The role of variable viscosity in the stability of channel flow

The stability of plane Poiseuille flow is studied for liquids exhibiting exponential viscosity-temperature dependence. In contrast to previously published studies, viscosity and temperature fluctuations are included in the formulation. Equations describing the evolution of small, two-dimensional dis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International communications in heat and mass transfer Ročník 22; číslo 6; s. 837 - 847
Hlavní autori: Pinarbasi, A., Liakopoulos, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Ltd 1995
Elsevier
Predmet:
ISSN:0735-1933, 1879-0178
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The stability of plane Poiseuille flow is studied for liquids exhibiting exponential viscosity-temperature dependence. In contrast to previously published studies, viscosity and temperature fluctuations are included in the formulation. Equations describing the evolution of small, two-dimensional disturbances are derived and the stability problem is formulated as an eigenvalue problem for a set of two ordinary differential equations. A Chebyshev collocation discretization method leads to a generalized matrix eigenvalue problem which is solved by the QZ algorithm. It is found that an imposed wall temperature difference, Δ T − , is always destabilizing. The instability region in the wavenumber-Reynolds number plane grows considerably as Δ T − increases. The influence of Prandtl number, temperature fluctuations and viscosity fluctuations on the flow stability/instability is small. However, their influence on the margin of stability for small wavenumbers is appreciable.
AbstractList The stability of plane Poiseuille flow is studied for liquids exhibiting exponential viscosity-temperature dependence. In contrast to previously published studies, viscosity and temperature fluctuations are included in the formulation. Equations describing the evolution of small, two-dimensional disturbances are derived and the stability problem is formulated as an eigenvalue problem for a set of two ordinary differential equations. A Chebyshev collocation discretization method leads to a generalized matrix eigenvalue problem which is solved by the QZ algorithm. It is found that an imposed wall temperature difference, Δ T − , is always destabilizing. The instability region in the wavenumber-Reynolds number plane grows considerably as Δ T − increases. The influence of Prandtl number, temperature fluctuations and viscosity fluctuations on the flow stability/instability is small. However, their influence on the margin of stability for small wavenumbers is appreciable.
Author Pinarbasi, A.
Liakopoulos, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Pinarbasi
  fullname: Pinarbasi, A.
– sequence: 2
  givenname: A.
  surname: Liakopoulos
  fullname: Liakopoulos, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2974450$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYNUsFX_gYtZuNDF6E0z6SQuFCm-oOCmrkMmDxoZk5KESv-9GasuXOjqvr5z4J4JGvngDUInGC4w4NkltITWmBNyxuk5ALTTGvbQGLOW14BbNkLjH-QATVJ6LRBmmI3RzXJlqhh6UwVbbWR0siv9xiUVksvbyvkqFyJl2bl-WBRMraT3pq9sH96P0L6VfTLHX_UQvdzfLeeP9eL54Wl-u6gVmfFcS0zVTDeEcGIpbzrV6Q7KTC1oNtWaWTDKtJzqlvLSMKzLgUqQjChgmhyi053vWiYlexulVy6JdXRvMm7FlLdNQ6FgVztMxZBSNFYol2V2wecoXS8wiCExMcQhhjgEp-IzMTGIm1_ib_t_ZNc7mSn_b5yJIilnvDLaRaOy0MH9bfABMzCEEA
CODEN IHMTDL
CitedBy_id crossref_primary_10_1016_j_euromechflu_2016_05_007
crossref_primary_10_1016_j_icheatmasstransfer_2021_105773
crossref_primary_10_1017_jfm_2018_815
crossref_primary_10_1017_S0022112007008439
crossref_primary_10_1016_j_icheatmasstransfer_2022_106427
crossref_primary_10_1016_j_jnnfm_2007_01_010
crossref_primary_10_1007_s00231_006_0208_5
crossref_primary_10_1016_j_icheatmasstransfer_2022_106359
crossref_primary_10_1017_S0022112007004636
crossref_primary_10_1002_fld_1509
crossref_primary_10_1016_j_padiff_2025_101105
crossref_primary_10_1016_S0997_7546_01_01169_4
crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_048
crossref_primary_10_1146_annurev_fluid_010313_141351
crossref_primary_10_1016_0735_1933_96_00033_4
crossref_primary_10_1016_S0735_1933_97_00034_1
crossref_primary_10_1007_s13369_020_04798_8
crossref_primary_10_1002_fld_1572
crossref_primary_10_1016_S0735_1933_01_00242_1
crossref_primary_10_1016_j_ces_2011_09_003
crossref_primary_10_1016_j_ijmultiphaseflow_2007_03_001
Cites_doi 10.1016/S0017-9310(05)80127-9
10.1016/0377-0257(94)01330-K
10.1063/1.1693843
10.1103/PhysRev.91.780
10.1017/S0022112071002842
10.1017/S002211209200260X
ContentType Journal Article
Copyright 1995
1996 INIST-CNRS
Copyright_xml – notice: 1995
– notice: 1996 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/0735-1933(95)00072-0
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0178
EndPage 847
ExternalDocumentID 2974450
10_1016_0735_1933_95_00072_0
0735193395000720
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c369t-a15c6d43393f594bcbdb0d435f0d82dd8f0ece795d759ce781d0d85a0a83c08d3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0735193395000720&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0735-1933
IngestDate Mon Jul 21 09:13:46 EDT 2025
Sat Nov 29 07:30:05 EST 2025
Tue Nov 18 22:39:24 EST 2025
Fri Feb 23 02:24:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Variable viscosity
Temperature distribution
Pipe flow
Poiseuille flow
Hydrodynamic instability
Numerical simulation
Velocity distribution
Incompressible fluid
Pressure gradients
Parallel plate
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-a15c6d43393f594bcbdb0d435f0d82dd8f0ece795d759ce781d0d85a0a83c08d3
PageCount 11
ParticipantIDs pascalfrancis_primary_2974450
crossref_citationtrail_10_1016_0735_1933_95_00072_0
crossref_primary_10_1016_0735_1933_95_00072_0
elsevier_sciencedirect_doi_10_1016_0735_1933_95_00072_0
PublicationCentury 1900
PublicationDate 1995-00-00
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – year: 1995
  text: 1995-00-00
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle International communications in heat and mass transfer
PublicationYear 1995
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Thomas (BIB1) 1953; 91
Wazzan, Keltner, Okamura, Smith (BIB4) 1972; 15
Herwig, Schäfer (BIB5) 1992; 243
Abramowitz, Stegun (BIB7) 1965
Simpkins, Liakopoulos (BIB9) 1992
Schäfer, Her-wig (BIB6) 1993; 36
Orszag (BIB2) 1971; 50
Potter, Graber (BIB3) 1970
Drazin, Reid (BIB8) 1981
Pinarbasi, Liakopouios (BIB10) 1995; 57
Abramowitz (10.1016/0735-1933(95)00072-0_BIB7) 1965
Pinarbasi (10.1016/0735-1933(95)00072-0_BIB10) 1995; 57
Thomas (10.1016/0735-1933(95)00072-0_BIB1) 1953; 91
Orszag (10.1016/0735-1933(95)00072-0_BIB2) 1971; 50
Wazzan (10.1016/0735-1933(95)00072-0_BIB4) 1972; 15
Schäfer (10.1016/0735-1933(95)00072-0_BIB6) 1993; 36
Potter (10.1016/0735-1933(95)00072-0_BIB3) 1970
Drazin (10.1016/0735-1933(95)00072-0_BIB8) 1981
Simpkins (10.1016/0735-1933(95)00072-0_BIB9) 1992
Herwig (10.1016/0735-1933(95)00072-0_BIB5) 1992; 243
References_xml – volume: 57
  start-page: 227
  year: 1995
  ident: BIB10
  publication-title: J. Non-Newtonian Fluid Mech.
– volume: 243
  start-page: 1
  year: 1992
  ident: BIB5
  publication-title: J. Fluid Mech.
– year: 1992
  ident: BIB9
  article-title: Stability of Convective Flows
– volume: 50
  start-page: 689
  year: 1971
  ident: BIB2
  publication-title: J Fluid Mech.
– volume: 91
  start-page: 780
  year: 1953
  ident: BIB1
  publication-title: Phys. Review
– year: 1970
  ident: BIB3
  publication-title: NASA TN D-6027
– year: 1965
  ident: BIB7
  publication-title: Handbook of Mathematical functions
– year: 1981
  ident: BIB8
  article-title: Hydrodynamic Stability
– volume: 15
  start-page: 2114
  year: 1972
  ident: BIB4
  publication-title: Phys. Fluids
– volume: 36
  start-page: 2441
  year: 1993
  ident: BIB6
  publication-title: Int. J. Heat Mass Transfer
– year: 1970
  ident: 10.1016/0735-1933(95)00072-0_BIB3
  publication-title: NASA TN D-6027
– volume: 36
  start-page: 2441
  year: 1993
  ident: 10.1016/0735-1933(95)00072-0_BIB6
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(05)80127-9
– volume: 57
  start-page: 227
  year: 1995
  ident: 10.1016/0735-1933(95)00072-0_BIB10
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/0377-0257(94)01330-K
– year: 1981
  ident: 10.1016/0735-1933(95)00072-0_BIB8
– year: 1992
  ident: 10.1016/0735-1933(95)00072-0_BIB9
– volume: 15
  start-page: 2114
  year: 1972
  ident: 10.1016/0735-1933(95)00072-0_BIB4
  publication-title: Phys. Fluids
  doi: 10.1063/1.1693843
– volume: 91
  start-page: 780
  year: 1953
  ident: 10.1016/0735-1933(95)00072-0_BIB1
  publication-title: Phys. Review
  doi: 10.1103/PhysRev.91.780
– volume: 50
  start-page: 689
  year: 1971
  ident: 10.1016/0735-1933(95)00072-0_BIB2
  publication-title: J Fluid Mech.
  doi: 10.1017/S0022112071002842
– volume: 243
  start-page: 1
  year: 1992
  ident: 10.1016/0735-1933(95)00072-0_BIB5
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209200260X
– year: 1965
  ident: 10.1016/0735-1933(95)00072-0_BIB7
SSID ssj0001818
Score 1.5312353
Snippet The stability of plane Poiseuille flow is studied for liquids exhibiting exponential viscosity-temperature dependence. In contrast to previously published...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 837
SubjectTerms Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Instability of shear flows
Physics
Viscous instability
Title The role of variable viscosity in the stability of channel flow
URI https://dx.doi.org/10.1016/0735-1933(95)00072-0
Volume 22
WOSCitedRecordID wos0735193395000720&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9UwFA56p6AM0ak45yQPCorE5TZJmzzJRSbqw9jDhPtWmqSBi3ftZb277ud7kqZZp-jcgy-lTduk5HzNOUm-cw5Crxx3rKirnPhYUoTXVBFZO02U4ZTrStPM6pBsojg6kvO5Oo5c1S6kEyiaRl5cqNV_FTWUgbC96-wNxJ0qhQI4B6HDEcQOx38W_MAZ3MBMOPhGbRadaQP9IvIawSgMtNiwwe69f5t6-c4t2x9ja_XqcqEZ-5IEGq0fyMPuwymY4D7bBNjAl2zfY-_qC1oy8AVm7xP1Z1F9b1ft-bIn-MUbNnriidHIVDBBwPJj42E0y0ZwGY-Jso_qMqjXPsDmbyN3v4iQagbzWonXmU9pWmSEXmqrYYf-FyWWqIUDa83XVPqaSiXKUEtJb6OtrBCKTtDW7Mvh_GtS2WDmBJU9tD74WE7zg1T2Rom38Wv-ZMNsr6oO_izXp0QZ2SknD9GDOMHAsx4Yj9CtutlB90dhJ3fQ3UD7Nd1j9AHAgj1YcOvwABacwIIXDQaw4AQW_1gEC_ZgeYK-fTo8-fiZxJQaxLBcrUk1FSa3nDHFnFBcG201hWvhqJWZtdLR2tSFEhb6CU5gNgM3REUryQyVlj1Fk6Zt6mcITwX81EJVSmSWK-2U1ZLzimkpcy203UVs6KTSxHjzPu3JsvybiHYRSW-t-ngr1zxfDP1fRpuxtwVLANY1b-5fEVdqLoMpNhf0-Q2_ZA_d68Md-OW5F2iyPjuv99Eds1kvurOXEXE_AcY6kmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+variable+viscosity+in+the+stability+of+channel+flow&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Pinarbasi%2C+A.&rft.au=Liakopoulos%2C+A.&rft.date=1995&rft.issn=0735-1933&rft.volume=22&rft.issue=6&rft.spage=837&rft.epage=847&rft_id=info:doi/10.1016%2F0735-1933%2895%2900072-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0735_1933_95_00072_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon