Energy Optimization of Large-Scale AGV Systems

We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 18; no. 2; pp. 638 - 649
Main Authors: Riazi, Sarmad, Bengtsson, Kristofer, Lennartson, Bengt
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5955, 1558-3783, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of AGVs are their cruise velocities and traveled distances. We also demonstrate that optimizing the productivity-related performance criteria also reduces energy consumption through less traveled distance. It also allows for the reduction of the cruise velocity, which leads to more energy savings. Our experiments demonstrate that the optimization method outperforms the existing traffic controller with respect to the performance criteria and reduces energy consumption. The proposed method can reduce the energy consumption by around 38%, while the values of makespan, lateness, and tardiness remain better than those obtained from the existing traffic controller. An important advantage of this article is that the evaluations are based on collected data from a real large-scale manufacturing plant. Note to Practitioners -It is commonly believed that reduction of speed, for example, due to safety reasons in critical areas, in automated guided vehicle (AGV) systems leads to lower system efficiency. However, it has been shown that speed management is an effective strategy to reduce the energy consumption of mobile robots and robot stations. If one seeks to utilize the existing slacks in the schedule of the AGVs, it should be possible to reduce energy consumption without affecting system efficiency. It can, furthermore, be combined with better scheduling to even improve performance measures, such as makespan, while reducing energy. In this article, we propose an optimization method that seeks to minimize the number of performance measures, such as makespan, maximum lateness, and sum of tardiness for a real AGV system designed by AGVE, which operates at Volvo Cars, Gothenburg, Sweden. We also show that the optimization method allows for reduction of cruise speed, while the mentioned performance measures are still better than the one obtained from the original traffic controller. We will also show the importance of taking into account the temperature of the drive system of the AGVs when performing energy measurements.
AbstractList We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of AGVs are their cruise velocities and traveled distances. We also demonstrate that optimizing the productivity-related performance criteria also reduces energy consumption through less traveled distance. It also allows for the reduction of the cruise velocity, which leads to more energy savings. Our experiments demonstrate that the optimization method outperforms the existing traffic controller with respect to the performance criteria and reduces energy consumption. The proposed method can reduce the energy consumption by around 38%, while the values of makespan, lateness, and tardiness remain better than those obtained from the existing traffic controller. An important advantage of this article is that the evaluations are based on collected data from a real large-scale manufacturing plant. Note to Practitioners -It is commonly believed that reduction of speed, for example, due to safety reasons in critical areas, in automated guided vehicle (AGV) systems leads to lower system efficiency. However, it has been shown that speed management is an effective strategy to reduce the energy consumption of mobile robots and robot stations. If one seeks to utilize the existing slacks in the schedule of the AGVs, it should be possible to reduce energy consumption without affecting system efficiency. It can, furthermore, be combined with better scheduling to even improve performance measures, such as makespan, while reducing energy. In this article, we propose an optimization method that seeks to minimize the number of performance measures, such as makespan, maximum lateness, and sum of tardiness for a real AGV system designed by AGVE, which operates at Volvo Cars, Gothenburg, Sweden. We also show that the optimization method allows for reduction of cruise speed, while the mentioned performance measures are still better than the one obtained from the original traffic controller. We will also show the importance of taking into account the temperature of the drive system of the AGVs when performing energy measurements.
We propose an efficient optimization method, which addresses several performance criteria such as makespan, maximum lateness, and the sum of tardiness for an automated guided vehicle (AGV) system, together with its energy consumption. We show that the most important factors in energy consumption of AGVs are their cruise velocities and traveled distances. We also demonstrate that optimizing the productivity-related performance criteria also reduces energy consumption through less traveled distance. It also allows for the reduction of the cruise velocity that leads to more energy savings. Our experiments demonstrate that the optimization method outperforms the existing traffic controller with respect to the performance criteria and reduces energy consumption. The proposed method can reduce the energy consumption by around 38%, while the values of makespan, lateness, and tardiness remain better than those obtained from the existing traffic controller. An important advantage of this paper is that the evaluations are based on collected data from a real large-scale manufacturing plant.
Author Bengtsson, Kristofer
Lennartson, Bengt
Riazi, Sarmad
Author_xml – sequence: 1
  givenname: Sarmad
  orcidid: 0000-0002-8450-311X
  surname: Riazi
  fullname: Riazi, Sarmad
  email: sarmad.riazi@chalmers.se
  organization: Department of Signals and Systems, Automation Research Group, Chalmers University of Technology, Gothenburg, Sweden
– sequence: 2
  givenname: Kristofer
  orcidid: 0000-0002-5290-682X
  surname: Bengtsson
  fullname: Bengtsson, Kristofer
  organization: Department of Signals and Systems, Automation Research Group, Chalmers University of Technology, Gothenburg, Sweden
– sequence: 3
  givenname: Bengt
  orcidid: 0000-0002-3406-3881
  surname: Lennartson
  fullname: Lennartson, Bengt
  organization: Department of Signals and Systems, Automation Research Group, Chalmers University of Technology, Gothenburg, Sweden
BackLink https://research.chalmers.se/publication/516147$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kE1r20AQhpeQQuwkPyDkIuhZ7n5_HI1x04LBB6e9DqPVKFGwJXdXpji_vnKc5tBDTzOH93mZeabssus7YuxO8JkQPHx5nG-WM8lFmMlglfTmgk2EMb5UzqvL065NaYIxV2ya8wvnUvvAJ2y27Cg9HYv1fmh37SsObd8VfVOsMD1RuYm4pWL-8LPYHPNAu3zDPjW4zXT7Pq_Zj6_Lx8W3crV--L6Yr8qobBjK4NDVvpGyDqLWwlphA41ncUvoDDVa61g1qKREXdU-OFcT6dBYi5q8QHXNNufe_Jv2hwr2qd1hOkKPLSTKhCk-Q3zG7Y5ShkzgGo1YGQkqqgBaOQ5VVBq0V95jNNxIGls_n1v3qf91oDzAS39I3fgISCO4FkF4N6bcORVTn3OiBmI7vIkZErZbEBxOyuGkHE7K4V35SIp_yL93_4-5PzMtEX3kfbA2KKf-AHqRjGw
CODEN ITASC7
CitedBy_id crossref_primary_10_1038_s41598_024_82870_1
crossref_primary_10_1007_s00170_024_14338_5
crossref_primary_10_1109_TSMC_2022_3203699
crossref_primary_10_1016_j_aei_2022_101604
crossref_primary_10_1016_j_eswa_2023_119512
crossref_primary_10_1109_ACCESS_2022_3216601
crossref_primary_10_1016_j_cie_2024_110192
crossref_primary_10_1109_TVT_2025_3546650
crossref_primary_10_1109_TITS_2023_3234010
crossref_primary_10_3390_app13052919
crossref_primary_10_1109_TASE_2020_3012879
crossref_primary_10_1016_j_asoc_2024_111846
crossref_primary_10_1016_j_swevo_2024_101655
crossref_primary_10_1016_j_swevo_2023_101413
crossref_primary_10_1016_j_swevo_2025_102127
crossref_primary_10_1109_TPEL_2023_3335945
crossref_primary_10_1007_s10696_022_09467_6
crossref_primary_10_1016_j_jclepro_2023_136472
crossref_primary_10_1109_TASE_2024_3419848
crossref_primary_10_1016_j_apacoust_2025_110618
crossref_primary_10_1109_TASE_2022_3169949
crossref_primary_10_1016_j_jmsy_2025_04_015
crossref_primary_10_1016_j_aei_2024_102804
crossref_primary_10_1016_j_asoc_2025_113141
crossref_primary_10_1049_csy2_70012
crossref_primary_10_26599_TST_2023_9010087
crossref_primary_10_1109_TITS_2023_3254147
crossref_primary_10_1016_j_jclepro_2025_146016
crossref_primary_10_1109_TASE_2021_3114090
crossref_primary_10_1007_s11356_024_32824_x
crossref_primary_10_1016_j_scitotenv_2022_159613
crossref_primary_10_1007_s00170_020_05796_8
crossref_primary_10_1080_00207543_2023_2175172
crossref_primary_10_1016_j_heliyon_2023_e15950
crossref_primary_10_3390_su16114705
Cites_doi 10.1109/JAS.2019.1911540
10.1109/TIV.2017.2771233
10.1109/CoASE.2015.7294282
10.1109/TASE.2016.2641743
10.1287/opre.1060.0371
10.1109/TRO.2006.875494
10.1016/j.ejor.2015.07.017
10.1016/j.conengprac.2017.10.001
10.1016/j.cor.2005.07.004
10.1007/978-3-319-10380-8_48
10.1109/COASE.2019.8842849
10.1109/TEVC.2018.2885075
10.1016/j.procir.2015.02.200
10.1007/978-1-4419-0910-7
10.1023/B:FLEX.0000036032.41757.3d
10.1109/TEVC.2018.2868770
10.1287/opre.41.6.1077
10.1109/ICCP.2013.6646109
10.1109/TASE.2018.2852722
10.1017/9781316661239
10.1109/ROBIO.2015.7419049
10.1109/COASE.2019.8843152
10.1007/s10846-013-0003-8
10.1016/j.tre.2011.08.001
10.1109/JAS.2017.7510805
10.1109/TMECH.2013.2241777
10.1007/BF01386390
10.1007/s10601-018-9281-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
F1S
DOI 10.1109/TASE.2019.2963285
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 649
ExternalDocumentID oai_research_chalmers_se_7f4aab52_3c39_4370_bc34_48388ac5052e
10_1109_TASE_2019_2963285
8966937
Genre orig-research
GrantInformation_xml – fundername: PROSAM
– fundername: European Community’s Seventh Framework Program (FP7/2007-2013)
  grantid: 609391
– fundername: Västra Götalandsregionen, Sweden
  grantid: RUN 612-0974-13
  funderid: 10.13039/100007212
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c369t-97a7d8f22d91d4166169e63206ea75ef444cbfa322a4bd8977dee49f66a4e81a3
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638401500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
1558-3783
IngestDate Wed Nov 05 04:23:51 EST 2025
Sun Nov 30 04:55:13 EST 2025
Tue Nov 18 22:08:13 EST 2025
Sat Nov 29 04:12:46 EST 2025
Wed Aug 27 02:26:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-97a7d8f22d91d4166169e63206ea75ef444cbfa322a4bd8977dee49f66a4e81a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8450-311X
0000-0002-3406-3881
0000-0002-5290-682X
PQID 2510419187
PQPubID 27623
PageCount 12
ParticipantIDs swepub_primary_oai_research_chalmers_se_7f4aab52_3c39_4370_bc34_48388ac5052e
proquest_journals_2510419187
ieee_primary_8966937
crossref_citationtrail_10_1109_TASE_2019_2963285
crossref_primary_10_1109_TASE_2019_2963285
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref30
ref11
ref10
ref2
ref17
mei (ref14) 2006; 22
ref16
ref19
ref18
lynch (ref27) 2017
ref23
ref26
ref25
ref20
ref22
ref21
schulze (ref1) 2008
ref28
hooker (ref24) 2006
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/JAS.2019.1911540
– ident: ref15
  doi: 10.1109/TIV.2017.2771233
– ident: ref2
  doi: 10.1109/CoASE.2015.7294282
– ident: ref19
  doi: 10.1109/TASE.2016.2641743
– ident: ref23
  doi: 10.1287/opre.1060.0371
– volume: 22
  start-page: 507
  year: 2006
  ident: ref14
  article-title: Deployment of mobile robots with energy and timing constraints
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2006.875494
– year: 2006
  ident: ref24
  publication-title: Integrated Methods for Optimization
– ident: ref5
  doi: 10.1016/j.ejor.2015.07.017
– ident: ref12
  doi: 10.1016/j.conengprac.2017.10.001
– start-page: 1275
  year: 2008
  ident: ref1
  article-title: Automated guided vehicle systems: A driver for increased business performance
  publication-title: Proc Int Multiconf Eng Comput Scientists (IMECS)
– ident: ref11
  doi: 10.1016/j.cor.2005.07.004
– ident: ref7
  doi: 10.1007/978-3-319-10380-8_48
– ident: ref18
  doi: 10.1109/COASE.2019.8842849
– ident: ref29
  doi: 10.1109/TEVC.2018.2885075
– ident: ref3
  doi: 10.1016/j.procir.2015.02.200
– ident: ref26
  doi: 10.1007/978-1-4419-0910-7
– ident: ref10
  doi: 10.1023/B:FLEX.0000036032.41757.3d
– ident: ref28
  doi: 10.1109/TEVC.2018.2868770
– ident: ref9
  doi: 10.1287/opre.41.6.1077
– ident: ref21
  doi: 10.1109/ICCP.2013.6646109
– ident: ref6
  doi: 10.1109/TASE.2018.2852722
– year: 2017
  ident: ref27
  publication-title: Modern Robotics Mechanics Planning and Control
  doi: 10.1017/9781316661239
– ident: ref17
  doi: 10.1109/ROBIO.2015.7419049
– ident: ref20
  doi: 10.1109/COASE.2019.8843152
– ident: ref8
  doi: 10.1007/s10846-013-0003-8
– ident: ref16
  doi: 10.1016/j.tre.2011.08.001
– ident: ref4
  doi: 10.1109/JAS.2017.7510805
– ident: ref13
  doi: 10.1109/TMECH.2013.2241777
– ident: ref22
  doi: 10.1007/BF01386390
– ident: ref25
  doi: 10.1007/s10601-018-9281-x
SSID ssj0024890
Score 2.4716365
Snippet We propose an efficient optimization method, which addresses several performance criteria, such as makespan, maximum lateness, and the sum of tardiness for an...
We propose an efficient optimization method, which addresses several performance criteria such as makespan, maximum lateness, and the sum of tardiness for an...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 638
SubjectTerms AGV
Automated guided vehicle (AGV)
Automated guided vehicles
Automation
Autonomous vehicles
Constraint handling
constraint programming
constraint programming (CP)
Controllers
Criteria
Energy consumption
energy optimization
Lateness
Mobile robots
Optimization
Optimization methods
Performance enhancement
Robots
Schedules
Traffic control
Vehicle safety
Title Energy Optimization of Large-Scale AGV Systems
URI https://ieeexplore.ieee.org/document/8966937
https://www.proquest.com/docview/2510419187
https://research.chalmers.se/publication/516147
Volume 18
WOSCitedRecordID wos000638401500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60eNCDb7G-2IMncevuJrtJjkWqHkQFH3gL2cksCtqKrf5-kzStFUTwFtgEsjN5fElmvg_gUJbGojA8ReslzEjZ1LhiqqwkVCiz0tZBbEJcXcnHR3UzB8fTXBgiCsFn1PHF8JZvB_jhr8pOpMPmbjudh3khxDhX65tXT4b7FI8I0lKVZXzBzDN1cte97fkgLtUp3HArvGzyzB4URFV-4stZztCwz5yt_K-Hq7Ac8WTSHQ-ANZij_joszbAMbkCnF_L7kmu3OrzGtMtk0CSXPgg8vXVOoqR7_pBE8vJNuD_r3Z1epFEmIUVWqVGqhBFWNkVhVW4dvqrySpH7z6wiI0pqOOdYN8bNXMNrKx3gs0RcNVVlOMncsC1o9Qd92oaEWYNNzdwqxjwvHppcCjIKnc-wQeJtyCaG0xg5xL2UxYsOZ4lMaW9r7W2to63bcDRt8jYm0Pir8oa36bRiNGcb9ibe0XGKDbUDZhl3p03pPl-OPTZt5zmzI1nSk8anoEQz1EPSouHG1GWhGTKlOROZrpFxzSWT0qBX9aOd3zuxC4uFj2cJUTt70Bq9f9A-LODn6Hn4fhAG4xdrXdvL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6FgEQ58GioGgh0D5wQm-6uvbv2MaoSghoCUgLKzfKOZxWkNqny4PdjO05IJVSJm6W1Je-MH5_tme8D-CBybbDUPEbjJMxImljbYiyNIJQoktxUXmyiHI_FbCa_N-DTIReGiHzwGXVd0b_lmyVu3VXZpbDY3G6nj-BxznmW7rK1_jLrCX-j4jBBnMs8D2-YaSIvp71J34VxyW5mB1zmhJOPdiEvq3IfYR6zhvqdZvDi__r4Ep4HRBn1dkPgFTRocQrPjngGW9Dt-wy_6JtdH25D4mW0rKORCwOPJ9ZNFPU-_4wCfflr-DHoT6-GcRBKiJEVchPLUpdG1FlmZGoswirSQpL9z6QgXeZUc86xqrWdu5pXRljIZ4i4rItCcxKpZmfQXCwXdA4RMxrritl1jDlmPNSpKElLtF7DGom3IdkbTmFgEXdiFjfKnyYSqZytlbO1CrZuw8dDk7sdhcZDlVvOpoeKwZxt6Oy9o8IkWysLzRJuz5vCfh7tPHZo51izA13SXOHca9Gs1ZpUWXOtqzxTDJlUnJWJqpBxxQUTQqPT9aM3_-7EBTwdTr-O1OjL-PotnGQuusXH8HSguVlt6R08wd-bX-vVez8w_wADRt8S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Optimization+of+Large-Scale+AGV+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Riazi%2C+Sarmad&rft.au=Bengtsson%2C+Kristofer&rft.au=Lennartson%2C+Bengt&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=18&rft.issue=2&rft.spage=638&rft.epage=649&rft_id=info:doi/10.1109%2FTASE.2019.2963285&rft.externalDocID=8966937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon