling in Image Analysis, Advances in Pattern Recognition Series
– reference: L. Xu, J. Neufeld, B. Larson, D. Schuurmans, Maximum margin clustering, in: Advances in Neural Information Processing Systems, vol. 17, 2005, pp. 1537–1544.
– volume: 21
  start-page: 345
  year: 2010
  end-page: 370
  ident: bib12
  article-title: Density-based semi-supervised clustering
  publication-title: Data Mining and Knowlege Discovery
– reference: H. Zeng, Y. Cheung, Semi-supervised maximum margin clustering with pairwise constraints, IEEE Transactions on Knowledge and Data Engineering.
– reference: D. Cohn, R. Caruana, A. McCallum, Semi-supervised Clustering with User Feedback, Technical Report TR2003-1892, Cornell University, 2003.
– year: 1981
  ident: bib5
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– volume: 12
  start-page: 47
  year: 2006
  end-page: 78
  ident: bib29
  article-title: Data clustering with partial supervision
  publication-title: Data Mining and Knowlege Discovery
– reference: S.D. Kamvar, D. Klein, C.D. Manning, Spectral learning, in: Proceedings of the International Joint Conference on Artifical Intelligence, 2003, pp. 561–566.
– reference: -means, spectral clustering and normalized cuts, in: Proceedings of the 10th International conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556.
– reference: Y. Hu, J. Wang, N. Yu, X.-S. Hua, Maximum margin clustering with pairwise constraints, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 253–262.
– volume: 43
  start-page: 1320
  year: 2010
  end-page: 1333
  ident: bib28
  article-title: Semi-supervised clustering with metric learning: an adaptive kernel method
  publication-title: Pattern Recognition
– reference: N. Grira, M. Crucianu, N. Boujemaa, Unsupervised and semi-supervised clustering: a brief survey, in: A Review of Machine Learning Techniques for Processing Multimedia Content, Report of the MUSCLE European Network of Excellence FP6, 2004.
– volume: 13
  start-page: 887
  year: 2009
  end-page: 899
  ident: bib50
  article-title: Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data
  publication-title: Intelligent Data Analysis
– volume: 11–12
  start-page: 625
  year: 1999
  end-page: 653
  ident: bib59
  article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
  publication-title: Optimization Methods and Software
– volume: 20
  start-page: 496
  year: 2008
  end-page: 503
  ident: bib27
  article-title: Semisupervised clustering with metric learning using relative comparisons
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 26
  start-page: 173
  year: 2004
  end-page: 183
  ident: bib38
  article-title: Segmentation given partial grouping constraints
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: A. Asuncion, D. Newman, UCI machine learning repository, 2007
– volume: 6
  start-page: 18:1
  year: 2010
  end-page: 18:26
  ident: bib53
  article-title: Semi-supervised distance metric learning for collaborative image retrieval and clustering
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
– reference: I.S. Dhillon, Y. Guan, B. Kulis, Kernel
– reference: S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: Proceedings of the 19th International Conference on Machine Learning (ICML-2002), Sydney, Australia, 2002, pp. 19–26.
– reference: J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 282–289.
– reference: Z. Lu, M.Á. Carreira-Perpiñán, Constrained spectral clustering through affinity propagation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
– volume: 39
  start-page: 1253
  year: 2006
  end-page: 1264
  ident: bib47
  article-title: Locally linear metric adaptation with application to semi-supervised clustering and image retrieval
  publication-title: Pattern Recognition
– reference: E.P. Xing, A.Y. Ng, M.I. Jordan, S.J. Russell, Distance metric learning with application to clustering with side-information, in: Advances in Neural Information Processing Systems, vol. 15, 2002, pp. 505–512.
– reference: E. Hayman, B. Caputo, M. Fritz, J.-O. Eklundh, On the significance of real-world conditions for material classification, in: Proceedings of the Eighth European Conference on Computer Vision, vol. 4, 2004, pp. 253–266.
– volume: 68
  start-page: 179
  year: 2006
  end-page: 201
  ident: bib17
  article-title: Discriminative random fields
  publication-title: International Journal of Computer Vision
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib2
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
– volume: 41
  start-page: 191
  year: 2008
  end-page: 203
  ident: bib40
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recognition
– reference: R. Bekkerman, M. Sahami, Semi-supervised clustering using combinatorial MRFs, in: Proceedings of the ICML-2006 Workshop on Learning in Structured Output Spaces, 2006.
– volume: 18
  start-page: 214
  year: 2009
  end-page: 256
  ident: bib26
  article-title: A global optimization method for semi-supervised clustering
  publication-title: Data Mining and Knowlege Discovery
– volume: 41
  start-page: 1834
  year: 2008
  end-page: 1844
  ident: bib32
  article-title: Active semi-supervised fuzzy clustering
  publication-title: Pattern Recognition
– volume: 157
  start-page: 1733
  year: 2006
  end-page: 1759
  ident: bib34
  article-title: Enhancement of fuzzy clustering by mechanisms of partial supervision
  publication-title: Fuzzy Sets and Systems
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib6
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B
– volume: 73
  start-page: 1352
  year: 2010
  end-page: 1361
  ident: bib51
  article-title: Kernel-based metric learning for semi-supervised clustering
  publication-title: Neurocomputing
– volume: 43
  start-page: 2982
  year: 2010
  end-page: 2992
  ident: bib52
  article-title: Non-linear metric learning using pairwise similarity and dissimilarity constraints and the geometrical structure of data
  publication-title: Pattern Recognition
– reference: Y. Liu, R. Jin, A.K. Jain, BoostCluster: boosting clustering by pairwise constraints, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 450–459.
– start-page: 173
  year: 1979
  end-page: 184
  ident: bib55
  article-title: The consistent labeling problem: Part I
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1
– reference: S. Basu, M. Bilenko, R. J. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 59–68.
– volume: 18
  start-page: 257
  year: 2009
  end-page: 282
  ident: bib22
  article-title: Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
  publication-title: Data Mining and Knowlege Discovery
– year: 2006
  ident: bib18
  article-title: Semi-Supervised Learning
– volume: 72
  start-page: 3203
  year: 2009
  end-page: 3211
  ident: bib42
  article-title: On defining affinity graph for spectral clustering through ranking on manifolds
  publication-title: Neurocomputing
– volume: 38
  start-page: 49
  year: 1996
  end-page: 95
  ident: bib57
  article-title: Semidefinite programming
  publication-title: SIAM Review
– reference: M. Bilenko, S. Basu, R. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 81–88.
– reference: K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl, Constrained k-means clustering with background knowledge, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 577–584.
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: bib4
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
– reference: A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, vol. 14, 2001, pp. 849–856.
– volume: 24
  start-page: 3105
  year: 2003
  end-page: 3113
  ident: bib31
  article-title: Evolutionary semi-supervised fuzzy clustering
  publication-title: Pattern Recognition Letters
– volume: 22
  start-page: 477
  year: 2009
  end-page: 481
  ident: bib35
  article-title: Semi-supervised fuzzy clustering: a kernel-based approach
  publication-title: Knowledge-Based System
– reference: S. Basu, A. Banerjee, R.J. Mooney, Active semi-supervision for pairwise constrained clustering, in: Proceedings of the 2004 SIAM International Conference on Data Mining SDM-04, 2004, pp. 333–344.
– volume: 39
  start-page: 1905
  year: 2006
  end-page: 1917
  ident: bib48
  article-title: Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval
  publication-title: Pattern Recognition
– volume: 48
  start-page: 259
  year: 1986
  end-page: 302
  ident: bib58
  article-title: On the statistical analysis of dirty pictures
  publication-title: Journal of the Royal Statistical Society. Series B
– volume: 17
  start-page: 355
  year: 2008
  end-page: 379
  ident: bib43
  article-title: Non-negative matrix factorization for semi-supervised data clustering
  publication-title: Knowledge and Information Systems
– reference: N. Shental, T. Hertz, A. Bar-Hillel, D. Weinshall, Computing Gaussian mixture models with EM using side-information, in: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), 2003.
– volume: 74
  start-page: 1
  year: 2009
  end-page: 22
  ident: bib44
  article-title: Semi-supervised graph clustering: a kernel approach
  publication-title: Machine Learning
– year: 2001
  ident: bib60
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib1
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys
– volume: 29
  start-page: 859
  year: 1996
  end-page: 871
  ident: bib30
  article-title: Partially supervised clustering for image segmentation
  publication-title: Pattern Recognition
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  ident: bib7
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.1016/j.patcog.2012.05.021_bib11
– volume: 29
  start-page: 859
  issue: 5
  year: 1996
  ident: 10.1016/j.patcog.2012.05.021_bib30
  article-title: Partially supervised clustering for image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00120-4
– ident: 10.1016/j.patcog.2012.05.021_bib25
  doi: 10.1137/1.9781611972740.31
– volume: 68
  start-page: 179
  issue: 2
  year: 2006
  ident: 10.1016/j.patcog.2012.05.021_bib17
  article-title: Discriminative random fields
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-7007-9
– ident: 10.1016/j.patcog.2012.05.021_bib45
  doi: 10.1109/ICDM.2008.65
– volume: 22
  start-page: 477
  issue: 6
  year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib35
  article-title: Semi-supervised fuzzy clustering: a kernel-based approach
  publication-title: Knowledge-Based System
  doi: 10.1016/j.knosys.2009.06.009
– volume: 72
  start-page: 3203
  year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib42
  article-title: On defining affinity graph for spectral clustering through ranking on manifolds
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.03.012
– volume: 41
  start-page: 1834
  year: 2008
  ident: 10.1016/j.patcog.2012.05.021_bib32
  article-title: Active semi-supervised fuzzy clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.10.004
– year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib56
– volume: 157
  start-page: 1733
  issue: 13
  year: 2006
  ident: 10.1016/j.patcog.2012.05.021_bib34
  article-title: Enhancement of fuzzy clustering by mechanisms of partial supervision
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2006.02.015
– volume: 21
  start-page: 345
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2012.05.021_bib12
  article-title: Density-based semi-supervised clustering
  publication-title: Data Mining and Knowlege Discovery
  doi: 10.1007/s10618-009-0157-y
– ident: 10.1016/j.patcog.2012.05.021_bib24
– volume: 24
  start-page: 3105
  issue: 16
  year: 2003
  ident: 10.1016/j.patcog.2012.05.021_bib31
  article-title: Evolutionary semi-supervised fuzzy clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(03)00177-6
– ident: 10.1016/j.patcog.2012.05.021_bib20
– ident: 10.1016/j.patcog.2012.05.021_bib15
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.patcog.2012.05.021_bib6
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 39
  start-page: 1905
  issue: 10
  year: 2006
  ident: 10.1016/j.patcog.2012.05.021_bib48
  article-title: Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.04.006
– ident: 10.1016/j.patcog.2012.05.021_bib41
  doi: 10.1109/CVPR.2008.4587451
– start-page: 173
  issue: 2
  year: 1979
  ident: 10.1016/j.patcog.2012.05.021_bib55
  article-title: The consistent labeling problem: Part I
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1
  doi: 10.1109/TPAMI.1979.4766903
– volume: 24
  start-page: 381
  year: 2002
  ident: 10.1016/j.patcog.2012.05.021_bib7
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.990138
– ident: 10.1016/j.patcog.2012.05.021_bib10
– volume: 17
  start-page: 355
  issue: 3
  year: 2008
  ident: 10.1016/j.patcog.2012.05.021_bib43
  article-title: Non-negative matrix factorization for semi-supervised data clustering
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-008-0134-6
– ident: 10.1016/j.patcog.2012.05.021_bib49
  doi: 10.1145/1281192.1281242
– volume: 12
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.patcog.2012.05.021_bib29
  article-title: Data clustering with partial supervision
  publication-title: Data Mining and Knowlege Discovery
  doi: 10.1007/s10618-005-0019-1
– ident: 10.1016/j.patcog.2012.05.021_bib46
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.patcog.2012.05.021_bib3
  article-title: Data clustering 50 years beyond k-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– ident: 10.1016/j.patcog.2012.05.021_bib21
– volume: 48
  start-page: 259
  year: 1986
  ident: 10.1016/j.patcog.2012.05.021_bib58
  article-title: On the statistical analysis of dirty pictures
  publication-title: Journal of the Royal Statistical Society. Series B
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– year: 2001
  ident: 10.1016/j.patcog.2012.05.021_bib60
– ident: 10.1016/j.patcog.2012.05.021_bib14
– year: 2006
  ident: 10.1016/j.patcog.2012.05.021_bib18
– volume: 39
  start-page: 1253
  issue: 7
  year: 2006
  ident: 10.1016/j.patcog.2012.05.021_bib47
  article-title: Locally linear metric adaptation with application to semi-supervised clustering and image retrieval
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.12.012
– ident: 10.1016/j.patcog.2012.05.021_bib39
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.patcog.2012.05.021_bib2
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
– volume: 73
  start-page: 1352
  issue: 7–9, Sp. Iss. SI
  year: 2010
  ident: 10.1016/j.patcog.2012.05.021_bib51
  article-title: Kernel-based metric learning for semi-supervised clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.12.009
– ident: 10.1016/j.patcog.2012.05.021_bib13
– ident: 10.1016/j.patcog.2012.05.021_bib16
  doi: 10.1145/1015330.1015360
– volume: 43
  start-page: 2982
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2012.05.021_bib52
  article-title: Non-linear metric learning using pairwise similarity and dissimilarity constraints and the geometrical structure of data
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.02.022
– volume: 41
  start-page: 191
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2012.05.021_bib40
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.04.010
– volume: 11–12
  start-page: 625
  year: 1999
  ident: 10.1016/j.patcog.2012.05.021_bib59
  article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556789908805766
– volume: 18
  start-page: 257
  issue: 2
  year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib22
  article-title: Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results
  publication-title: Data Mining and Knowlege Discovery
  doi: 10.1007/s10618-008-0103-4
– volume: 18
  start-page: 214
  issue: 2
  year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib26
  article-title: A global optimization method for semi-supervised clustering
  publication-title: Data Mining and Knowlege Discovery
  doi: 10.1007/s10618-008-0104-3
– ident: 10.1016/j.patcog.2012.05.021_bib61
– volume: 3
  start-page: 32
  year: 1973
  ident: 10.1016/j.patcog.2012.05.021_bib4
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546046
– volume: 43
  start-page: 1320
  issue: 4
  year: 2010
  ident: 10.1016/j.patcog.2012.05.021_bib28
  article-title: Semi-supervised clustering with metric learning: an adaptive kernel method
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.11.005
– volume: 26
  start-page: 173
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2012.05.021_bib38
  article-title: Segmentation given partial grouping constraints
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.1262179
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.patcog.2012.05.021_bib1
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys
  doi: 10.1145/331499.331504
– ident: 10.1016/j.patcog.2012.05.021_bib36
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2012.05.021_bib9
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 74
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib44
  article-title: Semi-supervised graph clustering: a kernel approach
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5084-4
– ident: 10.1016/j.patcog.2012.05.021_bib62
  doi: 10.1007/978-3-540-24673-2_21
– volume: 13
  start-page: 887
  issue: 6
  year: 2009
  ident: 10.1016/j.patcog.2012.05.021_bib50
  article-title: Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2009-0399
– ident: 10.1016/j.patcog.2012.05.021_bib8
– ident: 10.1016/j.patcog.2012.05.021_bib23
– ident: 10.1016/j.patcog.2012.05.021_bib54
  doi: 10.1145/1014052.1014118
– ident: 10.1016/j.patcog.2012.05.021_bib19
  doi: 10.1145/1014052.1014062
– volume: 47
  start-page: 45
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2012.05.021_bib33
  article-title: Improving fuzzy clustering of biological data by metric learning with side information
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2007.03.008
– ident: 10.1016/j.patcog.2012.05.021_bib37
– year: 1981
  ident: 10.1016/j.patcog.2012.05.021_bib5
– volume: 6
  start-page: 18:1
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2012.05.021_bib53
  article-title: Semi-supervised distance metric learning for collaborative image retrieval and clustering
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
  doi: 10.1145/1823746.1823752
– volume: 20
  start-page: 496
  issue: 4
  year: 2008
  ident: 10.1016/j.patcog.2012.05.021_bib27
  article-title: Semisupervised clustering with metric learning using relative comparisons
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190715
– volume: 38
  start-page: 49
  issue: 1
  year: 1996
  ident: 10.1016/j.patcog.2012.05.021_bib57
  article-title: Semidefinite programming
  publication-title: SIAM Review
  doi: 10.1137/1038003
SSID ssj0017142
Score 2.1208467
Snippet Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4402
SubjectTerms Accuracy
Algorithms
Applied sciences
Clustering
Consistency
Discriminative random fields
Exact sciences and technology
Feasibility
Information, signal and communications theory
Learning
Pattern recognition
Semi-supervised clustering
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Title Semi-supervised clustering with discriminative random fields
URI https://dx.doi.org/10.1016/j.patcog.2012.05.021
https://www.proquest.com/docview/1082217698
Volume 45
WOSCitedRecordID wos000308271000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbuofB2H0suxQPxl6Ghm3FlgV7KSGlGyErLIXsSUiy1KW0jlvHpT9_R5bsOOtGu4dhMMaXmOiTz_kknXM-hN5To4gkgIDQowSPgPRimYgIp5kQRKhQKof0lM5m2WLBDr0IYtXICdCiyK6uWPlfoYZzALZNnf0HuLsfhRNwDKDDHmCH_a2A_67PlriqS2sEKqCT6rS2xRC6SVebh-u0vJqoIfBV-ersYxPJVvWp6mFTedNmu_gQo82C_bidZbbq23j8s-5dcWbsoIILP5b9OYUo7sVneDtJIkzikPTtpCv72PaHuGf1RqMw7nlQYFjkj9bZTRScfCrBy6yObVxd3JRNdTnS28WwZ9_4_tF0yueTxfxDeY6tTphdT_eiKXfRTkwTlg3Qzt6XyeJrt3JEo5GrEO__QZsu2cT0XX_x3-jIg1JU8JEYp25yzVE37GP-GD30w4Zgz8H9BN3RxVP0qJXkCLyFfoY-_4Z-sEE_sOgH2-gHDv3Aof8cHe1P5uMD7AUysCIpW2PJchgOZqGQhsrcGBvGpnOSClsGUIewSQ0EO5JUpsLKLxKSGCoMM1RlLDTkBRoUq0K_RAGjuUiIogkVOQz5NZPSkJjk4P5SRZQaItK2E1e-erwVMTnlbZjgCXety23r8jDh0LpDhLunSlc95Yb7aQsB9wzQMTsOXeiGJ3e3EOteF6dAzhJCh-hdCyEHC2qXxUShV3VlS-TGYKNSlr26xT2v0f3NF_MGDdYXtX6L7qnL9bK62PW98RfpvpVk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+clustering+with+discriminative+random+fields&rft.jtitle=Pattern+recognition&rft.au=Chang%2C+Chin-Chun&rft.au=Chen%2C+Hsin-Yi&rft.date=2012-12-01&rft.issn=0031-3203&rft.volume=45&rft.issue=12&rft.spage=4402&rft.epage=4413&rft_id=info:doi/10.1016%2Fj.patcog.2012.05.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon