Modeling metal deposition in heat transfer analyses of additive manufacturing processes

Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Finite elements in analysis and design Ročník 86; s. 51 - 60
Hlavný autor: Michaleris, Panagiotis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2014
Predmet:
ISSN:0168-874X, 1872-6925
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion. In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times. •FEA techniques for modeling metal deposition in additive manufacturing are investigated.•A new hybrid inactive/quiet element method is proposed for modeling additive manufacturing.•Metal deposition element is initially inactive, then, they are switched to quiet layer by layer.
AbstractList Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion. In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times.
Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion. In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times. •FEA techniques for modeling metal deposition in additive manufacturing are investigated.•A new hybrid inactive/quiet element method is proposed for modeling additive manufacturing.•Metal deposition element is initially inactive, then, they are switched to quiet layer by layer.
Author Michaleris, Panagiotis
Author_xml – sequence: 1
  givenname: Panagiotis
  surname: Michaleris
  fullname: Michaleris, Panagiotis
  organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, Pan Computing LLC, United States
BookMark eNqFkE1LAzEQQIMoWKu_wEuOXrYmm91s9uBBxC-oeFH0FrLJRFO2SU1Sof_e1HryoDAwl_dm4B2hfR88IHRKyYwSys8XM-s8jLOa0GZGyhC2hyZUdHXF-7rdR5NCiUp0zeshOkppQQhpa95M0MtDMDA6_4aXkNWIDaxCctkFj53H76AyzlH5ZCFi5dW4SZBwsFgZU6hPwEvl11bpvI7bI6sYNKTCHKMDq8YEJz97ip5vrp-u7qr54-391eW80oz3uRpaQVo7MDNYI_qywAirmRHK1rqHljbaQMe5pr1lna6bhjaU90CHrhvYoNgUne3uls8fa0hZLl3SMI7KQ1gnSXnX9S0lhP6PtpxQIoTgBWU7VMeQUgQrV9EtVdxISuS2uFzI7-JyW1ySMoQVq_9laZfVtmVJ6MZ_3IudCyXWp4Mok3bgNRgXQWdpgvvT_wJlcKGp
CitedBy_id crossref_primary_10_1016_j_addma_2016_08_003
crossref_primary_10_1016_j_addma_2021_102203
crossref_primary_10_1016_j_matdes_2025_114607
crossref_primary_10_1016_j_jmapro_2021_08_016
crossref_primary_10_1007_s40194_025_02131_1
crossref_primary_10_1016_j_jmatprotec_2019_03_029
crossref_primary_10_1007_s40964_022_00290_x
crossref_primary_10_1007_s00170_015_7576_2
crossref_primary_10_1007_s11831_022_09786_9
crossref_primary_10_1088_1742_6596_1730_1_012128
crossref_primary_10_1016_j_ijleo_2020_166194
crossref_primary_10_1007_s00170_019_04440_4
crossref_primary_10_1016_j_addma_2024_104591
crossref_primary_10_1016_j_jmatprotec_2016_05_027
crossref_primary_10_1016_j_jmsy_2025_05_010
crossref_primary_10_1016_j_jmapro_2019_07_028
crossref_primary_10_1007_s00466_021_02116_z
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1016_j_jmapro_2019_03_007
crossref_primary_10_1016_j_powtec_2022_117323
crossref_primary_10_1007_s00170_022_09887_6
crossref_primary_10_1016_j_jmatprotec_2016_01_004
crossref_primary_10_1016_j_powtec_2022_117568
crossref_primary_10_1016_j_matdes_2021_109946
crossref_primary_10_1007_s12008_025_02242_5
crossref_primary_10_1016_j_finel_2024_104238
crossref_primary_10_1007_s40192_019_00144_5
crossref_primary_10_1016_j_finel_2019_103347
crossref_primary_10_1016_j_optlastec_2018_11_008
crossref_primary_10_3390_ma15082902
crossref_primary_10_1007_s00170_023_12541_4
crossref_primary_10_1007_s40192_019_00133_8
crossref_primary_10_3390_technologies10050098
crossref_primary_10_1016_j_jmatprotec_2018_02_042
crossref_primary_10_1002_gamm_202100019
crossref_primary_10_1080_0951192X_2023_2228276
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126666
crossref_primary_10_1007_s00466_017_1516_y
crossref_primary_10_1007_s10765_021_02810_3
crossref_primary_10_3390_jmmp7010010
crossref_primary_10_1016_j_addma_2023_103676
crossref_primary_10_1007_s00170_019_03555_y
crossref_primary_10_1080_00401706_2021_1905074
crossref_primary_10_1007_s11837_025_07487_9
crossref_primary_10_1016_j_cossms_2016_12_001
crossref_primary_10_1089_3dp_2021_0197
crossref_primary_10_1038_s41598_019_57131_1
crossref_primary_10_1016_j_euromechsol_2021_104290
crossref_primary_10_1016_j_addma_2020_101732
crossref_primary_10_1016_j_addma_2019_02_006
crossref_primary_10_3390_jmmp2030063
crossref_primary_10_1007_s00366_023_01926_4
crossref_primary_10_1016_j_addma_2018_04_004
crossref_primary_10_3390_met15010083
crossref_primary_10_1016_j_addma_2024_104570
crossref_primary_10_1080_24725854_2019_1704465
crossref_primary_10_1016_j_cma_2017_12_003
crossref_primary_10_1016_j_eml_2021_101403
crossref_primary_10_1016_j_msea_2021_141627
crossref_primary_10_1007_s40194_020_00970_8
crossref_primary_10_1007_s00170_023_12822_y
crossref_primary_10_2351_7_0000550
crossref_primary_10_1016_j_compstruc_2025_107860
crossref_primary_10_1016_j_matdes_2024_113210
crossref_primary_10_1016_j_addma_2023_103684
crossref_primary_10_1051_meca_2021052
crossref_primary_10_1016_j_matdes_2018_11_021
crossref_primary_10_1088_1361_6463_ac1e4a
crossref_primary_10_1177_0954405414539494
crossref_primary_10_1016_j_procir_2016_08_024
crossref_primary_10_1007_s00170_020_04995_7
crossref_primary_10_1007_s00170_021_08501_5
crossref_primary_10_1007_s00466_019_01794_0
crossref_primary_10_1007_s11837_015_1793_x
crossref_primary_10_1016_j_addma_2020_101600
crossref_primary_10_1177_0954410014568797
crossref_primary_10_1016_j_matdes_2020_109185
crossref_primary_10_1016_j_procir_2022_10_017
crossref_primary_10_1016_j_cjmeam_2023_100102
crossref_primary_10_1016_j_mfglet_2025_05_002
crossref_primary_10_3390_met10010058
crossref_primary_10_1007_s00170_015_7989_y
crossref_primary_10_1051_mfreview_2017014
crossref_primary_10_4028_www_scientific_net_KEM_871_65
crossref_primary_10_4028_www_scientific_net_SSP_278_1
crossref_primary_10_1016_j_jallcom_2023_170202
crossref_primary_10_3390_jmmp2030047
crossref_primary_10_1007_s00170_019_04851_3
crossref_primary_10_1007_s11665_025_11740_2
crossref_primary_10_1016_j_apm_2023_06_021
crossref_primary_10_1016_j_matdes_2016_06_037
crossref_primary_10_1016_j_matdes_2017_06_058
crossref_primary_10_1080_01495739_2025_2541862
crossref_primary_10_3390_met12030420
crossref_primary_10_1016_j_commatsci_2022_111262
crossref_primary_10_3390_met14111273
crossref_primary_10_1007_s00170_022_10052_2
crossref_primary_10_1007_s12540_021_01026_2
crossref_primary_10_1016_j_addma_2019_02_020
crossref_primary_10_1016_j_matdes_2024_112744
crossref_primary_10_1108_RPJ_12_2020_0301
crossref_primary_10_3390_met14101143
crossref_primary_10_1186_s40759_019_0043_2
crossref_primary_10_1007_s12540_024_01844_0
crossref_primary_10_1088_1742_6596_1391_1_012010
crossref_primary_10_1007_s00466_023_02273_3
crossref_primary_10_1080_17452759_2021_1922714
crossref_primary_10_1016_j_ijleo_2016_08_123
crossref_primary_10_1146_annurev_matsci_070115_031816
crossref_primary_10_1016_j_mtcomm_2021_102430
crossref_primary_10_1002_stab_201900022
crossref_primary_10_1007_s00170_020_06399_z
crossref_primary_10_1016_j_addma_2018_10_017
crossref_primary_10_1007_s00170_019_04371_0
crossref_primary_10_1088_1361_6463_adb3b0
crossref_primary_10_1016_j_optlastec_2018_04_034
crossref_primary_10_1007_s00366_021_01590_6
crossref_primary_10_1016_j_addma_2022_102912
crossref_primary_10_1007_s12540_019_00589_5
crossref_primary_10_3390_jmmp8020078
crossref_primary_10_1016_j_cma_2024_117010
crossref_primary_10_1016_j_cirpj_2022_05_002
crossref_primary_10_1016_j_addma_2018_04_012
crossref_primary_10_1016_j_matdes_2018_11_014
crossref_primary_10_1109_TASE_2022_3215258
crossref_primary_10_1038_s43588_024_00672_x
crossref_primary_10_1007_s00466_023_02397_6
crossref_primary_10_1016_j_optlastec_2020_106218
crossref_primary_10_1016_j_addma_2021_102300
crossref_primary_10_1007_s11665_018_3603_4
crossref_primary_10_1016_j_addma_2016_05_005
crossref_primary_10_1016_j_addma_2020_101498
crossref_primary_10_1016_j_addma_2018_08_029
crossref_primary_10_1016_j_cma_2021_114095
crossref_primary_10_1016_j_matdes_2023_112528
crossref_primary_10_1016_S1003_6326_23_66160_6
crossref_primary_10_1016_j_jmapro_2022_01_043
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_3390_met10070886
crossref_primary_10_1016_j_addma_2022_102708
crossref_primary_10_1080_17452759_2024_2390495
crossref_primary_10_1016_j_finel_2023_103949
crossref_primary_10_1016_j_ijmecsci_2021_106534
crossref_primary_10_1007_s12666_022_02666_7
crossref_primary_10_1016_j_ijmecsci_2019_06_007
crossref_primary_10_1007_s40964_025_01308_w
crossref_primary_10_3390_metrology5020030
crossref_primary_10_1016_j_addma_2025_104897
crossref_primary_10_1016_j_jmapro_2020_07_025
crossref_primary_10_1016_j_jmapro_2022_11_006
crossref_primary_10_1063_1_4937809
crossref_primary_10_1016_j_cma_2023_115899
crossref_primary_10_1080_13621718_2022_2127211
crossref_primary_10_1016_j_ijthermalsci_2019_03_013
crossref_primary_10_1108_RPJ_10_2018_0262
crossref_primary_10_1007_s00170_025_15194_7
crossref_primary_10_1016_j_addma_2021_102077
crossref_primary_10_1016_j_addma_2021_102078
crossref_primary_10_1016_j_matdes_2021_109685
crossref_primary_10_1063_5_0273510
crossref_primary_10_3390_met10070877
crossref_primary_10_1016_j_mtcomm_2020_101255
crossref_primary_10_1016_j_jmatprotec_2023_118281
crossref_primary_10_1007_s40964_024_00920_6
crossref_primary_10_1007_s00501_023_01421_9
crossref_primary_10_1002_mdp2_28
crossref_primary_10_1016_j_scriptamat_2016_12_005
crossref_primary_10_1016_j_jmapro_2022_12_032
crossref_primary_10_1016_j_addma_2022_103357
crossref_primary_10_1016_j_addma_2020_101252
crossref_primary_10_1016_j_jmatprotec_2017_11_026
crossref_primary_10_1016_j_addma_2023_103771
crossref_primary_10_1016_j_optlastec_2020_106087
crossref_primary_10_1016_j_pmatsci_2017_10_001
crossref_primary_10_1016_j_matdes_2020_109372
crossref_primary_10_1016_j_jmapro_2023_03_030
crossref_primary_10_3390_ma14237291
crossref_primary_10_1016_j_scriptamat_2018_03_025
crossref_primary_10_1007_s00170_024_13994_x
crossref_primary_10_1007_s40430_021_03307_8
crossref_primary_10_1002_mdp2_56
crossref_primary_10_1007_s00033_020_01309_5
crossref_primary_10_1016_j_mtcomm_2021_102197
crossref_primary_10_1007_s40684_020_00237_z
crossref_primary_10_1115_1_4033525
crossref_primary_10_1016_j_jmatprotec_2017_08_007
crossref_primary_10_1038_s41586_023_05952_6
crossref_primary_10_1016_j_addma_2018_03_022
crossref_primary_10_1016_j_msea_2017_03_102
crossref_primary_10_3390_app8020207
crossref_primary_10_1177_0954405415599928
crossref_primary_10_1108_RPJ_05_2016_0071
crossref_primary_10_1016_j_matdes_2021_109782
crossref_primary_10_3390_jmmp9010022
crossref_primary_10_1016_j_finel_2024_104194
crossref_primary_10_3389_fmats_2021_747389
crossref_primary_10_1016_j_jmapro_2021_11_041
crossref_primary_10_1016_j_finel_2022_103789
crossref_primary_10_1016_j_matdes_2017_04_092
crossref_primary_10_3390_ma12162568
crossref_primary_10_1177_14644207241302262
crossref_primary_10_1007_s00170_020_05027_0
crossref_primary_10_1007_s11837_019_03872_3
crossref_primary_10_1016_j_actbio_2018_10_043
crossref_primary_10_1016_j_jmapro_2024_05_026
crossref_primary_10_1016_j_addma_2021_102187
crossref_primary_10_1186_s40192_016_0047_2
crossref_primary_10_3390_mi12060674
crossref_primary_10_1016_j_cma_2023_116673
crossref_primary_10_1007_s12541_019_00118_9
crossref_primary_10_1080_09506608_2020_1868889
crossref_primary_10_1063_5_0206928
crossref_primary_10_4028_www_scientific_net_KEM_771_91
crossref_primary_10_1016_j_finel_2024_104282
crossref_primary_10_1016_j_addma_2016_06_011
crossref_primary_10_1016_j_addma_2016_06_012
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_1007_s43154_020_00003_8
crossref_primary_10_1016_j_camwa_2017_11_014
crossref_primary_10_1016_j_optlastec_2025_112464
crossref_primary_10_1186_s40323_021_00209_1
crossref_primary_10_1002_nme_7542
crossref_primary_10_1007_s00170_016_9528_x
crossref_primary_10_1007_s40192_020_00191_3
crossref_primary_10_1007_s11666_025_01970_0
crossref_primary_10_1016_j_addma_2016_03_003
crossref_primary_10_1016_j_mtcomm_2024_108471
crossref_primary_10_3390_app12094611
crossref_primary_10_1016_j_cirp_2023_05_007
crossref_primary_10_1063_5_0006006
crossref_primary_10_1016_j_addlet_2023_100150
crossref_primary_10_1016_j_icheatmasstransfer_2024_107859
crossref_primary_10_1016_j_addma_2017_05_001
crossref_primary_10_3390_ma16134568
crossref_primary_10_1088_1742_6596_1063_1_012083
crossref_primary_10_1007_s00170_024_13714_5
crossref_primary_10_1016_j_cirpj_2017_09_007
crossref_primary_10_1016_j_finel_2025_104356
crossref_primary_10_1109_ACCESS_2019_2907287
crossref_primary_10_1016_j_compstruct_2023_116775
crossref_primary_10_3390_machines12030206
crossref_primary_10_1016_j_addma_2014_09_002
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123639
crossref_primary_10_1016_j_matpr_2020_10_149
crossref_primary_10_1016_j_msea_2021_141237
crossref_primary_10_3390_ma12142272
crossref_primary_10_1016_j_jmapro_2021_12_054
crossref_primary_10_4028_www_scientific_net_KEM_771_97
crossref_primary_10_1016_j_taml_2022_100396
crossref_primary_10_1016_j_optlastec_2023_109799
crossref_primary_10_1108_RPJ_07_2019_0189
crossref_primary_10_1016_j_icheatmasstransfer_2025_108714
crossref_primary_10_1016_j_addma_2021_101956
crossref_primary_10_1016_j_ijmecsci_2022_107092
crossref_primary_10_1007_s11661_016_3470_2
crossref_primary_10_1016_j_istruc_2025_108798
crossref_primary_10_1016_j_camwa_2018_04_036
crossref_primary_10_1108_EC_03_2019_0106
crossref_primary_10_1108_RPJ_07_2021_0184
crossref_primary_10_1007_s40964_025_00967_z
crossref_primary_10_1016_j_camwa_2020_01_008
crossref_primary_10_1134_S0018151X19060178
crossref_primary_10_1016_j_camwa_2018_07_011
crossref_primary_10_1016_j_finel_2021_103607
crossref_primary_10_3390_cryst10060532
crossref_primary_10_3390_ma15124093
crossref_primary_10_1016_j_jmapro_2019_04_025
crossref_primary_10_1088_1402_4896_ac48aa
crossref_primary_10_1002_nme_6995
crossref_primary_10_1016_j_jmapro_2023_12_048
crossref_primary_10_1007_s00170_015_8269_6
crossref_primary_10_1007_s00170_020_05707_x
crossref_primary_10_1016_j_jmapro_2022_07_007
crossref_primary_10_1007_s00366_022_01669_8
crossref_primary_10_1016_j_addma_2017_10_010
crossref_primary_10_1007_s40516_021_00148_0
crossref_primary_10_1016_j_jmapro_2020_01_054
crossref_primary_10_1016_j_addma_2020_101662
crossref_primary_10_1016_j_addma_2021_102139
crossref_primary_10_1007_s12008_021_00824_7
crossref_primary_10_1007_s00170_019_03947_0
crossref_primary_10_1007_s00170_015_6831_x
crossref_primary_10_1016_j_addma_2018_02_015
crossref_primary_10_2351_7_0000813
crossref_primary_10_1080_15397734_2020_1824794
crossref_primary_10_1088_1757_899X_1281_1_012005
crossref_primary_10_1016_j_jmapro_2021_02_016
crossref_primary_10_1016_j_mfglet_2020_03_005
crossref_primary_10_1016_j_procir_2023_09_231
crossref_primary_10_2351_1_5096147
crossref_primary_10_1016_j_ijengsci_2021_103515
crossref_primary_10_1016_j_ijmecsci_2023_108107
crossref_primary_10_1016_j_addma_2014_10_003
crossref_primary_10_1016_j_finel_2024_104270
crossref_primary_10_1016_j_jmapro_2020_04_030
crossref_primary_10_1016_j_addma_2018_05_009
crossref_primary_10_1016_j_addma_2021_102387
crossref_primary_10_1016_j_mfglet_2025_06_135
crossref_primary_10_1002_cepa_1480
crossref_primary_10_1016_j_jmatprotec_2024_118603
crossref_primary_10_1088_1757_899X_986_1_012033
crossref_primary_10_1016_j_addma_2021_102345
crossref_primary_10_1088_2053_1591_ade035
crossref_primary_10_3390_app13116572
crossref_primary_10_1016_j_addma_2019_100903
crossref_primary_10_1016_j_pmatsci_2024_101361
crossref_primary_10_1007_s11837_019_03338_6
crossref_primary_10_1016_j_addma_2018_06_019
crossref_primary_10_1016_j_jmapro_2025_09_036
crossref_primary_10_1016_j_tws_2023_110883
crossref_primary_10_1016_j_procir_2022_09_185
crossref_primary_10_1007_s11831_020_09511_4
crossref_primary_10_1016_j_ijmecsci_2018_12_004
crossref_primary_10_1080_14484846_2021_1988435
crossref_primary_10_1007_s11665_024_10354_4
crossref_primary_10_1016_j_commatsci_2020_109911
crossref_primary_10_1016_j_mfglet_2025_06_102
crossref_primary_10_1016_j_ijmecsci_2023_108476
crossref_primary_10_1016_j_addma_2020_101641
crossref_primary_10_1007_s00170_021_08542_w
crossref_primary_10_1016_j_matdes_2016_10_003
crossref_primary_10_1007_s40964_024_00597_x
crossref_primary_10_1016_j_addma_2021_102478
crossref_primary_10_31875_2409_9848_2019_06_4
crossref_primary_10_1016_j_addma_2018_01_007
crossref_primary_10_1016_j_addma_2023_103921
crossref_primary_10_1007_s11837_019_03913_x
crossref_primary_10_3390_ma17071498
crossref_primary_10_1016_j_addma_2020_101649
crossref_primary_10_1016_j_addma_2018_06_024
crossref_primary_10_1016_j_jmapro_2022_04_049
crossref_primary_10_3390_ma16062321
crossref_primary_10_1002_nme_7293
crossref_primary_10_1002_nme_6085
crossref_primary_10_3390_ma12172819
crossref_primary_10_1016_j_addma_2018_06_021
crossref_primary_10_3390_ma14237359
crossref_primary_10_1007_s40516_019_00094_y
Cites_doi 10.1016/j.optlaseng.2012.03.016
10.1016/j.matdes.2009.11.032
10.2351/1.1848523
10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
10.1016/S0020-7403(01)00084-4
10.1016/j.finel.2011.05.005
10.1016/j.msea.2006.04.079
10.1007/BF02667333
10.1002/cnm.414
10.1115/1.2194037
10.1016/j.compstruc.2003.11.005
10.1115/1.3264204
10.1080/014957301300006380
10.2351/1.1961688
10.1016/j.apsusc.2007.08.014
10.1016/j.actamat.2009.07.038
10.1016/j.msea.2009.01.009
10.1063/1.1592012
10.1080/01495730151078117
10.1007/BF02655921
10.1088/0022-3727/41/2/025403
10.1108/13552540210451732
10.1016/0045-7825(82)90126-8
10.1080/01495730150500442
10.1016/j.cma.2005.08.018
10.1007/s00170-011-3395-2
10.1016/j.cma.2010.02.018
10.1016/j.cma.2004.03.007
10.1016/0045-7949(73)90043-6
10.1016/j.ijmachtools.2009.07.004
10.1002/nme.2959
10.1115/1.2335852
10.1007/s00170-010-3142-0
10.1007/s00170-006-0721-1
10.1016/j.finel.2011.10.002
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2014.04.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
EndPage 60
ExternalDocumentID 10_1016_j_finel_2014_04_003
S0168874X14000584
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-b5805fb3dbfd893dbed8fc3d8af2c9e514cde766c19f37c24414169e1b77b3ba3
ISICitedReferencesCount 395
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336457200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Sun Sep 28 11:14:09 EDT 2025
Mon Sep 29 06:01:32 EDT 2025
Tue Nov 18 22:28:23 EST 2025
Sat Nov 29 04:56:29 EST 2025
Fri Feb 23 02:34:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal deposition
Additive manufacturing
Element activation
Heat transfer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-b5805fb3dbfd893dbed8fc3d8af2c9e514cde766c19f37c24414169e1b77b3ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1560108886
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1677951001
proquest_miscellaneous_1560108886
crossref_primary_10_1016_j_finel_2014_04_003
crossref_citationtrail_10_1016_j_finel_2014_04_003
elsevier_sciencedirect_doi_10_1016_j_finel_2014_04_003
PublicationCentury 2000
PublicationDate 2014-09-01
2014-09-00
20140901
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Finite elements in analysis and design
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lindgren, Michaleris (bib23) 2005; vol. 2
Song, Shanghvi, Michaleris (bib45) 2004; 193
Lundback, Lindgren (bib14) 2011; 47
Ghosh, Choi (bib42) 2006; 128
Anca, Fachinotti, Escobar-Palafox, Cardona (bib15) 2011; 85
Fathi, Khajepour, Toyserkani, Durali (bib8) 2007; 35
Goldak, Akhlaghi (bib26) 2005
Z. Yang, N. Chen, H.W. Ludewig, Z. Cao, Virtual welded-joint design by coupling thermal-metallurgical-mechanical modeling, in: 6th International Trends in Welding Research Conference Proceedings, ASM International, Pine Mountain, GA, 2003, pp. 861–866.
Zacharia, David, Vitek, DebRoy (bib31) 1989; S
Xiong, Hofmeister, Cheng, Smugeresky, Lavernia, Schoenung (bib4) 2009; 57
Vasinonta, Beuth, Griffith (bib13) 2007; 129
Baufeld, Van der Biest, Gault (bib7) 2010; 31
Heralić, Christiansson, Lennartson (bib9) 2012
Goldak, Chakravarti, Bibby (bib46) 1984; 15B
Boyer, Collings (bib47) 1994
Hibbitt, Marcal (bib17) 1973; 3
Song, Bagavath-Singh, Dutta, Mazumder (bib10) 2012; 58
Jendrzejewski, Śliwiński, Krawczuk, Ostachowicz (bib40) 2004; 82
Lindgren (bib25) 2007
Zhu, Zhang, Li, Tang, Tong, Lu (bib39) 2011; 55
Kelly, Kampe (bib1) 2004; 35A
Dai, Shaw (bib12) 2002; 8
Klingbeil, Beuth, Chin, Amon (bib11) 2002; 44
Dinda, Dasgupta, Mazumder (bib6) 2009; 509
Han, Phatak, Liou (bib34) 2005; 17
Peyre, Aubry, Fabbro, Neveu, Longuet (bib3) 2008; 41
Lindgren (bib21) 2001; 24
Ghosh, Choi (bib35) 2005; 17
Chiumenti, Cervera, Salmi, de Sraacibar, Dialami, Matsui (bib16) 2010; 199
G. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Finite volume methods applied to the computational modelling of welding phenomena, in: 2nd International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 1999, pp. 405–410.
S.M. Kelly, Thermal and microstructure modeling of metal deposition processes with application to Ti-6Al-4V (Ph.D. thesis), Virginia Tech, 2004.
Lindgren, Hedblom (bib38) 2001; 17
Peyre, Aubry, Fabbro, Neveu, Longuet (bib44) 2008; 41
Mishra, DebRoy (bib28) 2005; 98
Argyris, Szimmat, Willam (bib18) 1982; 33
(bib27) 2011
Lindgren, Runnemalm, Nasstrom (bib37) 1999; 44
Lindgren (bib24) 2006; 195
Lindgren (bib22) 2001; 24
Jendrzejewski, Śliwiński (bib41) 2007; 254
Ye, Smugeresky, Zheng, Zhou, Lavernia (bib43) 2006; 428
Lindgren (bib20) 2001; 24
Tersing, Lorentzon, Francois, Lundback, Babu, Barboza, Backer, Lindgren (bib36) 2012; 51
Kim, Zhang, Debroy (bib32) 2003; 94
Zacharia, Eraslan, Aldun, David (bib33) 1989; 20
Papazoglou, Masubuchi (bib19) 1982; 104
Roberts, Wang, Esterlein, Stanford, Mynors (bib5) 2009; 49
Song (10.1016/j.finel.2014.04.003_bib10) 2012; 58
Vasinonta (10.1016/j.finel.2014.04.003_bib13) 2007; 129
Zacharia (10.1016/j.finel.2014.04.003_bib31) 1989; S
Zhu (10.1016/j.finel.2014.04.003_bib39) 2011; 55
Ghosh (10.1016/j.finel.2014.04.003_bib42) 2006; 128
Argyris (10.1016/j.finel.2014.04.003_bib18) 1982; 33
Jendrzejewski (10.1016/j.finel.2014.04.003_bib40) 2004; 82
Peyre (10.1016/j.finel.2014.04.003_bib44) 2008; 41
Anca (10.1016/j.finel.2014.04.003_bib15) 2011; 85
10.1016/j.finel.2014.04.003_bib30
Dai (10.1016/j.finel.2014.04.003_bib12) 2002; 8
(10.1016/j.finel.2014.04.003_bib27) 2011
Peyre (10.1016/j.finel.2014.04.003_bib3) 2008; 41
Ghosh (10.1016/j.finel.2014.04.003_bib35) 2005; 17
Lindgren (10.1016/j.finel.2014.04.003_bib37) 1999; 44
Lindgren (10.1016/j.finel.2014.04.003_bib38) 2001; 17
10.1016/j.finel.2014.04.003_bib2
Baufeld (10.1016/j.finel.2014.04.003_bib7) 2010; 31
Lindgren (10.1016/j.finel.2014.04.003_bib21) 2001; 24
Tersing (10.1016/j.finel.2014.04.003_bib36) 2012; 51
Chiumenti (10.1016/j.finel.2014.04.003_bib16) 2010; 199
Roberts (10.1016/j.finel.2014.04.003_bib5) 2009; 49
Song (10.1016/j.finel.2014.04.003_bib45) 2004; 193
Xiong (10.1016/j.finel.2014.04.003_bib4) 2009; 57
Lindgren (10.1016/j.finel.2014.04.003_bib24) 2006; 195
Kim (10.1016/j.finel.2014.04.003_bib32) 2003; 94
Jendrzejewski (10.1016/j.finel.2014.04.003_bib41) 2007; 254
Fathi (10.1016/j.finel.2014.04.003_bib8) 2007; 35
Boyer (10.1016/j.finel.2014.04.003_bib47) 1994
Lundback (10.1016/j.finel.2014.04.003_bib14) 2011; 47
Lindgren (10.1016/j.finel.2014.04.003_bib25) 2007
Mishra (10.1016/j.finel.2014.04.003_bib28) 2005; 98
Goldak (10.1016/j.finel.2014.04.003_bib46) 1984; 15B
Lindgren (10.1016/j.finel.2014.04.003_bib23) 2005; vol. 2
10.1016/j.finel.2014.04.003_bib29
Han (10.1016/j.finel.2014.04.003_bib34) 2005; 17
Zacharia (10.1016/j.finel.2014.04.003_bib33) 1989; 20
Ye (10.1016/j.finel.2014.04.003_bib43) 2006; 428
Kelly (10.1016/j.finel.2014.04.003_bib1) 2004; 35A
Dinda (10.1016/j.finel.2014.04.003_bib6) 2009; 509
Lindgren (10.1016/j.finel.2014.04.003_bib20) 2001; 24
Hibbitt (10.1016/j.finel.2014.04.003_bib17) 1973; 3
Heralić (10.1016/j.finel.2014.04.003_bib9) 2012
Papazoglou (10.1016/j.finel.2014.04.003_bib19) 1982; 104
Klingbeil (10.1016/j.finel.2014.04.003_bib11) 2002; 44
Goldak (10.1016/j.finel.2014.04.003_bib26) 2005
Lindgren (10.1016/j.finel.2014.04.003_bib22) 2001; 24
References_xml – volume: 44
  start-page: 57
  year: 2002
  end-page: 77
  ident: bib11
  article-title: Residual stress-induced warping in direct metal solid freeform fabrication
  publication-title: Int. J. Mech. Sci.
– volume: 35
  start-page: 280
  year: 2007
  end-page: 292
  ident: bib8
  article-title: Clad height control in laser solid freeform fabrication using a feedforward PID controller
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 428
  start-page: 47
  year: 2006
  end-page: 53
  ident: bib43
  article-title: Numerical modeling of the thermal behavior during the
  publication-title: Mater. Sci. Eng. A
– volume: 33
  start-page: 635
  year: 1982
  end-page: 666
  ident: bib18
  article-title: Computational aspects of welding stress analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 104
  start-page: 198
  year: 1982
  end-page: 203
  ident: bib19
  article-title: Numerical analysis of thermal stresses during welding including phase transformation effects
  publication-title: J. Press. Vessel Technol.
– reference: S.M. Kelly, Thermal and microstructure modeling of metal deposition processes with application to Ti-6Al-4V (Ph.D. thesis), Virginia Tech, 2004.
– volume: 31
  start-page: S106
  year: 2010
  end-page: S111
  ident: bib7
  article-title: Additive manufacturing of ti-6al-4v components by shaped metal deposition
  publication-title: Mater. Des.
– volume: 82
  start-page: 653
  year: 2004
  end-page: 658
  ident: bib40
  article-title: Temperature and stress fields induced during laser cladding
  publication-title: Comput. Struct.
– volume: 17
  start-page: 144
  year: 2005
  ident: bib35
  article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process
  publication-title: J. Laser Appl.
– volume: 193
  start-page: 4541
  year: 2004
  end-page: 4566
  ident: bib45
  article-title: Optimization of thermo-elasto-plastic manufacturing processes
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: S
  start-page: 499
  year: 1989
  end-page: 509
  ident: bib31
  article-title: Weld pool development during GTA and laser beam welding of type 304 stainless steel, part 1-theoretical analysis
  publication-title: Weld. Res. Suppl.
– volume: 55
  start-page: 945
  year: 2011
  end-page: 954
  ident: bib39
  article-title: Numerical simulation of thermal behavior during laser direct metal deposition
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 15B
  start-page: 299
  year: 1984
  end-page: 305
  ident: bib46
  article-title: A new finite element model for welding heat sources
  publication-title: Metall. Trans. B
– volume: 47
  start-page: 1169
  year: 2011
  end-page: 1177
  ident: bib14
  article-title: Modelling of metal deposition
  publication-title: Finite Elem. Anal. Des.
– volume: 49
  start-page: 916
  year: 2009
  end-page: 923
  ident: bib5
  article-title: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 41
  start-page: 10
  year: 2008
  ident: bib3
  article-title: Analytical and numerical modelling of the direct metal deposition laser process
  publication-title: J. Phys. D Appl. Phys.
– volume: 8
  start-page: 270
  year: 2002
  end-page: 276
  ident: bib12
  article-title: Distortion minimization of laser-processed components through control of laser scanning patterns
  publication-title: Rapid Prototyp. J.
– volume: 85
  start-page: 84
  year: 2011
  end-page: 106
  ident: bib15
  article-title: Computational modelling of shaped metal deposition
  publication-title: Int. J. Numer. Methods Eng.
– volume: 199
  start-page: 2343
  year: 2010
  end-page: 2359
  ident: bib16
  article-title: Finite element modeling of multi-pass welding and shaped metal deposition processes
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 51
  start-page: 10
  year: 2012
  end-page: 21
  ident: bib36
  article-title: Simulation of manufacturing chain of a titanium aerospace component with experimental validation
  publication-title: Finite Elem. Anal. Des.
– volume: vol. 2
  start-page: 47
  year: 2005
  end-page: 67
  ident: bib23
  article-title: Modeling of welding for residual stresses
  publication-title: Handbook on Residual Stress
– start-page: 514
  year: 1994
  ident: bib47
  article-title: Materials Properties Handbook
– volume: 58
  start-page: 247
  year: 2012
  end-page: 256
  ident: bib10
  article-title: Control of melt pool temperature and deposition height during direct metal deposition process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 24
  start-page: 141
  year: 2001
  end-page: 192
  ident: bib20
  article-title: Finite element modelling and simulation of welding, part 1 increased complexity
  publication-title: J. Therm. Stresses
– year: 2012
  ident: bib9
  article-title: Height control of laser metal-wire deposition based on iterative learning control and 3d scanning
  publication-title: Opt. Lasers Eng.
– year: 2011
  ident: bib27
  publication-title: Minimization of Welding Distortion and Buckling. Modeling and Implementation
– reference: Z. Yang, N. Chen, H.W. Ludewig, Z. Cao, Virtual welded-joint design by coupling thermal-metallurgical-mechanical modeling, in: 6th International Trends in Welding Research Conference Proceedings, ASM International, Pine Mountain, GA, 2003, pp. 861–866.
– volume: 20
  start-page: 645
  year: 1989
  end-page: 659
  ident: bib33
  article-title: Three-dimensional transient model for arc-welding process
  publication-title: Metall. Trans. B
– volume: 98
  year: 2005
  ident: bib28
  article-title: A heat-transfer and fluid-flow model to obtain a specific weld geometry using various combinations of welding variables
  publication-title: J. Appl. Phys.
– volume: 195
  start-page: 6710
  year: 2006
  end-page: 6736
  ident: bib24
  article-title: Numerical simulation of welding
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 41
  start-page: 025403
  year: 2008
  ident: bib44
  article-title: Analytical and numerical modelling of the direct metal deposition laser process
  publication-title: J. Phys. D Appl. Phys.
– volume: 129
  start-page: 101
  year: 2007
  end-page: 109
  ident: bib13
  article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures
  publication-title: J. Manuf. Sci. Eng.
– volume: 35A
  year: 2004
  ident: bib1
  publication-title: Metall. Mater. Trans. Phys. Metall. Mater. Sci.
– volume: 17
  start-page: 89
  year: 2005
  ident: bib34
  article-title: Modeling of laser deposition and repair process
  publication-title: J. Laser Appl.
– reference: G. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Finite volume methods applied to the computational modelling of welding phenomena, in: 2nd International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 1999, pp. 405–410.
– volume: 24
  start-page: 305
  year: 2001
  end-page: 334
  ident: bib22
  article-title: Finite element modelling and simulation of welding, part 3 efficiency and integration
  publication-title: J. Therm. Stresses
– volume: 509
  start-page: 98
  year: 2009
  end-page: 104
  ident: bib6
  article-title: Laser aided direct metal deposition of inconel 625 superalloy
  publication-title: Mater. Sci. Eng. A
– volume: 128
  start-page: 662
  year: 2006
  end-page: 679
  ident: bib42
  article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process
  publication-title: J. Heat Transf.
– volume: 94
  start-page: 2667
  year: 2003
  end-page: 2679
  ident: bib32
  article-title: Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 195
  year: 2001
  end-page: 231
  ident: bib21
  article-title: Finite element modelling and simulation of welding, part 2 improved material modelling
  publication-title: J. Therm. Stresses
– year: 2005
  ident: bib26
  article-title: Computational Welding Mechanics
– volume: 3
  start-page: 1145
  year: 1973
  end-page: 1174
  ident: bib17
  article-title: A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure
  publication-title: Comput. Struct.
– volume: 44
  start-page: 1301
  year: 1999
  end-page: 1316
  ident: bib37
  article-title: Simulation of multipass welding of a thick plate
  publication-title: Int. J. Numer. Methods Eng.
– volume: 17
  start-page: 647
  year: 2001
  end-page: 657
  ident: bib38
  article-title: Modelling of addition of filler material in large deformation analysis of multipass welding
  publication-title: Commun. Numer. Methods Eng.
– volume: 254
  start-page: 921
  year: 2007
  end-page: 925
  ident: bib41
  article-title: Investigation of temperature and stress fields in laser cladded coatings
  publication-title: Appl. Surf. Sci.
– volume: 57
  start-page: 5419
  year: 2009
  end-page: 5429
  ident: bib4
  article-title: in situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition
  publication-title: Acta Mater.
– year: 2007
  ident: bib25
  article-title: Computational Welding Mechanics. Thermomechanical and Microstructural Simulations
– year: 2012
  ident: 10.1016/j.finel.2014.04.003_bib9
  article-title: Height control of laser metal-wire deposition based on iterative learning control and 3d scanning
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2012.03.016
– year: 2011
  ident: 10.1016/j.finel.2014.04.003_bib27
– volume: 31
  start-page: S106
  year: 2010
  ident: 10.1016/j.finel.2014.04.003_bib7
  article-title: Additive manufacturing of ti-6al-4v components by shaped metal deposition
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.11.032
– volume: 17
  start-page: 89
  year: 2005
  ident: 10.1016/j.finel.2014.04.003_bib34
  article-title: Modeling of laser deposition and repair process
  publication-title: J. Laser Appl.
  doi: 10.2351/1.1848523
– ident: 10.1016/j.finel.2014.04.003_bib30
– volume: 35A
  year: 2004
  ident: 10.1016/j.finel.2014.04.003_bib1
  publication-title: Metall. Mater. Trans. Phys. Metall. Mater. Sci.
– volume: 44
  start-page: 1301
  issue: 9
  year: 1999
  ident: 10.1016/j.finel.2014.04.003_bib37
  article-title: Simulation of multipass welding of a thick plate
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
– volume: 44
  start-page: 57
  issue: 1
  year: 2002
  ident: 10.1016/j.finel.2014.04.003_bib11
  article-title: Residual stress-induced warping in direct metal solid freeform fabrication
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(01)00084-4
– volume: 47
  start-page: 1169
  year: 2011
  ident: 10.1016/j.finel.2014.04.003_bib14
  article-title: Modelling of metal deposition
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2011.05.005
– volume: 428
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.finel.2014.04.003_bib43
  article-title: Numerical modeling of the thermal behavior during the lens® process
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.04.079
– volume: 15B
  start-page: 299
  year: 1984
  ident: 10.1016/j.finel.2014.04.003_bib46
  article-title: A new finite element model for welding heat sources
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02667333
– volume: 17
  start-page: 647
  issue: 9
  year: 2001
  ident: 10.1016/j.finel.2014.04.003_bib38
  article-title: Modelling of addition of filler material in large deformation analysis of multipass welding
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.414
– volume: 128
  start-page: 662
  issue: 7
  year: 2006
  ident: 10.1016/j.finel.2014.04.003_bib42
  article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2194037
– volume: 82
  start-page: 653
  issue: 7
  year: 2004
  ident: 10.1016/j.finel.2014.04.003_bib40
  article-title: Temperature and stress fields induced during laser cladding
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2003.11.005
– volume: 104
  start-page: 198
  year: 1982
  ident: 10.1016/j.finel.2014.04.003_bib19
  article-title: Numerical analysis of thermal stresses during welding including phase transformation effects
  publication-title: J. Press. Vessel Technol.
  doi: 10.1115/1.3264204
– volume: 24
  start-page: 195
  year: 2001
  ident: 10.1016/j.finel.2014.04.003_bib21
  article-title: Finite element modelling and simulation of welding, part 2 improved material modelling
  publication-title: J. Therm. Stresses
  doi: 10.1080/014957301300006380
– volume: 17
  start-page: 144
  year: 2005
  ident: 10.1016/j.finel.2014.04.003_bib35
  article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process
  publication-title: J. Laser Appl.
  doi: 10.2351/1.1961688
– ident: 10.1016/j.finel.2014.04.003_bib2
– volume: 254
  start-page: 921
  issue: 4
  year: 2007
  ident: 10.1016/j.finel.2014.04.003_bib41
  article-title: Investigation of temperature and stress fields in laser cladded coatings
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.08.014
– volume: 57
  start-page: 5419
  year: 2009
  ident: 10.1016/j.finel.2014.04.003_bib4
  article-title: in situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.07.038
– volume: 509
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.finel.2014.04.003_bib6
  article-title: Laser aided direct metal deposition of inconel 625 superalloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.01.009
– volume: 94
  start-page: 2667
  issue: 4
  year: 2003
  ident: 10.1016/j.finel.2014.04.003_bib32
  article-title: Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1592012
– volume: 24
  start-page: 305
  year: 2001
  ident: 10.1016/j.finel.2014.04.003_bib22
  article-title: Finite element modelling and simulation of welding, part 3 efficiency and integration
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495730151078117
– ident: 10.1016/j.finel.2014.04.003_bib29
– volume: 20
  start-page: 645
  year: 1989
  ident: 10.1016/j.finel.2014.04.003_bib33
  article-title: Three-dimensional transient model for arc-welding process
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02655921
– volume: 41
  start-page: 025403
  issue: 2
  year: 2008
  ident: 10.1016/j.finel.2014.04.003_bib44
  article-title: Analytical and numerical modelling of the direct metal deposition laser process
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/41/2/025403
– volume: 8
  start-page: 270
  issue: 5
  year: 2002
  ident: 10.1016/j.finel.2014.04.003_bib12
  article-title: Distortion minimization of laser-processed components through control of laser scanning patterns
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540210451732
– volume: 33
  start-page: 635
  year: 1982
  ident: 10.1016/j.finel.2014.04.003_bib18
  article-title: Computational aspects of welding stress analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90126-8
– volume: 24
  start-page: 141
  year: 2001
  ident: 10.1016/j.finel.2014.04.003_bib20
  article-title: Finite element modelling and simulation of welding, part 1 increased complexity
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495730150500442
– volume: 195
  start-page: 6710
  year: 2006
  ident: 10.1016/j.finel.2014.04.003_bib24
  article-title: Numerical simulation of welding
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.08.018
– volume: 58
  start-page: 247
  issue: 1
  year: 2012
  ident: 10.1016/j.finel.2014.04.003_bib10
  article-title: Control of melt pool temperature and deposition height during direct metal deposition process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3395-2
– volume: 199
  start-page: 2343
  year: 2010
  ident: 10.1016/j.finel.2014.04.003_bib16
  article-title: Finite element modeling of multi-pass welding and shaped metal deposition processes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.02.018
– volume: vol. 2
  start-page: 47
  year: 2005
  ident: 10.1016/j.finel.2014.04.003_bib23
  article-title: Modeling of welding for residual stresses
– volume: 193
  start-page: 4541
  year: 2004
  ident: 10.1016/j.finel.2014.04.003_bib45
  article-title: Optimization of thermo-elasto-plastic manufacturing processes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.03.007
– volume: 3
  start-page: 1145
  year: 1973
  ident: 10.1016/j.finel.2014.04.003_bib17
  article-title: A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(73)90043-6
– start-page: 514
  year: 1994
  ident: 10.1016/j.finel.2014.04.003_bib47
– volume: 49
  start-page: 916
  year: 2009
  ident: 10.1016/j.finel.2014.04.003_bib5
  article-title: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2009.07.004
– volume: 85
  start-page: 84
  year: 2011
  ident: 10.1016/j.finel.2014.04.003_bib15
  article-title: Computational modelling of shaped metal deposition
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2959
– volume: 129
  start-page: 101
  issue: 1
  year: 2007
  ident: 10.1016/j.finel.2014.04.003_bib13
  article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2335852
– volume: 55
  start-page: 945
  issue: 9–12
  year: 2011
  ident: 10.1016/j.finel.2014.04.003_bib39
  article-title: Numerical simulation of thermal behavior during laser direct metal deposition
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-3142-0
– volume: 35
  start-page: 280
  issue: 3
  year: 2007
  ident: 10.1016/j.finel.2014.04.003_bib8
  article-title: Clad height control in laser solid freeform fabrication using a feedforward PID controller
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0721-1
– volume: S
  start-page: 499
  year: 1989
  ident: 10.1016/j.finel.2014.04.003_bib31
  article-title: Weld pool development during GTA and laser beam welding of type 304 stainless steel, part 1-theoretical analysis
  publication-title: Weld. Res. Suppl.
– volume: 41
  start-page: 10
  issue: 025403
  year: 2008
  ident: 10.1016/j.finel.2014.04.003_bib3
  article-title: Analytical and numerical modelling of the direct metal deposition laser process
  publication-title: J. Phys. D Appl. Phys.
– year: 2007
  ident: 10.1016/j.finel.2014.04.003_bib25
– year: 2005
  ident: 10.1016/j.finel.2014.04.003_bib26
– volume: 51
  start-page: 10
  year: 2012
  ident: 10.1016/j.finel.2014.04.003_bib36
  article-title: Simulation of manufacturing chain of a titanium aerospace component with experimental validation
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2011.10.002
– volume: 98
  issue: 044902
  year: 2005
  ident: 10.1016/j.finel.2014.04.003_bib28
  article-title: A heat-transfer and fluid-flow model to obtain a specific weld geometry using various combinations of welding variables
  publication-title: J. Appl. Phys.
SSID ssj0005264
Score 2.5527682
Snippet Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Activation
Additive manufacturing
Additives
Deposition
Element activation
Errors
Finite element method
Heat transfer
Mathematical analysis
Mathematical models
Metal deposition
Near net shaping
Title Modeling metal deposition in heat transfer analyses of additive manufacturing processes
URI https://dx.doi.org/10.1016/j.finel.2014.04.003
https://www.proquest.com/docview/1560108886
https://www.proquest.com/docview/1677951001
Volume 86
WOSCitedRecordID wos000336457200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlgMceBQQ5aVF4gZGfiT7OFaoCBCqOBSR22qfUqrWiZoE9eczsw8naUVED1ysyLJXdmY8-83st98Q8q52tW64HVcQ-0I1anVbaYNZaxAwX_hGWhsl87_zkxMxmcgfuSvqIrYT4H0vrq7k_L-aGs6BsXHr7C3MPQwKJ-A3GB2OYHY4_pPhsbtZ3GN-4XGjo_OFl4WlDQy92BYCwKpH9iQqkiTZWSQWRRrRhe5XuN0h7V-cp40EmWlY-nlOEam-94l6Hhm1uoibYCHebdFCIjP_HCWhE2TFxkiz5XSr4NCMBkbVUINkAoJoIlaWICo2o2CWkE3zaWoXcCNSp6LB2ccAYBqXgJpRlJytu_XEVBbjr81XA4uwENTOVBxE4SCqHqmo_rrf8rGEMLd_9PV48m2D9cOy3Ht6hyJEFSl_N57lb2Dl2rQdscjpI_IgJxH0KBn_Mbnj-wPyMCcUNIfrxQG5v6E2-YT8Kp5Bo2fQtWfQaU_RM2jxDFo8g84CLZ5BtzyDDp7xlPz8fHz66UuV-2pUtmNyWZmxqMfBdM4EB3DVGe9EsJ0TOrRWeoDQ1nnOmG1k6LgFANgAbJe-MZybzujuGdnrZ71_TmjwhhnIOkMXAkR_pzH_1MJ6J1G1SB6StvyBymbReex9cq52GO-QfBhumifNld2Xs2IZlWFjgoMKfG33jW-LHRUEVVwp072frRaqiXUKIQTbcQ3jHNOTunlxu-d9Se6tP6tXZG95ufKvyV37G768yzfZYf8A-GSsmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+metal+deposition+in+heat+transfer+analyses+of+additive+manufacturing+processes&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Michaleris%2C+Panagiotis&rft.date=2014-09-01&rft.issn=0168-874X&rft.volume=86&rft.spage=51&rft.epage=60&rft_id=info:doi/10.1016%2Fj.finel.2014.04.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2014_04_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon