Energy Optimization of Large-Scale AGV Systems
We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 18; číslo 2; s. 638 - 649 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5955, 1558-3783, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of AGVs are their cruise velocities and traveled distances. We also demonstrate that optimizing the productivity-related performance criteria also reduces energy consumption through less traveled distance. It also allows for the reduction of the cruise velocity, which leads to more energy savings. Our experiments demonstrate that the optimization method outperforms the existing traffic controller with respect to the performance criteria and reduces energy consumption. The proposed method can reduce the energy consumption by around 38%, while the values of makespan, lateness, and tardiness remain better than those obtained from the existing traffic controller. An important advantage of this article is that the evaluations are based on collected data from a real large-scale manufacturing plant. Note to Practitioners -It is commonly believed that reduction of speed, for example, due to safety reasons in critical areas, in automated guided vehicle (AGV) systems leads to lower system efficiency. However, it has been shown that speed management is an effective strategy to reduce the energy consumption of mobile robots and robot stations. If one seeks to utilize the existing slacks in the schedule of the AGVs, it should be possible to reduce energy consumption without affecting system efficiency. It can, furthermore, be combined with better scheduling to even improve performance measures, such as makespan, while reducing energy. In this article, we propose an optimization method that seeks to minimize the number of performance measures, such as makespan, maximum lateness, and sum of tardiness for a real AGV system designed by AGVE, which operates at Volvo Cars, Gothenburg, Sweden. We also show that the optimization method allows for reduction of cruise speed, while the mentioned performance measures are still better than the one obtained from the original traffic controller. We will also show the importance of taking into account the temperature of the drive system of the AGVs when performing energy measurements. |
|---|---|
| AbstractList | We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of AGVs are their cruise velocities and traveled distances. We also demonstrate that optimizing the productivity-related performance criteria also reduces energy consumption through less traveled distance. It also allows for the reduction of the cruise velocity, which leads to more energy savings. Our experiments demonstrate that the optimization method outperforms the existing traffic controller with respect to the performance criteria and reduces energy consumption. The proposed method can reduce the energy consumption by around 38%, while the values of makespan, lateness, and tardiness remain better than those obtained from the existing traffic controller. An important advantage of this article is that the evaluations are based on collected data from a real large-scale manufacturing plant. Note to Practitioners -It is commonly believed that reduction of speed, for example, due to safety reasons in critical areas, in automated guided vehicle (AGV) systems leads to lower system efficiency. However, it has been shown that speed management is an effective strategy to reduce the energy consumption of mobile robots and robot stations. If one seeks to utilize the existing slacks in the schedule of the AGVs, it should be possible to reduce energy consumption without affecting system efficiency. It can, furthermore, be combined with better scheduling to even improve performance measures, such as makespan, while reducing energy. In this article, we propose an optimization method that seeks to minimize the number of performance measures, such as makespan, maximum lateness, and sum of tardiness for a real AGV system designed by AGVE, which operates at Volvo Cars, Gothenburg, Sweden. We also show that the optimization method allows for reduction of cruise speed, while the mentioned performance measures are still better than the one obtained from the original traffic controller. We will also show the importance of taking into account the temperature of the drive system of the AGVs when performing energy measurements. We propose an efficient optimization method, which addresses several performance criteria such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of AGVs are their cruise velocities and traveled distances. We also demonstrate that optimizing the productivity-related performance criteria also reduces energy consumption through less traveled distance. It also allows for the reduction of the cruise velocity that leads to more energy savings. Our experiments demonstrate that the optimization method outperforms the existing traffic controller with respect to the performance criteria and reduces energy consumption. The proposed method can reduce the energy consumption by around 38%, while the values of makespan, lateness, and tardiness remain better than those obtained from the existing traffic controller. An important advantage of this paper is that the evaluations are based on collected data from a real large-scale manufacturing plant. |
| Author | Bengtsson, Kristofer Lennartson, Bengt Riazi, Sarmad |
| Author_xml | – sequence: 1 givenname: Sarmad orcidid: 0000-0002-8450-311X surname: Riazi fullname: Riazi, Sarmad email: sarmad.riazi@chalmers.se organization: Department of Signals and Systems, Automation Research Group, Chalmers University of Technology, Gothenburg, Sweden – sequence: 2 givenname: Kristofer orcidid: 0000-0002-5290-682X surname: Bengtsson fullname: Bengtsson, Kristofer organization: Department of Signals and Systems, Automation Research Group, Chalmers University of Technology, Gothenburg, Sweden – sequence: 3 givenname: Bengt orcidid: 0000-0002-3406-3881 surname: Lennartson fullname: Lennartson, Bengt organization: Department of Signals and Systems, Automation Research Group, Chalmers University of Technology, Gothenburg, Sweden |
| BackLink | https://research.chalmers.se/publication/516147$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kE1r20AQhpeQQuwkPyDkIuhZ7n5_HI1x04LBB6e9DqPVKFGwJXdXpji_vnKc5tBDTzOH93mZeabssus7YuxO8JkQPHx5nG-WM8lFmMlglfTmgk2EMb5UzqvL065NaYIxV2ya8wvnUvvAJ2y27Cg9HYv1fmh37SsObd8VfVOsMD1RuYm4pWL-8LPYHPNAu3zDPjW4zXT7Pq_Zj6_Lx8W3crV--L6Yr8qobBjK4NDVvpGyDqLWwlphA41ncUvoDDVa61g1qKREXdU-OFcT6dBYi5q8QHXNNufe_Jv2hwr2qd1hOkKPLSTKhCk-Q3zG7Y5ShkzgGo1YGQkqqgBaOQ5VVBq0V95jNNxIGls_n1v3qf91oDzAS39I3fgISCO4FkF4N6bcORVTn3OiBmI7vIkZErZbEBxOyuGkHE7K4V35SIp_yL93_4-5PzMtEX3kfbA2KKf-AHqRjGw |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1038_s41598_024_82870_1 crossref_primary_10_1007_s00170_024_14338_5 crossref_primary_10_1109_TSMC_2022_3203699 crossref_primary_10_1016_j_aei_2022_101604 crossref_primary_10_1016_j_eswa_2023_119512 crossref_primary_10_1109_ACCESS_2022_3216601 crossref_primary_10_1016_j_cie_2024_110192 crossref_primary_10_1109_TVT_2025_3546650 crossref_primary_10_1109_TITS_2023_3234010 crossref_primary_10_3390_app13052919 crossref_primary_10_1109_TASE_2020_3012879 crossref_primary_10_1016_j_asoc_2024_111846 crossref_primary_10_1016_j_swevo_2024_101655 crossref_primary_10_1016_j_swevo_2023_101413 crossref_primary_10_1016_j_swevo_2025_102127 crossref_primary_10_1109_TPEL_2023_3335945 crossref_primary_10_1007_s10696_022_09467_6 crossref_primary_10_1016_j_jclepro_2023_136472 crossref_primary_10_1109_TASE_2024_3419848 crossref_primary_10_1016_j_apacoust_2025_110618 crossref_primary_10_1109_TASE_2022_3169949 crossref_primary_10_1016_j_jmsy_2025_04_015 crossref_primary_10_1016_j_aei_2024_102804 crossref_primary_10_1016_j_asoc_2025_113141 crossref_primary_10_1049_csy2_70012 crossref_primary_10_26599_TST_2023_9010087 crossref_primary_10_1109_TITS_2023_3254147 crossref_primary_10_1016_j_jclepro_2025_146016 crossref_primary_10_1109_TASE_2021_3114090 crossref_primary_10_1007_s11356_024_32824_x crossref_primary_10_1016_j_scitotenv_2022_159613 crossref_primary_10_1007_s00170_020_05796_8 crossref_primary_10_1080_00207543_2023_2175172 crossref_primary_10_1016_j_heliyon_2023_e15950 crossref_primary_10_3390_su16114705 |
| Cites_doi | 10.1109/JAS.2019.1911540 10.1109/TIV.2017.2771233 10.1109/CoASE.2015.7294282 10.1109/TASE.2016.2641743 10.1287/opre.1060.0371 10.1109/TRO.2006.875494 10.1016/j.ejor.2015.07.017 10.1016/j.conengprac.2017.10.001 10.1016/j.cor.2005.07.004 10.1007/978-3-319-10380-8_48 10.1109/COASE.2019.8842849 10.1109/TEVC.2018.2885075 10.1016/j.procir.2015.02.200 10.1007/978-1-4419-0910-7 10.1023/B:FLEX.0000036032.41757.3d 10.1109/TEVC.2018.2868770 10.1287/opre.41.6.1077 10.1109/ICCP.2013.6646109 10.1109/TASE.2018.2852722 10.1017/9781316661239 10.1109/ROBIO.2015.7419049 10.1109/COASE.2019.8843152 10.1007/s10846-013-0003-8 10.1016/j.tre.2011.08.001 10.1109/JAS.2017.7510805 10.1109/TMECH.2013.2241777 10.1007/BF01386390 10.1007/s10601-018-9281-x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTPV AOWAS F1S |
| DOI | 10.1109/TASE.2019.2963285 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 649 |
| ExternalDocumentID | oai_research_chalmers_se_7f4aab52_3c39_4370_bc34_48388ac5052e 10_1109_TASE_2019_2963285 8966937 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: PROSAM – fundername: European Community’s Seventh Framework Program (FP7/2007-2013) grantid: 609391 – fundername: Västra Götalandsregionen, Sweden grantid: RUN 612-0974-13 funderid: 10.13039/100007212 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTPV AOWAS F1S |
| ID | FETCH-LOGICAL-c369t-97a7d8f22d91d4166169e63206ea75ef444cbfa322a4bd8977dee49f66a4e81a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638401500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 1558-3783 |
| IngestDate | Wed Nov 05 04:23:51 EST 2025 Sun Nov 30 04:55:13 EST 2025 Tue Nov 18 22:08:13 EST 2025 Sat Nov 29 04:12:46 EST 2025 Wed Aug 27 02:26:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-97a7d8f22d91d4166169e63206ea75ef444cbfa322a4bd8977dee49f66a4e81a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8450-311X 0000-0002-3406-3881 0000-0002-5290-682X |
| PQID | 2510419187 |
| PQPubID | 27623 |
| PageCount | 12 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_7f4aab52_3c39_4370_bc34_48388ac5052e proquest_journals_2510419187 ieee_primary_8966937 crossref_citationtrail_10_1109_TASE_2019_2963285 crossref_primary_10_1109_TASE_2019_2963285 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref30 ref11 ref10 ref2 ref17 mei (ref14) 2006; 22 ref16 ref19 ref18 lynch (ref27) 2017 ref23 ref26 ref25 ref20 ref22 ref21 schulze (ref1) 2008 ref28 hooker (ref24) 2006 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref30 doi: 10.1109/JAS.2019.1911540 – ident: ref15 doi: 10.1109/TIV.2017.2771233 – ident: ref2 doi: 10.1109/CoASE.2015.7294282 – ident: ref19 doi: 10.1109/TASE.2016.2641743 – ident: ref23 doi: 10.1287/opre.1060.0371 – volume: 22 start-page: 507 year: 2006 ident: ref14 article-title: Deployment of mobile robots with energy and timing constraints publication-title: IEEE Trans Robot doi: 10.1109/TRO.2006.875494 – year: 2006 ident: ref24 publication-title: Integrated Methods for Optimization – ident: ref5 doi: 10.1016/j.ejor.2015.07.017 – ident: ref12 doi: 10.1016/j.conengprac.2017.10.001 – start-page: 1275 year: 2008 ident: ref1 article-title: Automated guided vehicle systems: A driver for increased business performance publication-title: Proc Int Multiconf Eng Comput Scientists (IMECS) – ident: ref11 doi: 10.1016/j.cor.2005.07.004 – ident: ref7 doi: 10.1007/978-3-319-10380-8_48 – ident: ref18 doi: 10.1109/COASE.2019.8842849 – ident: ref29 doi: 10.1109/TEVC.2018.2885075 – ident: ref3 doi: 10.1016/j.procir.2015.02.200 – ident: ref26 doi: 10.1007/978-1-4419-0910-7 – ident: ref10 doi: 10.1023/B:FLEX.0000036032.41757.3d – ident: ref28 doi: 10.1109/TEVC.2018.2868770 – ident: ref9 doi: 10.1287/opre.41.6.1077 – ident: ref21 doi: 10.1109/ICCP.2013.6646109 – ident: ref6 doi: 10.1109/TASE.2018.2852722 – year: 2017 ident: ref27 publication-title: Modern Robotics Mechanics Planning and Control doi: 10.1017/9781316661239 – ident: ref17 doi: 10.1109/ROBIO.2015.7419049 – ident: ref20 doi: 10.1109/COASE.2019.8843152 – ident: ref8 doi: 10.1007/s10846-013-0003-8 – ident: ref16 doi: 10.1016/j.tre.2011.08.001 – ident: ref4 doi: 10.1109/JAS.2017.7510805 – ident: ref13 doi: 10.1109/TMECH.2013.2241777 – ident: ref22 doi: 10.1007/BF01386390 – ident: ref25 doi: 10.1007/s10601-018-9281-x |
| SSID | ssj0024890 |
| Score | 2.4716365 |
| Snippet | We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an... We propose an efficient optimization method, which addresses several performance criteria such as makespan, maximum lateness, and the sum of tardiness for an... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 638 |
| SubjectTerms | AGV Automated guided vehicle (AGV) Automated guided vehicles Automation Autonomous vehicles Constraint handling constraint programming constraint programming (CP) Controllers Criteria Energy consumption energy optimization Lateness Mobile robots Optimization Optimization methods Performance enhancement Robots Schedules Traffic control Vehicle safety |
| Title | Energy Optimization of Large-Scale AGV Systems |
| URI | https://ieeexplore.ieee.org/document/8966937 https://www.proquest.com/docview/2510419187 https://research.chalmers.se/publication/516147 |
| Volume | 18 |
| WOSCitedRecordID | wos000638401500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB6S0EN6yMspdV7soafQtder2ZV0NMVODiEt5IFvQivNkkJil9jJ789IVlwXSqGXZUESaGek1Sdp5vsAvrRUslct5lbyA6tG8ZwTPveycdpVgjGCjWIT8vpaTSb6xwZ8XeXCEFEMPqNeeI13-X7mXsJRWV8xNufldBM2pZTLXK3fvHoqnqcERJBXuqrSDeag0P3b4c0oBHHpXsnDrQyyyWtrUBRV-RNfrnOGxnVmvPt_PdyDnYQns-FyAOzDBk0P4OMay2AHeqOY35d957_DU0q7zGZtdhWCwPMbdhJlw4v7LJGXH8LdeHT77TJPMgm5E7Ve5Fpa6VVbll4PPOOrelBr4u8sarKyohYRXdNanrkWG68Y8Hki1G1dWyQ1sOITbE1nU_oMGdXeCsUF2nqsELWvZYPOBxjC3i67ULwbzrjEIR6kLB5N3EsU2gRbm2Brk2zdhfNVk19LAo1_Ve4Em64qJnN24eTdOyZNsblhYFYg7zYVF18tPbZqFzizE1nSg3EPUYlmbuZkZIvWNlVphBPaoJCFaZxAg0ooZV1Q9aOjv3fiGLbLEM8So3ZOYGvx_EKn8MG9Ln7On8_iYHwDSBbagg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ88GsgCgPywBMiXWJfYvuxmjqGKAVpBe3NcuyLhrS1aO34-zm7XukkhMRLFMm25Hxnx5_tu-8A3vYk2KoOS6f4gU2nec7JUAbVeeMbyRzBpWQTajrVp6fm6w6838TCEFFyPqNhfE13-WHhr-JR2YFmbs7L6S243SCKeh2t9UdZT6cTlcgJysY0Tb7DrCtzMBudjKMblxkKHnAiJk7eWoVSWpWbDHNbNTStNEcP_6-Pj-BBZpTFaD0EHsMOzZ_A_S2dwT0YjlOEX_GF_w8XOfCyWPTFJLqBlydsJipGH74XWb78KXw7Gs8Oj8ucKKH0sjWr0iingu6FCKYOzLDaujXE31m15FRDPSL6rnc8dx12QTPlC0Ro-rZ1SLp28hnszhdzeg4FtcFJzQXGBWSUTWhVhz5EIsL2FgOoroGzPquIx2QW5zbtJipjI9Y2Ym0z1gN4t2nycy2h8a_KexHTTcUM5wD2r61j8yRbWqZmFfJ-U3PxZG2xTbuomp3lks6sP0u5aJZ2SVb16FzXCCu9NBalqmznJVrUUmvnY14_evH3TryBu8ezzxM7-Tj99BLuiejdknx49mF3dXlFr-CO_7X6sbx8nQbmb86c3ck |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Optimization+of+Large-Scale+AGV+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Riazi%2C+Sarmad&rft.au=Bengtsson%2C+Kristofer&rft.au=Lennartson%2C+Bengt&rft.date=2021-04-01&rft.issn=1545-5955&rft.volume=18&rft.issue=2&rft.spage=638&rft_id=info:doi/10.1109%2FTASE.2019.2963285&rft.externalDocID=oai_research_chalmers_se_7f4aab52_3c39_4370_bc34_48388ac5052e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |