Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint

In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in a streaming setting. In such a setting, elements arrive sequentially and at any point in time, and the algorithm can store only a small fraction of the elements that have arrived s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 83; H. 3; S. 879 - 902
Hauptverfasser: Huang, Chien-Chung, Kakimura, Naonori
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2021
Springer Verlag
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in a streaming setting. In such a setting, elements arrive sequentially and at any point in time, and the algorithm can store only a small fraction of the elements that have arrived so far. For the special case that all elements have unit sizes (i.e., the cardinality-constraint case), one can find a ( 0.5 - ε ) -approximate solution in O ( K ε - 1 ) space, where K is the knapsack capacity (Badanidiyuru et al.  KDD 2014). The approximation ratio is recently shown to be optimal (Feldman et al.  STOC 2020). In this work, we propose a ( 0.4 - ε ) -approximation algorithm for the knapsack-constrained problem, using space that is a polynomial of K and ε . This improves on the previous best ratio of 0.363 - ε with space of the same order. Our algorithm is based on a careful combination of various ideas to transform multiple-pass streaming algorithms into a single-pass one.
AbstractList In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in a streaming setting. In such a setting, elements arrive sequentially and at any point in time, and the algorithm can store only a small fraction of the elements that have arrived so far. For the special case that all elements have unit sizes (i.e., the cardinality-constraint case), one can find a ( 0.5 - ε ) -approximate solution in O ( K ε - 1 ) space, where K is the knapsack capacity (Badanidiyuru et al.  KDD 2014). The approximation ratio is recently shown to be optimal (Feldman et al.  STOC 2020). In this work, we propose a ( 0.4 - ε ) -approximation algorithm for the knapsack-constrained problem, using space that is a polynomial of K and ε . This improves on the previous best ratio of 0.363 - ε with space of the same order. Our algorithm is based on a careful combination of various ideas to transform multiple-pass streaming algorithms into a single-pass one.
In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in a streaming setting. In such a setting, elements arrive sequentially and at any point in time, and the algorithm can store only a small fraction of the elements that have arrived so far. For the special case that all elements have unit sizes (i.e., the cardinality-constraint case), one can find a (0.5−ε)-approximate solution in O(Kε−1) space, where K is the knapsack capacity (Badanidiyuru et al. KDD 2014). The approximation ratio is recently shown to be optimal (Feldman et al. STOC 2020). In this work, we propose a (0.4−ε)-approximation algorithm for the knapsack-constrained problem, using space that is a polynomial of K and ε. This improves on the previous best ratio of 0.363−ε with space of the same order. Our algorithm is based on a careful combination of various ideas to transform multiple-pass streaming algorithms into a single-pass one.
Author Kakimura, Naonori
Huang, Chien-Chung
Author_xml – sequence: 1
  givenname: Chien-Chung
  surname: Huang
  fullname: Huang, Chien-Chung
  organization: CNRS, École Normale Supérieure
– sequence: 2
  givenname: Naonori
  orcidid: 0000-0002-3918-3479
  surname: Kakimura
  fullname: Kakimura, Naonori
  email: kakimura@math.keio.ac.jp
  organization: Keio University
BackLink https://hal.science/hal-03456727$$DView record in HAL
BookMark eNp9kEFPwyAUx4mZidv0C3ji6qEKhUJ7XBbnFrd4mJ4Jo7AxW1igXdRPb-v04mEn8h7_H4_3G4GB804DcIvRPUaIP0SEaEYSlKKkK3OW0AswxJSkCcooHoAhwjxPKMP8Coxi3COEU16wITCL-hD8UZdw3QQta-u2cFJtfbDNro7Q-ABX8sPW9qu_WXnnm24yXLeb2pdtJQOctU411rsIW1fqACV8dvIQpXqH067bBGldcw0ujayivvk9x-Bt9vg6nSfLl6fFdLJMFGFFk0hGcmoIUSTnmmaccYxInmtFUFqqgmSZKZmRpTSKUqMI14xkeJPxIqVFiTQZg7vTuztZiUOwtQyfwksr5pOl6HuI0IzxlB9xl81PWRV8jEEboWwj-1X6P1cCI9G7FSe3onMrftwK2qHpP_Rv1lmInKDYhd1WB7H3bXCdjnPUN7mSjwA
CitedBy_id crossref_primary_10_1007_s00224_021_10065_6
crossref_primary_10_26599_TST_2022_9010068
crossref_primary_10_1007_s10878_022_00951_1
crossref_primary_10_26599_TST_2022_9010033
crossref_primary_10_1007_s11704_024_40266_4
crossref_primary_10_1016_j_orl_2021_11_010
crossref_primary_10_26599_TST_2023_9010121
crossref_primary_10_1287_mnsc_2021_04108
crossref_primary_10_1145_3570615
Cites_doi 10.1007/BFb0121195
10.1137/130920277
10.1137/1.9781611973402.110
10.1137/110839655
10.1145/2627692.2627694
10.1145/3242770
10.1145/3087556.3087585
10.1137/1.9781611974782.78
10.1007/978-3-662-47672-7_26
10.1287/moor.1100.0463
10.1145/2623330.2623637
10.1287/moor.7.3.410
10.1145/3188745.3188752
10.1145/956750.956769
10.1145/2187836.2187888
10.1145/2809814
10.1137/080733991
10.1007/s10107-015-0900-7
10.1007/BF01588971
10.1016/S0167-6377(03)00062-2
10.1609/aaai.v32i1.11529
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s00453-020-00786-4
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 902
ExternalDocumentID oai:HAL:hal-03456727v1
10_1007_s00453_020_00786_4
GrantInformation_xml – fundername: Agence Nationale de la Recherche (FR)
  grantid: ANR-18-CE40-0025-01
– fundername: Japan Society for the Promotion of Science
  grantid: JP17K00028; JP18H05291
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Agence Nationale de la Recherche
  grantid: ANR-19-CE48-0016
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c369t-a6384f33c387e4576710388ec302dc9355fd6fadafc44fc37e6351b579249d0e3
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604460500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Tue Oct 14 20:27:43 EDT 2025
Sat Nov 29 02:20:30 EST 2025
Tue Nov 18 20:27:48 EST 2025
Fri Feb 21 02:48:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Streaming algorithm
Approximation algorithm
Submodular functions
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-a6384f33c387e4576710388ec302dc9355fd6fadafc44fc37e6351b579249d0e3
ORCID 0000-0002-3918-3479
OpenAccessLink https://hal.science/hal-03456727
PageCount 24
ParticipantIDs hal_primary_oai_HAL_hal_03456727v1
crossref_citationtrail_10_1007_s00453_020_00786_4
crossref_primary_10_1007_s00453_020_00786_4
springer_journals_10_1007_s00453_020_00786_4
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2021
Publisher Springer US
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Verlag
References FilmusYWardJA tight combinatorial algorithm for submodular maximization subject to a matroid constraintSIAM J. Comput.2014432514542318305010.1137/130920277
Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 545–554 (2013)
Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone submodular maximization: Personalized video summarization on the fly. In: Proceedings of the International Conference on Artificial Intelligence (AAAI) (2018)
CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
WolseyLMaximising real-valued submodular functions: primal and dual heuristics for location problemsMath. Oper. Res.1982741042566793210.1287/moor.7.3.410
Huang, C.C., Kakimura, N.: Multi-pass streaming algorithms for monotone submodular function maximization (2018). arXiv:1802.06212
Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1497–1514 (2013)
ChakrabartiAKaleSSubmodular maximization meets streaming: matchings, matroids, and moreMath. Program.20151541–2225247342193410.1007/s10107-015-0900-7
Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: Streaming submodular maximization with subsampling. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pp. 730–740 (2018). http://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling
LeeJMaximum Entropy Sampling. Encyclopedia of Environmetrics2006New JerseyJohn Wiley & Sons, Ltd.12291234
Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web (WWW), pp. 381–388 (2012)
Chan, T.H.H., Jiang, S.H.C., Tang, Z.G., Wu, X.: Online submodular maximization problem with vector packing constraint. In: Annual European Symposium on Algorithms (ESA), pp. 24:1–24:14 (2017)
McGregor, A., Vu, H.T.: Better streaming algorithms for the maximum coverage problem. In: International Conference on Database Theory (ICDT) (2017)
Yu, Q., Xu, E.L., Cui, S.: Streaming algorithms for news and scientific literature recommendation: Submodular maximization with a d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraint. IEEE Global Conference on Signal and Information Processing (2016)
ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In: International Conference on Machine Learning (ICML2019), pp. 3311–3320 (2019)
Bateni, M., Esfandiari, H., Mirrokni, V.: Almost optimal streaming algorithms for coverage problems. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’17, pp. 13–23. ACM, New York, NY, USA (2017)
Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy algorithm for monotone submodular maximization with a knapsack constraint (2020). arXiv:2008.05391
Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 671–680 (2014)
Chekuri, C., Gupta, S., Quanrud, K.: Streaming algorithms for submodular function maximization. In: Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), vol. 9134, pp. 318–330 (2015)
FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions iMath. Program.19781426529450386610.1007/BF01588971
Nutov, Z., Shoham, E.: Practical budgeted submodular maximization (2020). arXiv:2007.04937
Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{{\rm e}}}$$\end{document}n, H.L.: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 274–282 (2019)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)
Huang, C.C., Kakimura, N., Yoshida, Y.: Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. In: The 20th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems(APPROX2017) (2017)
Barbosa, R., Ene, A., Le Nguyen, H., Ward, J.: The power of randomization: Distributed submodular maximization on massive datasets. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, pp. 1236–1244. JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.3045250
LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463
FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions iiMath. Program. Study19788738751036910.1007/BFb0121195
Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{{\rm e}}}$$\end{document}n, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: The 46th International Colloquium on Automata, Languages and Programming (ICALP 2019), to appear (2019)
Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: Theoretical guarantee and efficient algorithm. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 351–359 (2014)
Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 912–920 (2010)
McGregorAGraph stream algorithms: A surveySIGMOD Rec.201443192010.1145/2627692.2627694
Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), pp. 510–520 (2011)
Balkanski, E., Singer, Y.: The adaptive complexity of maximizing a submodular function. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, STOC 2018, pp. 1138–1151. ACM, New York, NY, USA (2018)
Barbosa, R.D.P., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 645–654 (2016)
Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint (2016). https://epubs.siam.org/doi/10.1137/16M1107644
Chan, T.H.H., Huang, Z., Jiang, S.H.C., Kang, N., Tang, Z.G.: Online submodular maximization with free disposal: Randomization beats for partition matroids online. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1204–1223 (2017)
Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the multilinear relaxation. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 303–322 (2019)
Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 283–302 (2019)
KrauseASinghAPGuestrinCNear-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studiesJ. Mach. Learn. Res.200892352841225.68192
Feldman, M., Norouzi-Fard, A., Svensson, O., Zenklusen, R.: The one-way communication complexity of submodular maximization with applications to streaming and robustness. In: Makarychev K., Makarychev Y., Tulsiani M., Kamath G., Chuzhoy J. (eds.) Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pp. 1363–1374. ACM (2020)
KumarRMoseleyBVassilvitskiiSVattaniAFast greedy algorithms in mapreduce and streamingACM Trans. Parallel Comput.20152314:114:2210.1145/2809814
786_CR26
786_CR25
A Krause (786_CR27) 2008; 9
786_CR28
L Wolsey (786_CR41) 1982; 7
786_CR43
786_CR24
786_CR23
A Chakrabarti (786_CR10) 2015; 154
786_CR40
786_CR42
J Lee (786_CR30) 2006
C Chekuri (786_CR15) 2014; 43
A McGregor (786_CR34) 2014; 43
ML Fisher (786_CR22) 1978; 8
J Lee (786_CR31) 2010; 35
786_CR19
786_CR18
ML Fisher (786_CR21) 1978; 14
786_CR37
786_CR14
786_CR36
786_CR17
786_CR16
786_CR38
786_CR11
786_CR33
786_CR32
786_CR13
786_CR35
786_CR12
R Kumar (786_CR29) 2015; 2
786_CR4
Y Filmus (786_CR20) 2014; 43
786_CR3
786_CR2
786_CR1
786_CR8
786_CR7
786_CR6
M Sviridenko (786_CR39) 2004; 32
786_CR5
G Calinescu (786_CR9) 2011; 40
References_xml – reference: Chan, T.H.H., Jiang, S.H.C., Tang, Z.G., Wu, X.: Online submodular maximization problem with vector packing constraint. In: Annual European Symposium on Algorithms (ESA), pp. 24:1–24:14 (2017)
– reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
– reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions iMath. Program.19781426529450386610.1007/BF01588971
– reference: LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463
– reference: Chekuri, C., Gupta, S., Quanrud, K.: Streaming algorithms for submodular function maximization. In: Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), vol. 9134, pp. 318–330 (2015)
– reference: Feldman, M., Norouzi-Fard, A., Svensson, O., Zenklusen, R.: The one-way communication complexity of submodular maximization with applications to streaming and robustness. In: Makarychev K., Makarychev Y., Tulsiani M., Kamath G., Chuzhoy J. (eds.) Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pp. 1363–1374. ACM (2020)
– reference: Huang, C.C., Kakimura, N., Yoshida, Y.: Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. In: The 20th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems(APPROX2017) (2017)
– reference: Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1497–1514 (2013)
– reference: Bateni, M., Esfandiari, H., Mirrokni, V.: Almost optimal streaming algorithms for coverage problems. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’17, pp. 13–23. ACM, New York, NY, USA (2017)
– reference: ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
– reference: Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint (2016). https://epubs.siam.org/doi/10.1137/16M1107644
– reference: Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), pp. 510–520 (2011)
– reference: ChakrabartiAKaleSSubmodular maximization meets streaming: matchings, matroids, and moreMath. Program.20151541–2225247342193410.1007/s10107-015-0900-7
– reference: KrauseASinghAPGuestrinCNear-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studiesJ. Mach. Learn. Res.200892352841225.68192
– reference: McGregor, A., Vu, H.T.: Better streaming algorithms for the maximum coverage problem. In: International Conference on Database Theory (ICDT) (2017)
– reference: Nutov, Z., Shoham, E.: Practical budgeted submodular maximization (2020). arXiv:2007.04937
– reference: LeeJMaximum Entropy Sampling. Encyclopedia of Environmetrics2006New JerseyJohn Wiley & Sons, Ltd.12291234
– reference: Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In: International Conference on Machine Learning (ICML2019), pp. 3311–3320 (2019)
– reference: Barbosa, R., Ene, A., Le Nguyen, H., Ward, J.: The power of randomization: Distributed submodular maximization on massive datasets. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, pp. 1236–1244. JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.3045250
– reference: Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 283–302 (2019)
– reference: Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the multilinear relaxation. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 303–322 (2019)
– reference: Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone submodular maximization: Personalized video summarization on the fly. In: Proceedings of the International Conference on Artificial Intelligence (AAAI) (2018)
– reference: Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 671–680 (2014)
– reference: Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 912–920 (2010)
– reference: Yu, Q., Xu, E.L., Cui, S.: Streaming algorithms for news and scientific literature recommendation: Submodular maximization with a d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraint. IEEE Global Conference on Signal and Information Processing (2016)
– reference: Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy algorithm for monotone submodular maximization with a knapsack constraint (2020). arXiv:2008.05391
– reference: McGregorAGraph stream algorithms: A surveySIGMOD Rec.201443192010.1145/2627692.2627694
– reference: Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{{\rm e}}}$$\end{document}n, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: The 46th International Colloquium on Automata, Languages and Programming (ICALP 2019), to appear (2019)
– reference: Huang, C.C., Kakimura, N.: Multi-pass streaming algorithms for monotone submodular function maximization (2018). arXiv:1802.06212
– reference: Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: Streaming submodular maximization with subsampling. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pp. 730–740 (2018). http://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling
– reference: Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{{\rm e}}}$$\end{document}n, H.L.: Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 274–282 (2019)
– reference: CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
– reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions iiMath. Program. Study19788738751036910.1007/BFb0121195
– reference: Chan, T.H.H., Huang, Z., Jiang, S.H.C., Kang, N., Tang, Z.G.: Online submodular maximization with free disposal: Randomization beats for partition matroids online. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1204–1223 (2017)
– reference: Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 137–146 (2003)
– reference: Balkanski, E., Singer, Y.: The adaptive complexity of maximizing a submodular function. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, STOC 2018, pp. 1138–1151. ACM, New York, NY, USA (2018)
– reference: WolseyLMaximising real-valued submodular functions: primal and dual heuristics for location problemsMath. Oper. Res.1982741042566793210.1287/moor.7.3.410
– reference: Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: Theoretical guarantee and efficient algorithm. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 351–359 (2014)
– reference: Barbosa, R.D.P., Ene, A., Nguyen, H.L., Ward, J.: A new framework for distributed submodular maximization. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 645–654 (2016)
– reference: KumarRMoseleyBVassilvitskiiSVattaniAFast greedy algorithms in mapreduce and streamingACM Trans. Parallel Comput.20152314:114:2210.1145/2809814
– reference: Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 545–554 (2013)
– reference: FilmusYWardJA tight combinatorial algorithm for submodular maximization subject to a matroid constraintSIAM J. Comput.2014432514542318305010.1137/130920277
– reference: Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web (WWW), pp. 381–388 (2012)
– volume: 8
  start-page: 73
  year: 1978
  ident: 786_CR22
  publication-title: Math. Program. Study
  doi: 10.1007/BFb0121195
– ident: 786_CR32
– ident: 786_CR40
– volume: 43
  start-page: 514
  issue: 2
  year: 2014
  ident: 786_CR20
  publication-title: SIAM J. Comput.
  doi: 10.1137/130920277
– ident: 786_CR28
– ident: 786_CR3
  doi: 10.1137/1.9781611973402.110
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  ident: 786_CR15
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– ident: 786_CR42
– volume: 43
  start-page: 9
  issue: 1
  year: 2014
  ident: 786_CR34
  publication-title: SIGMOD Rec.
  doi: 10.1145/2627692.2627694
– ident: 786_CR12
  doi: 10.1145/3242770
– ident: 786_CR7
– ident: 786_CR8
  doi: 10.1145/3087556.3087585
– ident: 786_CR19
– ident: 786_CR43
– ident: 786_CR24
– ident: 786_CR11
  doi: 10.1137/1.9781611974782.78
– ident: 786_CR17
– ident: 786_CR13
  doi: 10.1007/978-3-662-47672-7_26
– volume: 35
  start-page: 795
  issue: 4
  year: 2010
  ident: 786_CR31
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0463
– ident: 786_CR38
– ident: 786_CR2
  doi: 10.1145/2623330.2623637
– ident: 786_CR35
– volume: 7
  start-page: 410
  year: 1982
  ident: 786_CR41
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.7.3.410
– ident: 786_CR37
– ident: 786_CR5
  doi: 10.1145/3188745.3188752
– ident: 786_CR33
– start-page: 1229
  volume-title: Maximum Entropy Sampling. Encyclopedia of Environmetrics
  year: 2006
  ident: 786_CR30
– ident: 786_CR14
– ident: 786_CR26
  doi: 10.1145/956750.956769
– ident: 786_CR1
  doi: 10.1145/2187836.2187888
– volume: 2
  start-page: 14:1
  issue: 3
  year: 2015
  ident: 786_CR29
  publication-title: ACM Trans. Parallel Comput.
  doi: 10.1145/2809814
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 786_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: 786_CR23
– volume: 154
  start-page: 225
  issue: 1–2
  year: 2015
  ident: 786_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0900-7
– volume: 14
  start-page: 265
  year: 1978
  ident: 786_CR21
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– ident: 786_CR18
– ident: 786_CR25
– ident: 786_CR16
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 786_CR39
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 9
  start-page: 235
  year: 2008
  ident: 786_CR27
  publication-title: J. Mach. Learn. Res.
– ident: 786_CR36
  doi: 10.1609/aaai.v32i1.11529
– ident: 786_CR6
– ident: 786_CR4
SSID ssj0012796
Score 2.3834088
Snippet In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in a streaming setting. In such a setting,...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 879
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Algorithms and Data Structures (WADS 2019)
Computational Geometry
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Algorithms
Data Structures and Information Theory
Mathematics of Computing
Theory of Computation
Title Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
URI https://link.springer.com/article/10.1007/s00453-020-00786-4
https://hal.science/hal-03456727
Volume 83
WOSCitedRecordID wos000604460500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9u-uCL8xPnF0F800LXpE37OMQxcA7BD_ZW0rTR4bqNtg7xr_cuawuKDPS1TY9wH7lL7-53hFwECgQNgbfFuGAWnJLMCrRQlmIO0zJxpRsZnNmBGA790Si4L5vC8qravUpJmpO6bnbD6ANzjtgJLXzP4g2y7iLaDN7RH57r3IEjzFQunDtvcXDQZavM7zS-uaPGKxZD_siIGkfTa_1vi9tkqwwsaXepCTtkLZnuklY1tIGWNrxH9PI3QhJTTEjLFOjT7uRllo2L1zSnEMPSO_kxTsef-AZMfoZw3RQOmHQWY80q7YErNNpKsQEto5LeTuU8l-qN4vhPM3Si2CdPvZvH675VDlsAsXhBYUkwRK4ZU8wXCYdbiEDodD9RzHZihSjsOva0jKVWnGvFRAKhSidyBV7gYjthB6Q5hf0cEqoj4To2KIft-dxVMpJcA4EYortIKK7bpFPxPFQlEjnubRLWGMqGkSEwMjSMDHmbXNbfzJc4HCtXn4Mo64UIod3vDkJ8ZjMIGSFoW3Ta5KqSYlgabr6C5tHflh-TTQfLX0y52glpFtl7cko21KIY59mZ0dgv5-rj2w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68QF-8xXou4psG0uymmz4WsVRsi2AV38Jmk7XFXjRRxF_vzDYJKCLoa7IZljl2ZjMz3wCc1zUKGgNvhwvJHTwluVM3Ujuae9yoxFd-ZHFm27LbDZ6e6nd5U1haVLsXKUl7UpfNbhR9UM6ROqFlUHPEIiwLGrNDd_T7xzJ34Ek7lYvmzjsCHXTeKvMzjS_uaLFPxZDfMqLW0TQ3_rfFTVjPA0vWmGvCFiwk423YKIY2sNyGd8DMfyMkMaOEtBohfdYYPk9mg6w_ShnGsKyj3gejwQe9QZOfEFw3wwNmNImpZpU10RVabWXUgDZjit2O1TRV-oXR-E87dCLbhYfmde-q5eTDFlAstXrmKDREYTjXPJCJwFuIJOj0INHc9WJNKOwmrhkVK6OFMJrLBEOVauRLusDFbsL3YGmM-9kHZiLpey4qh1sLhK9VpIRBAjFGd5HUwlSgWvA81DkSOe1tGJYYypaRITIytIwMRQUuym-mcxyOX1efoSjLhQSh3Wq0Q3rmcgwZMWh7q1bgspBimBtu-gvNg78tP4XVVq_TDts33dtDWPOoFMaWrh3BUjZ7TY5hRb9lg3R2YrX3E56w5r8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED98IX5xPnE-g_hNi12TLt3HoQ7FOcQX-1bStHFD92CrQ_zrvcu6oiID8WuXpeHukvuld_c7gKOKRkUj8Ha4kNzBU5I7FSO1o7nHjUp85UeWZ7YuG42g2azcfqnit9nuk5DkuKaBWJq66Wk_Nqd54RshEYo_UlW0DMqOmIV5gTcZSuq6u3_K4wietB26qAe9I9BZZ2Uzv8_xzTXNtigx8kd01DqdWuH_y12B5QxwsurYQlZhJumuQWHSzIFle3sdzPjzQhIzClSrDr6LVV-fe4N22uoMGWJbdqPe2532B_2CR0GPaLwZHjydXky5rKyGLtJaMaPCtAFT7Lqr-kOlXxi1BbXNKNINeKxdPJxdOlkTBlRXuZI6CjeoMJxrHshE4O1EEqV6kGjuerEmdnYTl42KldFCGM1lghCmFPmSLnaxm_BNmOvieraAmUj6notG45YD4WsVKWFwghhRXyS1MEUoTeQf6oyhnNb2GubcylaQIQoytIIMRRGO8__0x_wcU0cfolrzgUStfVmth_TM5QglEcyNSkU4mWg0zDb0cMqc238bfgCLt-e1sH7VuN6BJY8yZGxG2y7MpYO3ZA8W9ChtDwf71pA_AcTn76M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Streaming+Algorithms+for+Maximizing+Monotone+Submodular+Functions+under+a+Knapsack+Constraint&rft.jtitle=Algorithmica&rft.au=Huang%2C+Chien-Chung&rft.au=Kakimura%2C+Naonori&rft.date=2021-03-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=3&rft.spage=879&rft.epage=902&rft_id=info:doi/10.1007%2Fs00453-020-00786-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_020_00786_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon