Semi-supervised clustering with discriminative random fields
Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particula...
Uložené v:
| Vydané v: | Pattern recognition Ročník 45; číslo 12; s. 4402 - 4413 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.12.2012
Elsevier |
| Predmet: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particularly useful for the application where a traditional clustering is designated to use.
In the proposed framework, discriminative random fields (DRFs) are employed to model the consistency between the result of a traditional clustering algorithm and the supervised information with the assumption of semi-supervised learning. The semi-supervised clustering problem is thus formulated as finding the label configuration with the maximum a posteriori (MAP) probability of the DRF. A procedure based on the iterated conditional modes algorithm and a metric-learning algorithm is developed to find a suboptimal MAP solution of the DRF. The proposed approach has been tested against various data sets. Experimental results demonstrate that our approach can enhance the clustering accuracy, and thus prove the feasibility of the proposed approach.
► We plan a framework capable of integrating with a traditional clustering algorithm seamlessly for semi-supervised clustering. ► We find that discriminative random fields are useful for semi-supervised clustering. ► The proposed framework is a hybrid approach, which makes better use of supervised information for semi-supervised clustering. |
|---|---|
| AbstractList | Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particularly useful for the application where a traditional clustering is designated to use.
In the proposed framework, discriminative random fields (DRFs) are employed to model the consistency between the result of a traditional clustering algorithm and the supervised information with the assumption of semi-supervised learning. The semi-supervised clustering problem is thus formulated as finding the label configuration with the maximum a posteriori (MAP) probability of the DRF. A procedure based on the iterated conditional modes algorithm and a metric-learning algorithm is developed to find a suboptimal MAP solution of the DRF. The proposed approach has been tested against various data sets. Experimental results demonstrate that our approach can enhance the clustering accuracy, and thus prove the feasibility of the proposed approach.
► We plan a framework capable of integrating with a traditional clustering algorithm seamlessly for semi-supervised clustering. ► We find that discriminative random fields are useful for semi-supervised clustering. ► The proposed framework is a hybrid approach, which makes better use of supervised information for semi-supervised clustering. Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for semi-supervised clustering is proposed. This framework is capable of integrating with a traditional clustering algorithm seamlessly, and particularly useful for the application where a traditional clustering is designated to use. In the proposed framework, discriminative random fields (DRFs) are employed to model the consistency between the result of a traditional clustering algorithm and the supervised information with the assumption of semi-supervised learning. The semi-supervised clustering problem is thus formulated as finding the label configuration with the maximum a posteriori (MAP) probability of the DRF. A procedure based on the iterated conditional modes algorithm and a metric-learning algorithm is developed to find a suboptimal MAP solution of the DRF. The proposed approach has been tested against various data sets. Experimental results demonstrate that our approach can enhance the clustering accuracy, and thus prove the feasibility of the proposed approach. |
| Author | Chang, Chin-Chun Chen, Hsin-Yi |
| Author_xml | – sequence: 1 givenname: Chin-Chun surname: Chang fullname: Chang, Chin-Chun email: cvml@mail.ntou.edu.tw – sequence: 2 givenname: Hsin-Yi surname: Chen fullname: Chen, Hsin-Yi |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26212537$$DView record in Pascal Francis |
| BookMark | eNqFkMFKJDEQhoO44DjrG3joi-Cl26pkutMtIoi4qyDsYddzSCcVzdDTPSaZkX17IyMePCh1yKG-v_jzHbL9cRqJsWOECgGbs2W11slMjxUH5BXUFXDcYzNspShrXPB9NgMQWAoO4oAdxrgEQJkXM3bxl1a-jJs1ha2PZAszbGKi4MfH4sWnp8L6aIJf-VEnv6Ui6NFOq8J5Gmz8yX44PUQ6en_n7OHXzb_r2_L-z--766v70oimS2Xf2U4uWtC9k711DrsOyYpGI8CCIE9PoubYy77RuVkrRO2kdp2Tpu3AiTk73d1dh-l5QzGpVW5Fw6BHmjZRIbSco2y6NqMn76iORg8u9zU-qnX-gg7_FW848lrIzC12nAlTjIHcB4Kg3qSqpdpJVW9SFdQqS82x808x41M2M40paD98F77chSm72noKKhpPoyHrA5mk7OS_PvAKES-Xbw |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2963306 crossref_primary_10_1109_TKDE_2017_2695615 crossref_primary_10_1007_s10844_013_0264_5 crossref_primary_10_1016_j_ipl_2019_01_015 crossref_primary_10_1016_j_neunet_2014_11_006 crossref_primary_10_1016_j_patcog_2014_08_017 crossref_primary_10_1109_TKDE_2018_2818729 |
| Cites_doi | 10.1016/0031-3203(95)00120-4 10.1137/1.9781611972740.31 10.1007/s11263-006-7007-9 10.1109/ICDM.2008.65 10.1016/j.knosys.2009.06.009 10.1016/j.neucom.2009.03.012 10.1016/j.patcog.2007.10.004 10.1016/j.fss.2006.02.015 10.1007/s10618-009-0157-y 10.1016/S0167-8655(03)00177-6 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.patcog.2006.04.006 10.1109/CVPR.2008.4587451 10.1109/TPAMI.1979.4766903 10.1109/34.990138 10.1007/s10115-008-0134-6 10.1145/1281192.1281242 10.1007/s10618-005-0019-1 10.1016/j.patrec.2009.09.011 10.1111/j.2517-6161.1986.tb01412.x 10.1016/j.patcog.2005.12.012 10.1109/TNN.2005.845141 10.1016/j.neucom.2009.12.009 10.1145/1015330.1015360 10.1016/j.patcog.2010.02.022 10.1016/j.patcog.2007.04.010 10.1080/10556789908805766 10.1007/s10618-008-0103-4 10.1007/s10618-008-0104-3 10.1080/01969727308546046 10.1016/j.patcog.2009.11.005 10.1109/TPAMI.2004.1262179 10.1145/331499.331504 10.1007/s11222-007-9033-z 10.1007/s10994-008-5084-4 10.1007/978-3-540-24673-2_21 10.3233/IDA-2009-0399 10.1145/1014052.1014118 10.1145/1014052.1014062 10.1016/j.ijar.2007.03.008 10.1145/1823746.1823752 10.1109/TKDE.2007.190715 10.1137/1038003 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2012.05.021 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 4413 |
| ExternalDocumentID | 26212537 10_1016_j_patcog_2012_05_021 S0031320312002671 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c369t-b9d97480abf7bdff1991ed36a1004e0e0ebe3521b7b6a0018335f7af9f7c890f3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308271000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Sep 27 21:19:47 EDT 2025 Mon Jul 21 09:14:47 EDT 2025 Sat Nov 29 07:27:42 EST 2025 Tue Nov 18 21:14:54 EST 2025 Fri Feb 23 02:33:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Discriminative random fields Semi-supervised clustering Discriminant analysis Automatic classification Iterative method Signal classification Supervised classification Random field Accuracy Posterior probability Supervised learning A posteriori estimation Feasibility Metric Learning algorithm |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c369t-b9d97480abf7bdff1991ed36a1004e0e0ebe3521b7b6a0018335f7af9f7c890f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1082217698 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1082217698 pascalfrancis_primary_26212537 crossref_primary_10_1016_j_patcog_2012_05_021 crossref_citationtrail_10_1016_j_patcog_2012_05_021 elsevier_sciencedirect_doi_10_1016_j_patcog_2012_05_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Chapelle, Schölkopf, Zien (bib18) 2006 Haralick (bib55) 1979 Jain, Murty, Flynn (bib1) 1999; 31 S. Basu, A. Banerjee, R.J. Mooney, Active semi-supervision for pairwise constrained clustering, in: Proceedings of the 2004 SIAM International Conference on Data Mining SDM-04, 2004, pp. 333–344. Kulis, Basu, Dhillon, Mooney (bib44) 2009; 74 L. Xu, J. Neufeld, B. Larson, D. Schuurmans, Maximum margin clustering, in: Advances in Neural Information Processing Systems, vol. 17, 2005, pp. 1537–1544. Y. Hu, J. Wang, N. Yu, X.-S. Hua, Maximum margin clustering with pairwise constraints, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 253–262. Xu, Wunsch (bib2) 2005; 16 D. Cohn, R. Caruana, A. McCallum, Semi-supervised Clustering with User Feedback, Technical Report TR2003-1892, Cornell University, 2003. Jain (bib3) 2010; 31 Baghshah, Shouraki (bib51) 2010; 73 Davidson, Ravi (bib22) 2009; 18 J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 282–289. Baghshah, Shouraki (bib52) 2010; 43 Ceccarelli, Maratea (bib33) 2008; 47 Bouchachia, Pedrycz (bib34) 2006; 157 A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, vol. 14, 2001, pp. 849–856. S. Basu, M. Bilenko, R. J. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 59–68. Grira, Crucianu, Boujemaa (bib32) 2008; 41 Baghshah, Shouraki (bib50) 2009; 13 Sturm (bib59) 1999; 11–12 Luxburg (bib9) 2007; 17 K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl, Constrained k-means clustering with background knowledge, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 577–584. E. Hayman, B. Caputo, M. Fritz, J.-O. Eklundh, On the significance of real-world conditions for material classification, in: Proceedings of the Eighth European Conference on Computer Vision, vol. 4, 2004, pp. 253–266. H. Zeng, Y. Cheung, Semi-supervised maximum margin clustering with pairwise constraints, IEEE Transactions on Knowledge and Data Engineering. Li (bib56) 2009 M. Bilenko, S. Basu, R. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 81–88. R. Bekkerman, M. Sahami, Semi-supervised clustering using combinatorial MRFs, in: Proceedings of the ICML-2006 Workshop on Learning in Structured Output Spaces, 2006. Xia (bib26) 2009; 18 Zhang, Lu (bib35) 2009; 22 Kumar, Kummamuru (bib27) 2008; 20 Xia, Cao, Zhang, Li (bib42) 2009; 72 Bouchachia, Pedrycz (bib29) 2006; 12 Figueiredo, Jain (bib7) 2002; 24 E.P. Xing, A.Y. Ng, M.I. Jordan, S.J. Russell, Distance metric learning with application to clustering with side-information, in: Advances in Neural Information Processing Systems, vol. 15, 2002, pp. 505–512. S. Basu, M. Bilenko, R.J. Mooney, Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering, in: Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, Washington DC, 2003, pp. 42–49. Dempster, Laird, Rubin (bib6) 1977; 39 Chang, Yeung (bib40) 2008; 41 N. Grira, M. Crucianu, N. Boujemaa, Unsupervised and semi-supervised clustering: a brief survey, in: A Review of Machine Learning Techniques for Processing Multimedia Content, Report of the MUSCLE European Network of Excellence FP6, 2004. Vandenberghe, Boyd (bib57) 1996; 38 Y. Liu, R. Jin, A.K. Jain, BoostCluster: boosting clustering by pairwise constraints, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 450–459. Besag (bib58) 1986; 48 D. Klein, S.D. Kamvar, C.D. Manning, From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 307–314. Yin, Chen, Hu, Zhang (bib28) 2010; 43 I.S. Dhillon, Y. Guan, B. Kulis, Kernel Chen, Rege, Dong, Hua (bib43) 2008; 17 Hastie, Tibshirani, Friedman (bib60) 2001 N. Shental, T. Hertz, A. Bar-Hillel, D. Weinshall, Computing Gaussian mixture models with EM using side-information, in: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), 2003. Bezdek (bib5) 1981 Yu, Shi (bib38) 2004; 26 Z. Lu, M.Á. Carreira-Perpiñán, Constrained spectral clustering through affinity propagation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8. S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: Proceedings of the 19th International Conference on Machine Learning (ICML-2002), Sydney, Australia, 2002, pp. 19–26. Chang, Yeung, Cheung (bib48) 2006; 39 Ruiz, Spiliopoulou, Menasalvas (bib12) 2010; 21 means, spectral clustering and normalized cuts, in: Proceedings of the 10th International conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556. S.D. Kamvar, D. Klein, C.D. Manning, Spectral learning, in: Proceedings of the International Joint Conference on Artifical Intelligence, 2003, pp. 561–566. Hoi, Liu, Chang (bib53) 2010; 6 A. Asuncion, D. Newman, UCI machine learning repository, 2007 Bensaid, Hall, Bezdek, Clarke (bib30) 1996; 29 Liu, Huang (bib31) 2003; 24 Chang, Yeung (bib47) 2006; 39 Dunn (bib4) 1973; 3 Kumar, Hebert (bib17) 2006; 68 Chapelle (10.1016/j.patcog.2012.05.021_bib18) 2006 10.1016/j.patcog.2012.05.021_bib39 10.1016/j.patcog.2012.05.021_bib41 10.1016/j.patcog.2012.05.021_bib45 10.1016/j.patcog.2012.05.021_bib46 Bouchachia (10.1016/j.patcog.2012.05.021_bib34) 2006; 157 Ruiz (10.1016/j.patcog.2012.05.021_bib12) 2010; 21 Figueiredo (10.1016/j.patcog.2012.05.021_bib7) 2002; 24 Bouchachia (10.1016/j.patcog.2012.05.021_bib29) 2006; 12 Xia (10.1016/j.patcog.2012.05.021_bib26) 2009; 18 Liu (10.1016/j.patcog.2012.05.021_bib31) 2003; 24 Chen (10.1016/j.patcog.2012.05.021_bib43) 2008; 17 10.1016/j.patcog.2012.05.021_bib49 Dunn (10.1016/j.patcog.2012.05.021_bib4) 1973; 3 Kumar (10.1016/j.patcog.2012.05.021_bib27) 2008; 20 Yu (10.1016/j.patcog.2012.05.021_bib38) 2004; 26 10.1016/j.patcog.2012.05.021_bib10 10.1016/j.patcog.2012.05.021_bib54 10.1016/j.patcog.2012.05.021_bib11 Xu (10.1016/j.patcog.2012.05.021_bib2) 2005; 16 Baghshah (10.1016/j.patcog.2012.05.021_bib51) 2010; 73 10.1016/j.patcog.2012.05.021_bib14 10.1016/j.patcog.2012.05.021_bib8 10.1016/j.patcog.2012.05.021_bib15 Jain (10.1016/j.patcog.2012.05.021_bib3) 2010; 31 10.1016/j.patcog.2012.05.021_bib13 Jain (10.1016/j.patcog.2012.05.021_bib1) 1999; 31 Sturm (10.1016/j.patcog.2012.05.021_bib59) 1999; 11–12 Chang (10.1016/j.patcog.2012.05.021_bib40) 2008; 41 10.1016/j.patcog.2012.05.021_bib19 10.1016/j.patcog.2012.05.021_bib16 Besag (10.1016/j.patcog.2012.05.021_bib58) 1986; 48 10.1016/j.patcog.2012.05.021_bib21 Li (10.1016/j.patcog.2012.05.021_bib56) 2009 10.1016/j.patcog.2012.05.021_bib20 10.1016/j.patcog.2012.05.021_bib25 Kulis (10.1016/j.patcog.2012.05.021_bib44) 2009; 74 Hoi (10.1016/j.patcog.2012.05.021_bib53) 2010; 6 Luxburg (10.1016/j.patcog.2012.05.021_bib9) 2007; 17 10.1016/j.patcog.2012.05.021_bib23 10.1016/j.patcog.2012.05.021_bib24 Haralick (10.1016/j.patcog.2012.05.021_bib55) 1979 Kumar (10.1016/j.patcog.2012.05.021_bib17) 2006; 68 10.1016/j.patcog.2012.05.021_bib61 Chang (10.1016/j.patcog.2012.05.021_bib48) 2006; 39 10.1016/j.patcog.2012.05.021_bib62 Xia (10.1016/j.patcog.2012.05.021_bib42) 2009; 72 Dempster (10.1016/j.patcog.2012.05.021_bib6) 1977; 39 Yin (10.1016/j.patcog.2012.05.021_bib28) 2010; 43 Bensaid (10.1016/j.patcog.2012.05.021_bib30) 1996; 29 Vandenberghe (10.1016/j.patcog.2012.05.021_bib57) 1996; 38 Davidson (10.1016/j.patcog.2012.05.021_bib22) 2009; 18 Ceccarelli (10.1016/j.patcog.2012.05.021_bib33) 2008; 47 Baghshah (10.1016/j.patcog.2012.05.021_bib52) 2010; 43 10.1016/j.patcog.2012.05.021_bib36 10.1016/j.patcog.2012.05.021_bib37 Hastie (10.1016/j.patcog.2012.05.021_bib60) 2001 Baghshah (10.1016/j.patcog.2012.05.021_bib50) 2009; 13 Bezdek (10.1016/j.patcog.2012.05.021_bib5) 1981 Grira (10.1016/j.patcog.2012.05.021_bib32) 2008; 41 Chang (10.1016/j.patcog.2012.05.021_bib47) 2006; 39 Zhang (10.1016/j.patcog.2012.05.021_bib35) 2009; 22 |
| References_xml | – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib3 article-title: Data clustering 50 years beyond k-means publication-title: Pattern Recognition Letters – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: bib9 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing – reference: D. Klein, S.D. Kamvar, C.D. Manning, From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering, in: Proceedings of the 19th International Conference on Machine Learning, 2002, pp. 307–314. – reference: S. Basu, M. Bilenko, R.J. Mooney, Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering, in: Proceedings of the ICML-2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining Systems, Washington DC, 2003, pp. 42–49. – volume: 47 start-page: 45 year: 2008 end-page: 57 ident: bib33 article-title: Improving fuzzy clustering of biological data by metric learning with side information publication-title: International Journal of Approximate Reasoning – year: 2009 ident: bib56 article-title: Markov Random Field Modeling in Image Analysis, Advances in Pattern Recognition Series – reference: L. Xu, J. Neufeld, B. Larson, D. Schuurmans, Maximum margin clustering, in: Advances in Neural Information Processing Systems, vol. 17, 2005, pp. 1537–1544. – volume: 21 start-page: 345 year: 2010 end-page: 370 ident: bib12 article-title: Density-based semi-supervised clustering publication-title: Data Mining and Knowlege Discovery – reference: H. Zeng, Y. Cheung, Semi-supervised maximum margin clustering with pairwise constraints, IEEE Transactions on Knowledge and Data Engineering. – reference: D. Cohn, R. Caruana, A. McCallum, Semi-supervised Clustering with User Feedback, Technical Report TR2003-1892, Cornell University, 2003. – year: 1981 ident: bib5 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 12 start-page: 47 year: 2006 end-page: 78 ident: bib29 article-title: Data clustering with partial supervision publication-title: Data Mining and Knowlege Discovery – reference: S.D. Kamvar, D. Klein, C.D. Manning, Spectral learning, in: Proceedings of the International Joint Conference on Artifical Intelligence, 2003, pp. 561–566. – reference: -means, spectral clustering and normalized cuts, in: Proceedings of the 10th International conference on Knowledge Discovery and Data Mining, 2004, pp. 551–556. – reference: Y. Hu, J. Wang, N. Yu, X.-S. Hua, Maximum margin clustering with pairwise constraints, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 253–262. – volume: 43 start-page: 1320 year: 2010 end-page: 1333 ident: bib28 article-title: Semi-supervised clustering with metric learning: an adaptive kernel method publication-title: Pattern Recognition – reference: N. Grira, M. Crucianu, N. Boujemaa, Unsupervised and semi-supervised clustering: a brief survey, in: A Review of Machine Learning Techniques for Processing Multimedia Content, Report of the MUSCLE European Network of Excellence FP6, 2004. – volume: 13 start-page: 887 year: 2009 end-page: 899 ident: bib50 article-title: Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data publication-title: Intelligent Data Analysis – volume: 11–12 start-page: 625 year: 1999 end-page: 653 ident: bib59 article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones publication-title: Optimization Methods and Software – volume: 20 start-page: 496 year: 2008 end-page: 503 ident: bib27 article-title: Semisupervised clustering with metric learning using relative comparisons publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 26 start-page: 173 year: 2004 end-page: 183 ident: bib38 article-title: Segmentation given partial grouping constraints publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: A. Asuncion, D. Newman, UCI machine learning repository, 2007 – volume: 6 start-page: 18:1 year: 2010 end-page: 18:26 ident: bib53 article-title: Semi-supervised distance metric learning for collaborative image retrieval and clustering publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications – reference: I.S. Dhillon, Y. Guan, B. Kulis, Kernel – reference: S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in: Proceedings of the 19th International Conference on Machine Learning (ICML-2002), Sydney, Australia, 2002, pp. 19–26. – reference: J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 282–289. – reference: Z. Lu, M.Á. Carreira-Perpiñán, Constrained spectral clustering through affinity propagation, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8. – volume: 39 start-page: 1253 year: 2006 end-page: 1264 ident: bib47 article-title: Locally linear metric adaptation with application to semi-supervised clustering and image retrieval publication-title: Pattern Recognition – reference: E.P. Xing, A.Y. Ng, M.I. Jordan, S.J. Russell, Distance metric learning with application to clustering with side-information, in: Advances in Neural Information Processing Systems, vol. 15, 2002, pp. 505–512. – reference: E. Hayman, B. Caputo, M. Fritz, J.-O. Eklundh, On the significance of real-world conditions for material classification, in: Proceedings of the Eighth European Conference on Computer Vision, vol. 4, 2004, pp. 253–266. – volume: 68 start-page: 179 year: 2006 end-page: 201 ident: bib17 article-title: Discriminative random fields publication-title: International Journal of Computer Vision – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib2 article-title: Survey of clustering algorithms publication-title: IEEE Transactions on Neural Networks – volume: 41 start-page: 191 year: 2008 end-page: 203 ident: bib40 article-title: Robust path-based spectral clustering publication-title: Pattern Recognition – reference: R. Bekkerman, M. Sahami, Semi-supervised clustering using combinatorial MRFs, in: Proceedings of the ICML-2006 Workshop on Learning in Structured Output Spaces, 2006. – volume: 18 start-page: 214 year: 2009 end-page: 256 ident: bib26 article-title: A global optimization method for semi-supervised clustering publication-title: Data Mining and Knowlege Discovery – volume: 41 start-page: 1834 year: 2008 end-page: 1844 ident: bib32 article-title: Active semi-supervised fuzzy clustering publication-title: Pattern Recognition – volume: 157 start-page: 1733 year: 2006 end-page: 1759 ident: bib34 article-title: Enhancement of fuzzy clustering by mechanisms of partial supervision publication-title: Fuzzy Sets and Systems – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib6 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B – volume: 73 start-page: 1352 year: 2010 end-page: 1361 ident: bib51 article-title: Kernel-based metric learning for semi-supervised clustering publication-title: Neurocomputing – volume: 43 start-page: 2982 year: 2010 end-page: 2992 ident: bib52 article-title: Non-linear metric learning using pairwise similarity and dissimilarity constraints and the geometrical structure of data publication-title: Pattern Recognition – reference: Y. Liu, R. Jin, A.K. Jain, BoostCluster: boosting clustering by pairwise constraints, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 450–459. – start-page: 173 year: 1979 end-page: 184 ident: bib55 article-title: The consistent labeling problem: Part I publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1 – reference: S. Basu, M. Bilenko, R. J. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 59–68. – volume: 18 start-page: 257 year: 2009 end-page: 282 ident: bib22 article-title: Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results publication-title: Data Mining and Knowlege Discovery – year: 2006 ident: bib18 article-title: Semi-Supervised Learning – volume: 72 start-page: 3203 year: 2009 end-page: 3211 ident: bib42 article-title: On defining affinity graph for spectral clustering through ranking on manifolds publication-title: Neurocomputing – volume: 38 start-page: 49 year: 1996 end-page: 95 ident: bib57 article-title: Semidefinite programming publication-title: SIAM Review – reference: M. Bilenko, S. Basu, R. Mooney, Integrating constraints and metric learning in semi-supervised clustering, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 81–88. – reference: K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl, Constrained k-means clustering with background knowledge, in: Proceedings of the 18th International Conference on Machine Learning, 2001, pp. 577–584. – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: bib4 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics – reference: A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, vol. 14, 2001, pp. 849–856. – volume: 24 start-page: 3105 year: 2003 end-page: 3113 ident: bib31 article-title: Evolutionary semi-supervised fuzzy clustering publication-title: Pattern Recognition Letters – volume: 22 start-page: 477 year: 2009 end-page: 481 ident: bib35 article-title: Semi-supervised fuzzy clustering: a kernel-based approach publication-title: Knowledge-Based System – reference: S. Basu, A. Banerjee, R.J. Mooney, Active semi-supervision for pairwise constrained clustering, in: Proceedings of the 2004 SIAM International Conference on Data Mining SDM-04, 2004, pp. 333–344. – volume: 39 start-page: 1905 year: 2006 end-page: 1917 ident: bib48 article-title: Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval publication-title: Pattern Recognition – volume: 48 start-page: 259 year: 1986 end-page: 302 ident: bib58 article-title: On the statistical analysis of dirty pictures publication-title: Journal of the Royal Statistical Society. Series B – volume: 17 start-page: 355 year: 2008 end-page: 379 ident: bib43 article-title: Non-negative matrix factorization for semi-supervised data clustering publication-title: Knowledge and Information Systems – reference: N. Shental, T. Hertz, A. Bar-Hillel, D. Weinshall, Computing Gaussian mixture models with EM using side-information, in: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), 2003. – volume: 74 start-page: 1 year: 2009 end-page: 22 ident: bib44 article-title: Semi-supervised graph clustering: a kernel approach publication-title: Machine Learning – year: 2001 ident: bib60 article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib1 article-title: Data clustering: a review publication-title: ACM Computing Surveys – volume: 29 start-page: 859 year: 1996 end-page: 871 ident: bib30 article-title: Partially supervised clustering for image segmentation publication-title: Pattern Recognition – volume: 24 start-page: 381 year: 2002 end-page: 396 ident: bib7 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: 10.1016/j.patcog.2012.05.021_bib11 – volume: 29 start-page: 859 issue: 5 year: 1996 ident: 10.1016/j.patcog.2012.05.021_bib30 article-title: Partially supervised clustering for image segmentation publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00120-4 – ident: 10.1016/j.patcog.2012.05.021_bib25 doi: 10.1137/1.9781611972740.31 – volume: 68 start-page: 179 issue: 2 year: 2006 ident: 10.1016/j.patcog.2012.05.021_bib17 article-title: Discriminative random fields publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-7007-9 – ident: 10.1016/j.patcog.2012.05.021_bib45 doi: 10.1109/ICDM.2008.65 – volume: 22 start-page: 477 issue: 6 year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib35 article-title: Semi-supervised fuzzy clustering: a kernel-based approach publication-title: Knowledge-Based System doi: 10.1016/j.knosys.2009.06.009 – volume: 72 start-page: 3203 year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib42 article-title: On defining affinity graph for spectral clustering through ranking on manifolds publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.03.012 – volume: 41 start-page: 1834 year: 2008 ident: 10.1016/j.patcog.2012.05.021_bib32 article-title: Active semi-supervised fuzzy clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.10.004 – year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib56 – volume: 157 start-page: 1733 issue: 13 year: 2006 ident: 10.1016/j.patcog.2012.05.021_bib34 article-title: Enhancement of fuzzy clustering by mechanisms of partial supervision publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2006.02.015 – volume: 21 start-page: 345 issue: 3 year: 2010 ident: 10.1016/j.patcog.2012.05.021_bib12 article-title: Density-based semi-supervised clustering publication-title: Data Mining and Knowlege Discovery doi: 10.1007/s10618-009-0157-y – ident: 10.1016/j.patcog.2012.05.021_bib24 – volume: 24 start-page: 3105 issue: 16 year: 2003 ident: 10.1016/j.patcog.2012.05.021_bib31 article-title: Evolutionary semi-supervised fuzzy clustering publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(03)00177-6 – ident: 10.1016/j.patcog.2012.05.021_bib20 – ident: 10.1016/j.patcog.2012.05.021_bib15 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.patcog.2012.05.021_bib6 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 39 start-page: 1905 issue: 10 year: 2006 ident: 10.1016/j.patcog.2012.05.021_bib48 article-title: Relaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.04.006 – ident: 10.1016/j.patcog.2012.05.021_bib41 doi: 10.1109/CVPR.2008.4587451 – start-page: 173 issue: 2 year: 1979 ident: 10.1016/j.patcog.2012.05.021_bib55 article-title: The consistent labeling problem: Part I publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1 doi: 10.1109/TPAMI.1979.4766903 – volume: 24 start-page: 381 year: 2002 ident: 10.1016/j.patcog.2012.05.021_bib7 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.990138 – ident: 10.1016/j.patcog.2012.05.021_bib10 – volume: 17 start-page: 355 issue: 3 year: 2008 ident: 10.1016/j.patcog.2012.05.021_bib43 article-title: Non-negative matrix factorization for semi-supervised data clustering publication-title: Knowledge and Information Systems doi: 10.1007/s10115-008-0134-6 – ident: 10.1016/j.patcog.2012.05.021_bib49 doi: 10.1145/1281192.1281242 – volume: 12 start-page: 47 issue: 1 year: 2006 ident: 10.1016/j.patcog.2012.05.021_bib29 article-title: Data clustering with partial supervision publication-title: Data Mining and Knowlege Discovery doi: 10.1007/s10618-005-0019-1 – ident: 10.1016/j.patcog.2012.05.021_bib46 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.patcog.2012.05.021_bib3 article-title: Data clustering 50 years beyond k-means publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.09.011 – ident: 10.1016/j.patcog.2012.05.021_bib21 – volume: 48 start-page: 259 year: 1986 ident: 10.1016/j.patcog.2012.05.021_bib58 article-title: On the statistical analysis of dirty pictures publication-title: Journal of the Royal Statistical Society. Series B doi: 10.1111/j.2517-6161.1986.tb01412.x – year: 2001 ident: 10.1016/j.patcog.2012.05.021_bib60 – ident: 10.1016/j.patcog.2012.05.021_bib14 – year: 2006 ident: 10.1016/j.patcog.2012.05.021_bib18 – volume: 39 start-page: 1253 issue: 7 year: 2006 ident: 10.1016/j.patcog.2012.05.021_bib47 article-title: Locally linear metric adaptation with application to semi-supervised clustering and image retrieval publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.12.012 – ident: 10.1016/j.patcog.2012.05.021_bib39 – volume: 16 start-page: 645 year: 2005 ident: 10.1016/j.patcog.2012.05.021_bib2 article-title: Survey of clustering algorithms publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.845141 – volume: 73 start-page: 1352 issue: 7–9, Sp. Iss. SI year: 2010 ident: 10.1016/j.patcog.2012.05.021_bib51 article-title: Kernel-based metric learning for semi-supervised clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.12.009 – ident: 10.1016/j.patcog.2012.05.021_bib13 – ident: 10.1016/j.patcog.2012.05.021_bib16 doi: 10.1145/1015330.1015360 – volume: 43 start-page: 2982 issue: 8 year: 2010 ident: 10.1016/j.patcog.2012.05.021_bib52 article-title: Non-linear metric learning using pairwise similarity and dissimilarity constraints and the geometrical structure of data publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.02.022 – volume: 41 start-page: 191 issue: 1 year: 2008 ident: 10.1016/j.patcog.2012.05.021_bib40 article-title: Robust path-based spectral clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.04.010 – volume: 11–12 start-page: 625 year: 1999 ident: 10.1016/j.patcog.2012.05.021_bib59 article-title: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones publication-title: Optimization Methods and Software doi: 10.1080/10556789908805766 – volume: 18 start-page: 257 issue: 2 year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib22 article-title: Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results publication-title: Data Mining and Knowlege Discovery doi: 10.1007/s10618-008-0103-4 – volume: 18 start-page: 214 issue: 2 year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib26 article-title: A global optimization method for semi-supervised clustering publication-title: Data Mining and Knowlege Discovery doi: 10.1007/s10618-008-0104-3 – ident: 10.1016/j.patcog.2012.05.021_bib61 – volume: 3 start-page: 32 year: 1973 ident: 10.1016/j.patcog.2012.05.021_bib4 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics doi: 10.1080/01969727308546046 – volume: 43 start-page: 1320 issue: 4 year: 2010 ident: 10.1016/j.patcog.2012.05.021_bib28 article-title: Semi-supervised clustering with metric learning: an adaptive kernel method publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.11.005 – volume: 26 start-page: 173 issue: 2 year: 2004 ident: 10.1016/j.patcog.2012.05.021_bib38 article-title: Segmentation given partial grouping constraints publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.1262179 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.patcog.2012.05.021_bib1 article-title: Data clustering: a review publication-title: ACM Computing Surveys doi: 10.1145/331499.331504 – ident: 10.1016/j.patcog.2012.05.021_bib36 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.patcog.2012.05.021_bib9 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z – volume: 74 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib44 article-title: Semi-supervised graph clustering: a kernel approach publication-title: Machine Learning doi: 10.1007/s10994-008-5084-4 – ident: 10.1016/j.patcog.2012.05.021_bib62 doi: 10.1007/978-3-540-24673-2_21 – volume: 13 start-page: 887 issue: 6 year: 2009 ident: 10.1016/j.patcog.2012.05.021_bib50 article-title: Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2009-0399 – ident: 10.1016/j.patcog.2012.05.021_bib8 – ident: 10.1016/j.patcog.2012.05.021_bib23 – ident: 10.1016/j.patcog.2012.05.021_bib54 doi: 10.1145/1014052.1014118 – ident: 10.1016/j.patcog.2012.05.021_bib19 doi: 10.1145/1014052.1014062 – volume: 47 start-page: 45 issue: 1 year: 2008 ident: 10.1016/j.patcog.2012.05.021_bib33 article-title: Improving fuzzy clustering of biological data by metric learning with side information publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2007.03.008 – ident: 10.1016/j.patcog.2012.05.021_bib37 – year: 1981 ident: 10.1016/j.patcog.2012.05.021_bib5 – volume: 6 start-page: 18:1 issue: 3 year: 2010 ident: 10.1016/j.patcog.2012.05.021_bib53 article-title: Semi-supervised distance metric learning for collaborative image retrieval and clustering publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications doi: 10.1145/1823746.1823752 – volume: 20 start-page: 496 issue: 4 year: 2008 ident: 10.1016/j.patcog.2012.05.021_bib27 article-title: Semisupervised clustering with metric learning using relative comparisons publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190715 – volume: 38 start-page: 49 issue: 1 year: 1996 ident: 10.1016/j.patcog.2012.05.021_bib57 article-title: Semidefinite programming publication-title: SIAM Review doi: 10.1137/1038003 |
| SSID | ssj0017142 |
| Score | 2.1207426 |
| Snippet | Semi-supervised clustering exploits a small quantity of supervised information to improve the accuracy of data clustering. In this paper, a framework for... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4402 |
| SubjectTerms | Accuracy Algorithms Applied sciences Clustering Consistency Discriminative random fields Exact sciences and technology Feasibility Information, signal and communications theory Learning Pattern recognition Semi-supervised clustering Signal and communications theory Signal representation. Spectral analysis Signal, noise Telecommunications and information theory |
| Title | Semi-supervised clustering with discriminative random fields |
| URI | https://dx.doi.org/10.1016/j.patcog.2012.05.021 https://www.proquest.com/docview/1082217698 |
| Volume | 45 |
| WOSCitedRecordID | wos000308271000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBch3cNg7Hs0-yge7G1oyJJtSdCXEjq6UUqhHWRPxpKlLSV1TB2X_vk9WbbjpBvdBiMggm1FRHe--0m6-x1CH0JFYiVDi20Ma5NIEYFFJAW2lhJrpTZR3rDrH_OTEzGbydPR6LjLhble8KIQNzey_K-ihmsgbJc6-xfi7n8ULsB3EDq0IHZo_0jwZ-Zyjqu6dEagAjipF7UjQ-g3XV0erq_l1UQNga_Kl5cfm0i2aghVTxvmTZft0oYYrQ_sp90us6u-jac_68Edb8aOKrjxfT7cUwjpVnxGn-yyjixqjCcLMaPE2yPj7aXgDAPm2jConh-yUxw6MI9RROjA1QIUY780435H4eJTCe5o-cMF4NGGX9UnU28RZJ95_kloXMBJ4ggFdiiPpRijnYMvh7Ov_akSDyPPHt_-kS6Vson3uzvW76DKozKr4AWyvvLJHSfeIJPzp-hxu6QIDrwqPEMjUzxHT7pyHUFrvV-g_S3NCNaaETjNCDY1I_CaEXjNeIm-fT48nx7htngG1iyRK6xkDktFQTJlucqtdSFuJmdJ5igCDYGPMgC-Q8VVkrnSjIzFlmdWWq6FJJa9QuNiWZhdFGSUaytExLIMusJDWitNjOPyBz9LxASxbp5S3TLLuwIni7QLIbxI_eymbnZTEqcwuxOE-16lZ1a553neiSBt0aFHfSlozT099zYk1g9HEwBuMeMT9L4TYQrW1R2ZZYVZ1pWjz6WwaE-keP3Pw79BD9fv2Fs0Xl3V5h16oK9X8-pqr9XRWxkLonA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+clustering+with+discriminative+random+fields&rft.jtitle=Pattern+recognition&rft.au=Chang%2C+Chin-Chun&rft.au=Chen%2C+Hsin-Yi&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=45&rft.issue=12&rft.spage=4402&rft.epage=4413&rft_id=info:doi/10.1016%2Fj.patcog.2012.05.021&rft.externalDocID=S0031320312002671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |