Modeling metal deposition in heat transfer analyses of additive manufacturing processes
Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the...
Uložené v:
| Vydané v: | Finite elements in analysis and design Ročník 86; s. 51 - 60 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.09.2014
|
| Predmet: | |
| ISSN: | 0168-874X, 1872-6925 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion.
In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times.
•FEA techniques for modeling metal deposition in additive manufacturing are investigated.•A new hybrid inactive/quiet element method is proposed for modeling additive manufacturing.•Metal deposition element is initially inactive, then, they are switched to quiet layer by layer. |
|---|---|
| AbstractList | Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion. In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times. Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their potential of producing near net shape structural components. The thermal history generated by additive manufacturing is essential in determining the resulting microstructure, material properties, residual stress, and distortion. In this work finite element techniques for modeling metal deposition heat transfer analyses of additive manufacturing are investigated in detail. In particular, both quiet and inactive element activation are reviewed in detail and techniques for minimizing errors associated with element activation errors are proposed. 1D and 3D numerical examples are used to demonstrate that both methods can give equivalent results if implemented properly. It is also shown that neglecting surface convection and radiation on the continuously evolving interface between active and inactive elements can lead to errors. A new hybrid quiet inactive metal deposition method is also proposed to accelerate computer run times. •FEA techniques for modeling metal deposition in additive manufacturing are investigated.•A new hybrid inactive/quiet element method is proposed for modeling additive manufacturing.•Metal deposition element is initially inactive, then, they are switched to quiet layer by layer. |
| Author | Michaleris, Panagiotis |
| Author_xml | – sequence: 1 givenname: Panagiotis surname: Michaleris fullname: Michaleris, Panagiotis organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, Pan Computing LLC, United States |
| BookMark | eNqFkE1LAzEQQIMoWKu_wEuOXrYmm91s9uBBxC-oeFH0FrLJRFO2SU1Sof_e1HryoDAwl_dm4B2hfR88IHRKyYwSys8XM-s8jLOa0GZGyhC2hyZUdHXF-7rdR5NCiUp0zeshOkppQQhpa95M0MtDMDA6_4aXkNWIDaxCctkFj53H76AyzlH5ZCFi5dW4SZBwsFgZU6hPwEvl11bpvI7bI6sYNKTCHKMDq8YEJz97ip5vrp-u7qr54-391eW80oz3uRpaQVo7MDNYI_qywAirmRHK1rqHljbaQMe5pr1lna6bhjaU90CHrhvYoNgUne3uls8fa0hZLl3SMI7KQ1gnSXnX9S0lhP6PtpxQIoTgBWU7VMeQUgQrV9EtVdxISuS2uFzI7-JyW1ySMoQVq_9laZfVtmVJ6MZ_3IudCyXWp4Mok3bgNRgXQWdpgvvT_wJlcKGp |
| CitedBy_id | crossref_primary_10_1016_j_addma_2016_08_003 crossref_primary_10_1016_j_addma_2021_102203 crossref_primary_10_1016_j_matdes_2025_114607 crossref_primary_10_1016_j_jmapro_2021_08_016 crossref_primary_10_1007_s40194_025_02131_1 crossref_primary_10_1016_j_jmatprotec_2019_03_029 crossref_primary_10_1007_s40964_022_00290_x crossref_primary_10_1007_s00170_015_7576_2 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_1088_1742_6596_1730_1_012128 crossref_primary_10_1016_j_ijleo_2020_166194 crossref_primary_10_1007_s00170_019_04440_4 crossref_primary_10_1016_j_addma_2024_104591 crossref_primary_10_1016_j_jmatprotec_2016_05_027 crossref_primary_10_1016_j_jmsy_2025_05_010 crossref_primary_10_1016_j_jmapro_2019_07_028 crossref_primary_10_1007_s00466_021_02116_z crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1016_j_jmapro_2019_03_007 crossref_primary_10_1016_j_powtec_2022_117323 crossref_primary_10_1007_s00170_022_09887_6 crossref_primary_10_1016_j_jmatprotec_2016_01_004 crossref_primary_10_1016_j_powtec_2022_117568 crossref_primary_10_1016_j_matdes_2021_109946 crossref_primary_10_1007_s12008_025_02242_5 crossref_primary_10_1016_j_finel_2024_104238 crossref_primary_10_1007_s40192_019_00144_5 crossref_primary_10_1016_j_finel_2019_103347 crossref_primary_10_1016_j_optlastec_2018_11_008 crossref_primary_10_3390_ma15082902 crossref_primary_10_1007_s00170_023_12541_4 crossref_primary_10_1007_s40192_019_00133_8 crossref_primary_10_3390_technologies10050098 crossref_primary_10_1016_j_jmatprotec_2018_02_042 crossref_primary_10_1002_gamm_202100019 crossref_primary_10_1080_0951192X_2023_2228276 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126666 crossref_primary_10_1007_s00466_017_1516_y crossref_primary_10_1007_s10765_021_02810_3 crossref_primary_10_3390_jmmp7010010 crossref_primary_10_1016_j_addma_2023_103676 crossref_primary_10_1007_s00170_019_03555_y crossref_primary_10_1080_00401706_2021_1905074 crossref_primary_10_1007_s11837_025_07487_9 crossref_primary_10_1016_j_cossms_2016_12_001 crossref_primary_10_1089_3dp_2021_0197 crossref_primary_10_1038_s41598_019_57131_1 crossref_primary_10_1016_j_euromechsol_2021_104290 crossref_primary_10_1016_j_addma_2020_101732 crossref_primary_10_1016_j_addma_2019_02_006 crossref_primary_10_3390_jmmp2030063 crossref_primary_10_1007_s00366_023_01926_4 crossref_primary_10_1016_j_addma_2018_04_004 crossref_primary_10_3390_met15010083 crossref_primary_10_1016_j_addma_2024_104570 crossref_primary_10_1080_24725854_2019_1704465 crossref_primary_10_1016_j_cma_2017_12_003 crossref_primary_10_1016_j_eml_2021_101403 crossref_primary_10_1016_j_msea_2021_141627 crossref_primary_10_1007_s40194_020_00970_8 crossref_primary_10_1007_s00170_023_12822_y crossref_primary_10_2351_7_0000550 crossref_primary_10_1016_j_compstruc_2025_107860 crossref_primary_10_1016_j_matdes_2024_113210 crossref_primary_10_1016_j_addma_2023_103684 crossref_primary_10_1051_meca_2021052 crossref_primary_10_1016_j_matdes_2018_11_021 crossref_primary_10_1088_1361_6463_ac1e4a crossref_primary_10_1177_0954405414539494 crossref_primary_10_1016_j_procir_2016_08_024 crossref_primary_10_1007_s00170_020_04995_7 crossref_primary_10_1007_s00170_021_08501_5 crossref_primary_10_1007_s00466_019_01794_0 crossref_primary_10_1007_s11837_015_1793_x crossref_primary_10_1016_j_addma_2020_101600 crossref_primary_10_1177_0954410014568797 crossref_primary_10_1016_j_matdes_2020_109185 crossref_primary_10_1016_j_procir_2022_10_017 crossref_primary_10_1016_j_cjmeam_2023_100102 crossref_primary_10_1016_j_mfglet_2025_05_002 crossref_primary_10_3390_met10010058 crossref_primary_10_1007_s00170_015_7989_y crossref_primary_10_1051_mfreview_2017014 crossref_primary_10_4028_www_scientific_net_KEM_871_65 crossref_primary_10_4028_www_scientific_net_SSP_278_1 crossref_primary_10_1016_j_jallcom_2023_170202 crossref_primary_10_3390_jmmp2030047 crossref_primary_10_1007_s00170_019_04851_3 crossref_primary_10_1007_s11665_025_11740_2 crossref_primary_10_1016_j_apm_2023_06_021 crossref_primary_10_1016_j_matdes_2016_06_037 crossref_primary_10_1016_j_matdes_2017_06_058 crossref_primary_10_1080_01495739_2025_2541862 crossref_primary_10_3390_met12030420 crossref_primary_10_1016_j_commatsci_2022_111262 crossref_primary_10_3390_met14111273 crossref_primary_10_1007_s00170_022_10052_2 crossref_primary_10_1007_s12540_021_01026_2 crossref_primary_10_1016_j_addma_2019_02_020 crossref_primary_10_1016_j_matdes_2024_112744 crossref_primary_10_1108_RPJ_12_2020_0301 crossref_primary_10_3390_met14101143 crossref_primary_10_1186_s40759_019_0043_2 crossref_primary_10_1007_s12540_024_01844_0 crossref_primary_10_1088_1742_6596_1391_1_012010 crossref_primary_10_1007_s00466_023_02273_3 crossref_primary_10_1080_17452759_2021_1922714 crossref_primary_10_1016_j_ijleo_2016_08_123 crossref_primary_10_1146_annurev_matsci_070115_031816 crossref_primary_10_1016_j_mtcomm_2021_102430 crossref_primary_10_1002_stab_201900022 crossref_primary_10_1007_s00170_020_06399_z crossref_primary_10_1016_j_addma_2018_10_017 crossref_primary_10_1007_s00170_019_04371_0 crossref_primary_10_1088_1361_6463_adb3b0 crossref_primary_10_1016_j_optlastec_2018_04_034 crossref_primary_10_1007_s00366_021_01590_6 crossref_primary_10_1016_j_addma_2022_102912 crossref_primary_10_1007_s12540_019_00589_5 crossref_primary_10_3390_jmmp8020078 crossref_primary_10_1016_j_cma_2024_117010 crossref_primary_10_1016_j_cirpj_2022_05_002 crossref_primary_10_1016_j_addma_2018_04_012 crossref_primary_10_1016_j_matdes_2018_11_014 crossref_primary_10_1109_TASE_2022_3215258 crossref_primary_10_1038_s43588_024_00672_x crossref_primary_10_1007_s00466_023_02397_6 crossref_primary_10_1016_j_optlastec_2020_106218 crossref_primary_10_1016_j_addma_2021_102300 crossref_primary_10_1007_s11665_018_3603_4 crossref_primary_10_1016_j_addma_2016_05_005 crossref_primary_10_1016_j_addma_2020_101498 crossref_primary_10_1016_j_addma_2018_08_029 crossref_primary_10_1016_j_cma_2021_114095 crossref_primary_10_1016_j_matdes_2023_112528 crossref_primary_10_1016_S1003_6326_23_66160_6 crossref_primary_10_1016_j_jmapro_2022_01_043 crossref_primary_10_1016_j_cma_2025_117764 crossref_primary_10_3390_met10070886 crossref_primary_10_1016_j_addma_2022_102708 crossref_primary_10_1080_17452759_2024_2390495 crossref_primary_10_1016_j_finel_2023_103949 crossref_primary_10_1016_j_ijmecsci_2021_106534 crossref_primary_10_1007_s12666_022_02666_7 crossref_primary_10_1016_j_ijmecsci_2019_06_007 crossref_primary_10_1007_s40964_025_01308_w crossref_primary_10_3390_metrology5020030 crossref_primary_10_1016_j_addma_2025_104897 crossref_primary_10_1016_j_jmapro_2020_07_025 crossref_primary_10_1016_j_jmapro_2022_11_006 crossref_primary_10_1063_1_4937809 crossref_primary_10_1016_j_cma_2023_115899 crossref_primary_10_1080_13621718_2022_2127211 crossref_primary_10_1016_j_ijthermalsci_2019_03_013 crossref_primary_10_1108_RPJ_10_2018_0262 crossref_primary_10_1007_s00170_025_15194_7 crossref_primary_10_1016_j_addma_2021_102077 crossref_primary_10_1016_j_addma_2021_102078 crossref_primary_10_1016_j_matdes_2021_109685 crossref_primary_10_1063_5_0273510 crossref_primary_10_3390_met10070877 crossref_primary_10_1016_j_mtcomm_2020_101255 crossref_primary_10_1016_j_jmatprotec_2023_118281 crossref_primary_10_1007_s40964_024_00920_6 crossref_primary_10_1007_s00501_023_01421_9 crossref_primary_10_1002_mdp2_28 crossref_primary_10_1016_j_scriptamat_2016_12_005 crossref_primary_10_1016_j_jmapro_2022_12_032 crossref_primary_10_1016_j_addma_2022_103357 crossref_primary_10_1016_j_addma_2020_101252 crossref_primary_10_1016_j_jmatprotec_2017_11_026 crossref_primary_10_1016_j_addma_2023_103771 crossref_primary_10_1016_j_optlastec_2020_106087 crossref_primary_10_1016_j_pmatsci_2017_10_001 crossref_primary_10_1016_j_matdes_2020_109372 crossref_primary_10_1016_j_jmapro_2023_03_030 crossref_primary_10_3390_ma14237291 crossref_primary_10_1016_j_scriptamat_2018_03_025 crossref_primary_10_1007_s00170_024_13994_x crossref_primary_10_1007_s40430_021_03307_8 crossref_primary_10_1002_mdp2_56 crossref_primary_10_1007_s00033_020_01309_5 crossref_primary_10_1016_j_mtcomm_2021_102197 crossref_primary_10_1007_s40684_020_00237_z crossref_primary_10_1115_1_4033525 crossref_primary_10_1016_j_jmatprotec_2017_08_007 crossref_primary_10_1038_s41586_023_05952_6 crossref_primary_10_1016_j_addma_2018_03_022 crossref_primary_10_1016_j_msea_2017_03_102 crossref_primary_10_3390_app8020207 crossref_primary_10_1177_0954405415599928 crossref_primary_10_1108_RPJ_05_2016_0071 crossref_primary_10_1016_j_matdes_2021_109782 crossref_primary_10_3390_jmmp9010022 crossref_primary_10_1016_j_finel_2024_104194 crossref_primary_10_3389_fmats_2021_747389 crossref_primary_10_1016_j_jmapro_2021_11_041 crossref_primary_10_1016_j_finel_2022_103789 crossref_primary_10_1016_j_matdes_2017_04_092 crossref_primary_10_3390_ma12162568 crossref_primary_10_1177_14644207241302262 crossref_primary_10_1007_s00170_020_05027_0 crossref_primary_10_1007_s11837_019_03872_3 crossref_primary_10_1016_j_actbio_2018_10_043 crossref_primary_10_1016_j_jmapro_2024_05_026 crossref_primary_10_1016_j_addma_2021_102187 crossref_primary_10_1186_s40192_016_0047_2 crossref_primary_10_3390_mi12060674 crossref_primary_10_1016_j_cma_2023_116673 crossref_primary_10_1007_s12541_019_00118_9 crossref_primary_10_1080_09506608_2020_1868889 crossref_primary_10_1063_5_0206928 crossref_primary_10_4028_www_scientific_net_KEM_771_91 crossref_primary_10_1016_j_finel_2024_104282 crossref_primary_10_1016_j_addma_2016_06_011 crossref_primary_10_1016_j_addma_2016_06_012 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_1007_s43154_020_00003_8 crossref_primary_10_1016_j_camwa_2017_11_014 crossref_primary_10_1016_j_optlastec_2025_112464 crossref_primary_10_1186_s40323_021_00209_1 crossref_primary_10_1002_nme_7542 crossref_primary_10_1007_s00170_016_9528_x crossref_primary_10_1007_s40192_020_00191_3 crossref_primary_10_1007_s11666_025_01970_0 crossref_primary_10_1016_j_addma_2016_03_003 crossref_primary_10_1016_j_mtcomm_2024_108471 crossref_primary_10_3390_app12094611 crossref_primary_10_1016_j_cirp_2023_05_007 crossref_primary_10_1063_5_0006006 crossref_primary_10_1016_j_addlet_2023_100150 crossref_primary_10_1016_j_icheatmasstransfer_2024_107859 crossref_primary_10_1016_j_addma_2017_05_001 crossref_primary_10_3390_ma16134568 crossref_primary_10_1088_1742_6596_1063_1_012083 crossref_primary_10_1007_s00170_024_13714_5 crossref_primary_10_1016_j_cirpj_2017_09_007 crossref_primary_10_1016_j_finel_2025_104356 crossref_primary_10_1109_ACCESS_2019_2907287 crossref_primary_10_1016_j_compstruct_2023_116775 crossref_primary_10_3390_machines12030206 crossref_primary_10_1016_j_addma_2014_09_002 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123639 crossref_primary_10_1016_j_matpr_2020_10_149 crossref_primary_10_1016_j_msea_2021_141237 crossref_primary_10_3390_ma12142272 crossref_primary_10_1016_j_jmapro_2021_12_054 crossref_primary_10_4028_www_scientific_net_KEM_771_97 crossref_primary_10_1016_j_taml_2022_100396 crossref_primary_10_1016_j_optlastec_2023_109799 crossref_primary_10_1108_RPJ_07_2019_0189 crossref_primary_10_1016_j_icheatmasstransfer_2025_108714 crossref_primary_10_1016_j_addma_2021_101956 crossref_primary_10_1016_j_ijmecsci_2022_107092 crossref_primary_10_1007_s11661_016_3470_2 crossref_primary_10_1016_j_istruc_2025_108798 crossref_primary_10_1016_j_camwa_2018_04_036 crossref_primary_10_1108_EC_03_2019_0106 crossref_primary_10_1108_RPJ_07_2021_0184 crossref_primary_10_1007_s40964_025_00967_z crossref_primary_10_1016_j_camwa_2020_01_008 crossref_primary_10_1134_S0018151X19060178 crossref_primary_10_1016_j_camwa_2018_07_011 crossref_primary_10_1016_j_finel_2021_103607 crossref_primary_10_3390_cryst10060532 crossref_primary_10_3390_ma15124093 crossref_primary_10_1016_j_jmapro_2019_04_025 crossref_primary_10_1088_1402_4896_ac48aa crossref_primary_10_1002_nme_6995 crossref_primary_10_1016_j_jmapro_2023_12_048 crossref_primary_10_1007_s00170_015_8269_6 crossref_primary_10_1007_s00170_020_05707_x crossref_primary_10_1016_j_jmapro_2022_07_007 crossref_primary_10_1007_s00366_022_01669_8 crossref_primary_10_1016_j_addma_2017_10_010 crossref_primary_10_1007_s40516_021_00148_0 crossref_primary_10_1016_j_jmapro_2020_01_054 crossref_primary_10_1016_j_addma_2020_101662 crossref_primary_10_1016_j_addma_2021_102139 crossref_primary_10_1007_s12008_021_00824_7 crossref_primary_10_1007_s00170_019_03947_0 crossref_primary_10_1007_s00170_015_6831_x crossref_primary_10_1016_j_addma_2018_02_015 crossref_primary_10_2351_7_0000813 crossref_primary_10_1080_15397734_2020_1824794 crossref_primary_10_1088_1757_899X_1281_1_012005 crossref_primary_10_1016_j_jmapro_2021_02_016 crossref_primary_10_1016_j_mfglet_2020_03_005 crossref_primary_10_1016_j_procir_2023_09_231 crossref_primary_10_2351_1_5096147 crossref_primary_10_1016_j_ijengsci_2021_103515 crossref_primary_10_1016_j_ijmecsci_2023_108107 crossref_primary_10_1016_j_addma_2014_10_003 crossref_primary_10_1016_j_finel_2024_104270 crossref_primary_10_1016_j_jmapro_2020_04_030 crossref_primary_10_1016_j_addma_2018_05_009 crossref_primary_10_1016_j_addma_2021_102387 crossref_primary_10_1016_j_mfglet_2025_06_135 crossref_primary_10_1002_cepa_1480 crossref_primary_10_1016_j_jmatprotec_2024_118603 crossref_primary_10_1088_1757_899X_986_1_012033 crossref_primary_10_1016_j_addma_2021_102345 crossref_primary_10_1088_2053_1591_ade035 crossref_primary_10_3390_app13116572 crossref_primary_10_1016_j_addma_2019_100903 crossref_primary_10_1016_j_pmatsci_2024_101361 crossref_primary_10_1007_s11837_019_03338_6 crossref_primary_10_1016_j_addma_2018_06_019 crossref_primary_10_1016_j_jmapro_2025_09_036 crossref_primary_10_1016_j_tws_2023_110883 crossref_primary_10_1016_j_procir_2022_09_185 crossref_primary_10_1007_s11831_020_09511_4 crossref_primary_10_1016_j_ijmecsci_2018_12_004 crossref_primary_10_1080_14484846_2021_1988435 crossref_primary_10_1007_s11665_024_10354_4 crossref_primary_10_1016_j_commatsci_2020_109911 crossref_primary_10_1016_j_mfglet_2025_06_102 crossref_primary_10_1016_j_ijmecsci_2023_108476 crossref_primary_10_1016_j_addma_2020_101641 crossref_primary_10_1007_s00170_021_08542_w crossref_primary_10_1016_j_matdes_2016_10_003 crossref_primary_10_1007_s40964_024_00597_x crossref_primary_10_1016_j_addma_2021_102478 crossref_primary_10_31875_2409_9848_2019_06_4 crossref_primary_10_1016_j_addma_2018_01_007 crossref_primary_10_1016_j_addma_2023_103921 crossref_primary_10_1007_s11837_019_03913_x crossref_primary_10_3390_ma17071498 crossref_primary_10_1016_j_addma_2020_101649 crossref_primary_10_1016_j_addma_2018_06_024 crossref_primary_10_1016_j_jmapro_2022_04_049 crossref_primary_10_3390_ma16062321 crossref_primary_10_1002_nme_7293 crossref_primary_10_1002_nme_6085 crossref_primary_10_3390_ma12172819 crossref_primary_10_1016_j_addma_2018_06_021 crossref_primary_10_3390_ma14237359 crossref_primary_10_1007_s40516_019_00094_y |
| Cites_doi | 10.1016/j.optlaseng.2012.03.016 10.1016/j.matdes.2009.11.032 10.2351/1.1848523 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K 10.1016/S0020-7403(01)00084-4 10.1016/j.finel.2011.05.005 10.1016/j.msea.2006.04.079 10.1007/BF02667333 10.1002/cnm.414 10.1115/1.2194037 10.1016/j.compstruc.2003.11.005 10.1115/1.3264204 10.1080/014957301300006380 10.2351/1.1961688 10.1016/j.apsusc.2007.08.014 10.1016/j.actamat.2009.07.038 10.1016/j.msea.2009.01.009 10.1063/1.1592012 10.1080/01495730151078117 10.1007/BF02655921 10.1088/0022-3727/41/2/025403 10.1108/13552540210451732 10.1016/0045-7825(82)90126-8 10.1080/01495730150500442 10.1016/j.cma.2005.08.018 10.1007/s00170-011-3395-2 10.1016/j.cma.2010.02.018 10.1016/j.cma.2004.03.007 10.1016/0045-7949(73)90043-6 10.1016/j.ijmachtools.2009.07.004 10.1002/nme.2959 10.1115/1.2335852 10.1007/s00170-010-3142-0 10.1007/s00170-006-0721-1 10.1016/j.finel.2011.10.002 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.finel.2014.04.003 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-6925 |
| EndPage | 60 |
| ExternalDocumentID | 10_1016_j_finel_2014_04_003 S0168874X14000584 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29H 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c369t-b5805fb3dbfd893dbed8fc3d8af2c9e514cde766c19f37c24414169e1b77b3ba3 |
| ISICitedReferencesCount | 395 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336457200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-874X |
| IngestDate | Sun Sep 28 11:14:09 EDT 2025 Mon Sep 29 06:01:32 EDT 2025 Tue Nov 18 22:28:23 EST 2025 Sat Nov 29 04:56:29 EST 2025 Fri Feb 23 02:34:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metal deposition Additive manufacturing Element activation Heat transfer |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c369t-b5805fb3dbfd893dbed8fc3d8af2c9e514cde766c19f37c24414169e1b77b3ba3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1560108886 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1677951001 proquest_miscellaneous_1560108886 crossref_primary_10_1016_j_finel_2014_04_003 crossref_citationtrail_10_1016_j_finel_2014_04_003 elsevier_sciencedirect_doi_10_1016_j_finel_2014_04_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 2014-09-00 20140901 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lindgren, Michaleris (bib23) 2005; vol. 2 Song, Shanghvi, Michaleris (bib45) 2004; 193 Lundback, Lindgren (bib14) 2011; 47 Ghosh, Choi (bib42) 2006; 128 Anca, Fachinotti, Escobar-Palafox, Cardona (bib15) 2011; 85 Fathi, Khajepour, Toyserkani, Durali (bib8) 2007; 35 Goldak, Akhlaghi (bib26) 2005 Z. Yang, N. Chen, H.W. Ludewig, Z. Cao, Virtual welded-joint design by coupling thermal-metallurgical-mechanical modeling, in: 6th International Trends in Welding Research Conference Proceedings, ASM International, Pine Mountain, GA, 2003, pp. 861–866. Zacharia, David, Vitek, DebRoy (bib31) 1989; S Xiong, Hofmeister, Cheng, Smugeresky, Lavernia, Schoenung (bib4) 2009; 57 Vasinonta, Beuth, Griffith (bib13) 2007; 129 Baufeld, Van der Biest, Gault (bib7) 2010; 31 Heralić, Christiansson, Lennartson (bib9) 2012 Goldak, Chakravarti, Bibby (bib46) 1984; 15B Boyer, Collings (bib47) 1994 Hibbitt, Marcal (bib17) 1973; 3 Song, Bagavath-Singh, Dutta, Mazumder (bib10) 2012; 58 Jendrzejewski, Śliwiński, Krawczuk, Ostachowicz (bib40) 2004; 82 Lindgren (bib25) 2007 Zhu, Zhang, Li, Tang, Tong, Lu (bib39) 2011; 55 Kelly, Kampe (bib1) 2004; 35A Dai, Shaw (bib12) 2002; 8 Klingbeil, Beuth, Chin, Amon (bib11) 2002; 44 Dinda, Dasgupta, Mazumder (bib6) 2009; 509 Han, Phatak, Liou (bib34) 2005; 17 Peyre, Aubry, Fabbro, Neveu, Longuet (bib3) 2008; 41 Lindgren (bib21) 2001; 24 Ghosh, Choi (bib35) 2005; 17 Chiumenti, Cervera, Salmi, de Sraacibar, Dialami, Matsui (bib16) 2010; 199 G. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Finite volume methods applied to the computational modelling of welding phenomena, in: 2nd International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 1999, pp. 405–410. S.M. Kelly, Thermal and microstructure modeling of metal deposition processes with application to Ti-6Al-4V (Ph.D. thesis), Virginia Tech, 2004. Lindgren, Hedblom (bib38) 2001; 17 Peyre, Aubry, Fabbro, Neveu, Longuet (bib44) 2008; 41 Mishra, DebRoy (bib28) 2005; 98 Argyris, Szimmat, Willam (bib18) 1982; 33 (bib27) 2011 Lindgren, Runnemalm, Nasstrom (bib37) 1999; 44 Lindgren (bib24) 2006; 195 Lindgren (bib22) 2001; 24 Jendrzejewski, Śliwiński (bib41) 2007; 254 Ye, Smugeresky, Zheng, Zhou, Lavernia (bib43) 2006; 428 Lindgren (bib20) 2001; 24 Tersing, Lorentzon, Francois, Lundback, Babu, Barboza, Backer, Lindgren (bib36) 2012; 51 Kim, Zhang, Debroy (bib32) 2003; 94 Zacharia, Eraslan, Aldun, David (bib33) 1989; 20 Papazoglou, Masubuchi (bib19) 1982; 104 Roberts, Wang, Esterlein, Stanford, Mynors (bib5) 2009; 49 Song (10.1016/j.finel.2014.04.003_bib10) 2012; 58 Vasinonta (10.1016/j.finel.2014.04.003_bib13) 2007; 129 Zacharia (10.1016/j.finel.2014.04.003_bib31) 1989; S Zhu (10.1016/j.finel.2014.04.003_bib39) 2011; 55 Ghosh (10.1016/j.finel.2014.04.003_bib42) 2006; 128 Argyris (10.1016/j.finel.2014.04.003_bib18) 1982; 33 Jendrzejewski (10.1016/j.finel.2014.04.003_bib40) 2004; 82 Peyre (10.1016/j.finel.2014.04.003_bib44) 2008; 41 Anca (10.1016/j.finel.2014.04.003_bib15) 2011; 85 10.1016/j.finel.2014.04.003_bib30 Dai (10.1016/j.finel.2014.04.003_bib12) 2002; 8 (10.1016/j.finel.2014.04.003_bib27) 2011 Peyre (10.1016/j.finel.2014.04.003_bib3) 2008; 41 Ghosh (10.1016/j.finel.2014.04.003_bib35) 2005; 17 Lindgren (10.1016/j.finel.2014.04.003_bib37) 1999; 44 Lindgren (10.1016/j.finel.2014.04.003_bib38) 2001; 17 10.1016/j.finel.2014.04.003_bib2 Baufeld (10.1016/j.finel.2014.04.003_bib7) 2010; 31 Lindgren (10.1016/j.finel.2014.04.003_bib21) 2001; 24 Tersing (10.1016/j.finel.2014.04.003_bib36) 2012; 51 Chiumenti (10.1016/j.finel.2014.04.003_bib16) 2010; 199 Roberts (10.1016/j.finel.2014.04.003_bib5) 2009; 49 Song (10.1016/j.finel.2014.04.003_bib45) 2004; 193 Xiong (10.1016/j.finel.2014.04.003_bib4) 2009; 57 Lindgren (10.1016/j.finel.2014.04.003_bib24) 2006; 195 Kim (10.1016/j.finel.2014.04.003_bib32) 2003; 94 Jendrzejewski (10.1016/j.finel.2014.04.003_bib41) 2007; 254 Fathi (10.1016/j.finel.2014.04.003_bib8) 2007; 35 Boyer (10.1016/j.finel.2014.04.003_bib47) 1994 Lundback (10.1016/j.finel.2014.04.003_bib14) 2011; 47 Lindgren (10.1016/j.finel.2014.04.003_bib25) 2007 Mishra (10.1016/j.finel.2014.04.003_bib28) 2005; 98 Goldak (10.1016/j.finel.2014.04.003_bib46) 1984; 15B Lindgren (10.1016/j.finel.2014.04.003_bib23) 2005; vol. 2 10.1016/j.finel.2014.04.003_bib29 Han (10.1016/j.finel.2014.04.003_bib34) 2005; 17 Zacharia (10.1016/j.finel.2014.04.003_bib33) 1989; 20 Ye (10.1016/j.finel.2014.04.003_bib43) 2006; 428 Kelly (10.1016/j.finel.2014.04.003_bib1) 2004; 35A Dinda (10.1016/j.finel.2014.04.003_bib6) 2009; 509 Lindgren (10.1016/j.finel.2014.04.003_bib20) 2001; 24 Hibbitt (10.1016/j.finel.2014.04.003_bib17) 1973; 3 Heralić (10.1016/j.finel.2014.04.003_bib9) 2012 Papazoglou (10.1016/j.finel.2014.04.003_bib19) 1982; 104 Klingbeil (10.1016/j.finel.2014.04.003_bib11) 2002; 44 Goldak (10.1016/j.finel.2014.04.003_bib26) 2005 Lindgren (10.1016/j.finel.2014.04.003_bib22) 2001; 24 |
| References_xml | – volume: 44 start-page: 57 year: 2002 end-page: 77 ident: bib11 article-title: Residual stress-induced warping in direct metal solid freeform fabrication publication-title: Int. J. Mech. Sci. – volume: 35 start-page: 280 year: 2007 end-page: 292 ident: bib8 article-title: Clad height control in laser solid freeform fabrication using a feedforward PID controller publication-title: Int. J. Adv. Manuf. Technol. – volume: 428 start-page: 47 year: 2006 end-page: 53 ident: bib43 article-title: Numerical modeling of the thermal behavior during the publication-title: Mater. Sci. Eng. A – volume: 33 start-page: 635 year: 1982 end-page: 666 ident: bib18 article-title: Computational aspects of welding stress analysis publication-title: Comput. Methods Appl. Mech. Eng. – volume: 104 start-page: 198 year: 1982 end-page: 203 ident: bib19 article-title: Numerical analysis of thermal stresses during welding including phase transformation effects publication-title: J. Press. Vessel Technol. – reference: S.M. Kelly, Thermal and microstructure modeling of metal deposition processes with application to Ti-6Al-4V (Ph.D. thesis), Virginia Tech, 2004. – volume: 31 start-page: S106 year: 2010 end-page: S111 ident: bib7 article-title: Additive manufacturing of ti-6al-4v components by shaped metal deposition publication-title: Mater. Des. – volume: 82 start-page: 653 year: 2004 end-page: 658 ident: bib40 article-title: Temperature and stress fields induced during laser cladding publication-title: Comput. Struct. – volume: 17 start-page: 144 year: 2005 ident: bib35 article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process publication-title: J. Laser Appl. – volume: 193 start-page: 4541 year: 2004 end-page: 4566 ident: bib45 article-title: Optimization of thermo-elasto-plastic manufacturing processes publication-title: Comput. Methods Appl. Mech. Eng. – volume: S start-page: 499 year: 1989 end-page: 509 ident: bib31 article-title: Weld pool development during GTA and laser beam welding of type 304 stainless steel, part 1-theoretical analysis publication-title: Weld. Res. Suppl. – volume: 55 start-page: 945 year: 2011 end-page: 954 ident: bib39 article-title: Numerical simulation of thermal behavior during laser direct metal deposition publication-title: Int. J. Adv. Manuf. Technol. – volume: 15B start-page: 299 year: 1984 end-page: 305 ident: bib46 article-title: A new finite element model for welding heat sources publication-title: Metall. Trans. B – volume: 47 start-page: 1169 year: 2011 end-page: 1177 ident: bib14 article-title: Modelling of metal deposition publication-title: Finite Elem. Anal. Des. – volume: 49 start-page: 916 year: 2009 end-page: 923 ident: bib5 article-title: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing publication-title: Int. J. Mach. Tools Manuf. – volume: 41 start-page: 10 year: 2008 ident: bib3 article-title: Analytical and numerical modelling of the direct metal deposition laser process publication-title: J. Phys. D Appl. Phys. – volume: 8 start-page: 270 year: 2002 end-page: 276 ident: bib12 article-title: Distortion minimization of laser-processed components through control of laser scanning patterns publication-title: Rapid Prototyp. J. – volume: 85 start-page: 84 year: 2011 end-page: 106 ident: bib15 article-title: Computational modelling of shaped metal deposition publication-title: Int. J. Numer. Methods Eng. – volume: 199 start-page: 2343 year: 2010 end-page: 2359 ident: bib16 article-title: Finite element modeling of multi-pass welding and shaped metal deposition processes publication-title: Comput. Methods Appl. Mech. Eng. – volume: 51 start-page: 10 year: 2012 end-page: 21 ident: bib36 article-title: Simulation of manufacturing chain of a titanium aerospace component with experimental validation publication-title: Finite Elem. Anal. Des. – volume: vol. 2 start-page: 47 year: 2005 end-page: 67 ident: bib23 article-title: Modeling of welding for residual stresses publication-title: Handbook on Residual Stress – start-page: 514 year: 1994 ident: bib47 article-title: Materials Properties Handbook – volume: 58 start-page: 247 year: 2012 end-page: 256 ident: bib10 article-title: Control of melt pool temperature and deposition height during direct metal deposition process publication-title: Int. J. Adv. Manuf. Technol. – volume: 24 start-page: 141 year: 2001 end-page: 192 ident: bib20 article-title: Finite element modelling and simulation of welding, part 1 increased complexity publication-title: J. Therm. Stresses – year: 2012 ident: bib9 article-title: Height control of laser metal-wire deposition based on iterative learning control and 3d scanning publication-title: Opt. Lasers Eng. – year: 2011 ident: bib27 publication-title: Minimization of Welding Distortion and Buckling. Modeling and Implementation – reference: Z. Yang, N. Chen, H.W. Ludewig, Z. Cao, Virtual welded-joint design by coupling thermal-metallurgical-mechanical modeling, in: 6th International Trends in Welding Research Conference Proceedings, ASM International, Pine Mountain, GA, 2003, pp. 861–866. – volume: 20 start-page: 645 year: 1989 end-page: 659 ident: bib33 article-title: Three-dimensional transient model for arc-welding process publication-title: Metall. Trans. B – volume: 98 year: 2005 ident: bib28 article-title: A heat-transfer and fluid-flow model to obtain a specific weld geometry using various combinations of welding variables publication-title: J. Appl. Phys. – volume: 195 start-page: 6710 year: 2006 end-page: 6736 ident: bib24 article-title: Numerical simulation of welding publication-title: Comput. Methods Appl. Mech. Eng. – volume: 41 start-page: 025403 year: 2008 ident: bib44 article-title: Analytical and numerical modelling of the direct metal deposition laser process publication-title: J. Phys. D Appl. Phys. – volume: 129 start-page: 101 year: 2007 end-page: 109 ident: bib13 article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures publication-title: J. Manuf. Sci. Eng. – volume: 35A year: 2004 ident: bib1 publication-title: Metall. Mater. Trans. Phys. Metall. Mater. Sci. – volume: 17 start-page: 89 year: 2005 ident: bib34 article-title: Modeling of laser deposition and repair process publication-title: J. Laser Appl. – reference: G. Taylor, M. Hughes, N. Strusevich, K. Pericleous, Finite volume methods applied to the computational modelling of welding phenomena, in: 2nd International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 1999, pp. 405–410. – volume: 24 start-page: 305 year: 2001 end-page: 334 ident: bib22 article-title: Finite element modelling and simulation of welding, part 3 efficiency and integration publication-title: J. Therm. Stresses – volume: 509 start-page: 98 year: 2009 end-page: 104 ident: bib6 article-title: Laser aided direct metal deposition of inconel 625 superalloy publication-title: Mater. Sci. Eng. A – volume: 128 start-page: 662 year: 2006 end-page: 679 ident: bib42 article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process publication-title: J. Heat Transf. – volume: 94 start-page: 2667 year: 2003 end-page: 2679 ident: bib32 article-title: Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding publication-title: J. Appl. Phys. – volume: 24 start-page: 195 year: 2001 end-page: 231 ident: bib21 article-title: Finite element modelling and simulation of welding, part 2 improved material modelling publication-title: J. Therm. Stresses – year: 2005 ident: bib26 article-title: Computational Welding Mechanics – volume: 3 start-page: 1145 year: 1973 end-page: 1174 ident: bib17 article-title: A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure publication-title: Comput. Struct. – volume: 44 start-page: 1301 year: 1999 end-page: 1316 ident: bib37 article-title: Simulation of multipass welding of a thick plate publication-title: Int. J. Numer. Methods Eng. – volume: 17 start-page: 647 year: 2001 end-page: 657 ident: bib38 article-title: Modelling of addition of filler material in large deformation analysis of multipass welding publication-title: Commun. Numer. Methods Eng. – volume: 254 start-page: 921 year: 2007 end-page: 925 ident: bib41 article-title: Investigation of temperature and stress fields in laser cladded coatings publication-title: Appl. Surf. Sci. – volume: 57 start-page: 5419 year: 2009 end-page: 5429 ident: bib4 article-title: in situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition publication-title: Acta Mater. – year: 2007 ident: bib25 article-title: Computational Welding Mechanics. Thermomechanical and Microstructural Simulations – year: 2012 ident: 10.1016/j.finel.2014.04.003_bib9 article-title: Height control of laser metal-wire deposition based on iterative learning control and 3d scanning publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2012.03.016 – year: 2011 ident: 10.1016/j.finel.2014.04.003_bib27 – volume: 31 start-page: S106 year: 2010 ident: 10.1016/j.finel.2014.04.003_bib7 article-title: Additive manufacturing of ti-6al-4v components by shaped metal deposition publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.11.032 – volume: 17 start-page: 89 year: 2005 ident: 10.1016/j.finel.2014.04.003_bib34 article-title: Modeling of laser deposition and repair process publication-title: J. Laser Appl. doi: 10.2351/1.1848523 – ident: 10.1016/j.finel.2014.04.003_bib30 – volume: 35A year: 2004 ident: 10.1016/j.finel.2014.04.003_bib1 publication-title: Metall. Mater. Trans. Phys. Metall. Mater. Sci. – volume: 44 start-page: 1301 issue: 9 year: 1999 ident: 10.1016/j.finel.2014.04.003_bib37 article-title: Simulation of multipass welding of a thick plate publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K – volume: 44 start-page: 57 issue: 1 year: 2002 ident: 10.1016/j.finel.2014.04.003_bib11 article-title: Residual stress-induced warping in direct metal solid freeform fabrication publication-title: Int. J. Mech. Sci. doi: 10.1016/S0020-7403(01)00084-4 – volume: 47 start-page: 1169 year: 2011 ident: 10.1016/j.finel.2014.04.003_bib14 article-title: Modelling of metal deposition publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2011.05.005 – volume: 428 start-page: 47 issue: 1 year: 2006 ident: 10.1016/j.finel.2014.04.003_bib43 article-title: Numerical modeling of the thermal behavior during the lens® process publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.04.079 – volume: 15B start-page: 299 year: 1984 ident: 10.1016/j.finel.2014.04.003_bib46 article-title: A new finite element model for welding heat sources publication-title: Metall. Trans. B doi: 10.1007/BF02667333 – volume: 17 start-page: 647 issue: 9 year: 2001 ident: 10.1016/j.finel.2014.04.003_bib38 article-title: Modelling of addition of filler material in large deformation analysis of multipass welding publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.414 – volume: 128 start-page: 662 issue: 7 year: 2006 ident: 10.1016/j.finel.2014.04.003_bib42 article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process publication-title: J. Heat Transf. doi: 10.1115/1.2194037 – volume: 82 start-page: 653 issue: 7 year: 2004 ident: 10.1016/j.finel.2014.04.003_bib40 article-title: Temperature and stress fields induced during laser cladding publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2003.11.005 – volume: 104 start-page: 198 year: 1982 ident: 10.1016/j.finel.2014.04.003_bib19 article-title: Numerical analysis of thermal stresses during welding including phase transformation effects publication-title: J. Press. Vessel Technol. doi: 10.1115/1.3264204 – volume: 24 start-page: 195 year: 2001 ident: 10.1016/j.finel.2014.04.003_bib21 article-title: Finite element modelling and simulation of welding, part 2 improved material modelling publication-title: J. Therm. Stresses doi: 10.1080/014957301300006380 – volume: 17 start-page: 144 year: 2005 ident: 10.1016/j.finel.2014.04.003_bib35 article-title: Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process publication-title: J. Laser Appl. doi: 10.2351/1.1961688 – ident: 10.1016/j.finel.2014.04.003_bib2 – volume: 254 start-page: 921 issue: 4 year: 2007 ident: 10.1016/j.finel.2014.04.003_bib41 article-title: Investigation of temperature and stress fields in laser cladded coatings publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.08.014 – volume: 57 start-page: 5419 year: 2009 ident: 10.1016/j.finel.2014.04.003_bib4 article-title: in situ thermal imaging and three-dimensional finite element modeling of tungsten carbide–cobalt during laser deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.07.038 – volume: 509 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.finel.2014.04.003_bib6 article-title: Laser aided direct metal deposition of inconel 625 superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.01.009 – volume: 94 start-page: 2667 issue: 4 year: 2003 ident: 10.1016/j.finel.2014.04.003_bib32 article-title: Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding publication-title: J. Appl. Phys. doi: 10.1063/1.1592012 – volume: 24 start-page: 305 year: 2001 ident: 10.1016/j.finel.2014.04.003_bib22 article-title: Finite element modelling and simulation of welding, part 3 efficiency and integration publication-title: J. Therm. Stresses doi: 10.1080/01495730151078117 – ident: 10.1016/j.finel.2014.04.003_bib29 – volume: 20 start-page: 645 year: 1989 ident: 10.1016/j.finel.2014.04.003_bib33 article-title: Three-dimensional transient model for arc-welding process publication-title: Metall. Trans. B doi: 10.1007/BF02655921 – volume: 41 start-page: 025403 issue: 2 year: 2008 ident: 10.1016/j.finel.2014.04.003_bib44 article-title: Analytical and numerical modelling of the direct metal deposition laser process publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/41/2/025403 – volume: 8 start-page: 270 issue: 5 year: 2002 ident: 10.1016/j.finel.2014.04.003_bib12 article-title: Distortion minimization of laser-processed components through control of laser scanning patterns publication-title: Rapid Prototyp. J. doi: 10.1108/13552540210451732 – volume: 33 start-page: 635 year: 1982 ident: 10.1016/j.finel.2014.04.003_bib18 article-title: Computational aspects of welding stress analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(82)90126-8 – volume: 24 start-page: 141 year: 2001 ident: 10.1016/j.finel.2014.04.003_bib20 article-title: Finite element modelling and simulation of welding, part 1 increased complexity publication-title: J. Therm. Stresses doi: 10.1080/01495730150500442 – volume: 195 start-page: 6710 year: 2006 ident: 10.1016/j.finel.2014.04.003_bib24 article-title: Numerical simulation of welding publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.08.018 – volume: 58 start-page: 247 issue: 1 year: 2012 ident: 10.1016/j.finel.2014.04.003_bib10 article-title: Control of melt pool temperature and deposition height during direct metal deposition process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3395-2 – volume: 199 start-page: 2343 year: 2010 ident: 10.1016/j.finel.2014.04.003_bib16 article-title: Finite element modeling of multi-pass welding and shaped metal deposition processes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.02.018 – volume: vol. 2 start-page: 47 year: 2005 ident: 10.1016/j.finel.2014.04.003_bib23 article-title: Modeling of welding for residual stresses – volume: 193 start-page: 4541 year: 2004 ident: 10.1016/j.finel.2014.04.003_bib45 article-title: Optimization of thermo-elasto-plastic manufacturing processes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.03.007 – volume: 3 start-page: 1145 year: 1973 ident: 10.1016/j.finel.2014.04.003_bib17 article-title: A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure publication-title: Comput. Struct. doi: 10.1016/0045-7949(73)90043-6 – start-page: 514 year: 1994 ident: 10.1016/j.finel.2014.04.003_bib47 – volume: 49 start-page: 916 year: 2009 ident: 10.1016/j.finel.2014.04.003_bib5 article-title: A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2009.07.004 – volume: 85 start-page: 84 year: 2011 ident: 10.1016/j.finel.2014.04.003_bib15 article-title: Computational modelling of shaped metal deposition publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2959 – volume: 129 start-page: 101 issue: 1 year: 2007 ident: 10.1016/j.finel.2014.04.003_bib13 article-title: Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.2335852 – volume: 55 start-page: 945 issue: 9–12 year: 2011 ident: 10.1016/j.finel.2014.04.003_bib39 article-title: Numerical simulation of thermal behavior during laser direct metal deposition publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-3142-0 – volume: 35 start-page: 280 issue: 3 year: 2007 ident: 10.1016/j.finel.2014.04.003_bib8 article-title: Clad height control in laser solid freeform fabrication using a feedforward PID controller publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-006-0721-1 – volume: S start-page: 499 year: 1989 ident: 10.1016/j.finel.2014.04.003_bib31 article-title: Weld pool development during GTA and laser beam welding of type 304 stainless steel, part 1-theoretical analysis publication-title: Weld. Res. Suppl. – volume: 41 start-page: 10 issue: 025403 year: 2008 ident: 10.1016/j.finel.2014.04.003_bib3 article-title: Analytical and numerical modelling of the direct metal deposition laser process publication-title: J. Phys. D Appl. Phys. – year: 2007 ident: 10.1016/j.finel.2014.04.003_bib25 – year: 2005 ident: 10.1016/j.finel.2014.04.003_bib26 – volume: 51 start-page: 10 year: 2012 ident: 10.1016/j.finel.2014.04.003_bib36 article-title: Simulation of manufacturing chain of a titanium aerospace component with experimental validation publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2011.10.002 – volume: 98 issue: 044902 year: 2005 ident: 10.1016/j.finel.2014.04.003_bib28 article-title: A heat-transfer and fluid-flow model to obtain a specific weld geometry using various combinations of welding variables publication-title: J. Appl. Phys. |
| SSID | ssj0005264 |
| Score | 2.5527682 |
| Snippet | Additive Manufacturing (AM) processes for metallic parts using both laser and electron beam heat sources are becoming increasingly popular due to their... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 51 |
| SubjectTerms | Activation Additive manufacturing Additives Deposition Element activation Errors Finite element method Heat transfer Mathematical analysis Mathematical models Metal deposition Near net shaping |
| Title | Modeling metal deposition in heat transfer analyses of additive manufacturing processes |
| URI | https://dx.doi.org/10.1016/j.finel.2014.04.003 https://www.proquest.com/docview/1560108886 https://www.proquest.com/docview/1677951001 |
| Volume | 86 |
| WOSCitedRecordID | wos000336457200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlgMceBQQ5aVF4gZGfiT7OFaoCBCqOBSR22qfUqrWiZoE9eczsw8naUVED1ysyLJXdmY8-83st98Q8q52tW64HVcQ-0I1anVbaYNZaxAwX_hGWhsl87_zkxMxmcgfuSvqIrYT4H0vrq7k_L-aGs6BsXHr7C3MPQwKJ-A3GB2OYHY4_pPhsbtZ3GN-4XGjo_OFl4WlDQy92BYCwKpH9iQqkiTZWSQWRRrRhe5XuN0h7V-cp40EmWlY-nlOEam-94l6Hhm1uoibYCHebdFCIjP_HCWhE2TFxkiz5XSr4NCMBkbVUINkAoJoIlaWICo2o2CWkE3zaWoXcCNSp6LB2ccAYBqXgJpRlJytu_XEVBbjr81XA4uwENTOVBxE4SCqHqmo_rrf8rGEMLd_9PV48m2D9cOy3Ht6hyJEFSl_N57lb2Dl2rQdscjpI_IgJxH0KBn_Mbnj-wPyMCcUNIfrxQG5v6E2-YT8Kp5Bo2fQtWfQaU_RM2jxDFo8g84CLZ5BtzyDDp7xlPz8fHz66UuV-2pUtmNyWZmxqMfBdM4EB3DVGe9EsJ0TOrRWeoDQ1nnOmG1k6LgFANgAbJe-MZybzujuGdnrZ71_TmjwhhnIOkMXAkR_pzH_1MJ6J1G1SB6StvyBymbReex9cq52GO-QfBhumifNld2Xs2IZlWFjgoMKfG33jW-LHRUEVVwp072frRaqiXUKIQTbcQ3jHNOTunlxu-d9Se6tP6tXZG95ufKvyV37G768yzfZYf8A-GSsmg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+metal+deposition+in+heat+transfer+analyses+of+additive+manufacturing+processes&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Michaleris%2C+Panagiotis&rft.date=2014-09-01&rft.issn=0168-874X&rft.volume=86&rft.spage=51&rft.epage=60&rft_id=info:doi/10.1016%2Fj.finel.2014.04.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2014_04_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |