Shape constrained additive models
A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent shape constrained model components by mildly non-linear extensions of P-splines. Models can contain multiple shape constrained and unconstra...
Uložené v:
| Vydané v: | Statistics and computing Ročník 25; číslo 3; s. 543 - 559 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2015
|
| Predmet: | |
| ISSN: | 0960-3174, 1573-1375, 1573-1375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent shape constrained model components by mildly non-linear extensions of P-splines. Models can contain multiple shape constrained and unconstrained terms as well as shape constrained multi-dimensional smooths. The constraints considered are on the sign of the first or/and the second derivatives of the smooth terms. A key advantage of the approach is that it facilitates efficient estimation of smoothing parameters as an integral part of model estimation, via GCV or AIC, and numerically robust algorithms for this are presented. We also derive simulation free approximate Bayesian confidence intervals for the smooth components, which are shown to achieve close to nominal coverage probabilities. Applications are presented using real data examples including the risk of disease in relation to proximity to municipal incinerators and the association between air pollution and health. |
|---|---|
| AbstractList | A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent shape constrained model components by mildly non-linear extensions of P-splines. Models can contain multiple shape constrained and unconstrained terms as well as shape constrained multi-dimensional smooths. The constraints considered are on the sign of the first or/and the second derivatives of the smooth terms. A key advantage of the approach is that it facilitates efficient estimation of smoothing parameters as an integral part of model estimation, via GCV or AIC, and numerically robust algorithms for this are presented. We also derive simulation free approximate Bayesian confidence intervals for the smooth components, which are shown to achieve close to nominal coverage probabilities. Applications are presented using real data examples including the risk of disease in relation to proximity to municipal incinerators and the association between air pollution and health. |
| Author | Wood, Simon N. Pya, Natalya |
| Author_xml | – sequence: 1 givenname: Natalya surname: Pya fullname: Pya, Natalya email: n.y.pya@bath.ac.uk organization: Mathematical Sciences, University of Bath – sequence: 2 givenname: Simon N. surname: Wood fullname: Wood, Simon N. organization: Mathematical Sciences, University of Bath |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-162090$$DView record from Swedish Publication Index (Umeå universitet) |
| BookMark | eNp9kMtOAjEUhhuDiYA-gDt8gGpPO9PSJUFFExIXXrYnnWkHS6Al7YzGt3cIuHHB5pzN_53LNyKDEIMj5BrYLTCm7jIA55wyEFQXxZSqMzKEUgkKQpUDMmRaMipAFRdklPOaMQApiiG5ef00OzepY8htMj44OzHW-tZ_uck2WrfJl-S8MZvsro59TN4fH97mT3T5sniez5a0FlK3VAvNTFXD1IoC6r5IxaUVlauVbERVWicVTAGgklVZWK2lkVZKDg1zQjQgxoQe5uZvt-sq3CW_NekHo_F47z9mGNMKu22HIDnTrM-rQ75OMefkGqx9a1ofw_6RDQLDvRk8mMHeDO7NoOpJ-Ef-7TrF8ON1fTasXMJ17FLohZyAfgHUQHZu |
| CitedBy_id | crossref_primary_10_1002_ieam_4148 crossref_primary_10_1016_j_dendro_2022_125940 crossref_primary_10_1007_s11749_020_00716_0 crossref_primary_10_1016_j_enconman_2023_117324 crossref_primary_10_1093_biostatistics_kxz068 crossref_primary_10_1016_j_jmaa_2025_129992 crossref_primary_10_1111_biom_13114 crossref_primary_10_1111_ecog_05610 crossref_primary_10_1002_alz_12214 crossref_primary_10_1016_j_ecosta_2017_06_001 crossref_primary_10_1016_j_fishres_2025_107324 crossref_primary_10_1002_qre_70031 crossref_primary_10_1016_j_fcr_2021_108314 crossref_primary_10_1111_nph_17869 crossref_primary_10_1111_nph_18959 crossref_primary_10_34133_plantphenomics_0053 crossref_primary_10_1111_mms_12944 crossref_primary_10_1111_ejss_13560 crossref_primary_10_1016_j_eswa_2024_124654 crossref_primary_10_12688_wellcomeopenres_16562_3 crossref_primary_10_1002_acn3_51515 crossref_primary_10_1016_j_scitotenv_2022_153322 crossref_primary_10_12688_wellcomeopenres_16562_1 crossref_primary_10_12688_wellcomeopenres_16562_2 crossref_primary_10_1007_s11336_021_09832_8 crossref_primary_10_1038_nmicrobiol_2016_126 crossref_primary_10_1038_s41467_019_09907_2 crossref_primary_10_1289_EHP5204 crossref_primary_10_1177_1471082X231176120 crossref_primary_10_1038_s41587_019_0071_9 crossref_primary_10_1186_s40663_016_0061_z crossref_primary_10_1016_S2352_4642_18_30025_7 crossref_primary_10_1111_2041_210X_12756 crossref_primary_10_1016_j_cell_2025_04_017 crossref_primary_10_1016_j_mcpro_2025_100999 crossref_primary_10_1080_10618600_2025_2507428 crossref_primary_10_1007_s13595_018_0735_5 crossref_primary_10_1093_molbev_msab073 crossref_primary_10_1093_biostatistics_kxac023 crossref_primary_10_3390_f9040174 crossref_primary_10_1016_j_scitotenv_2016_07_084 crossref_primary_10_1007_s11869_016_0398_z crossref_primary_10_1016_j_scitotenv_2023_169463 crossref_primary_10_1086_691779 crossref_primary_10_1029_2020WR027971 crossref_primary_10_1002_jeq2_20138 crossref_primary_10_1016_j_ress_2025_111115 crossref_primary_10_1177_1471082X221117612 crossref_primary_10_1038_s41893_020_00631_0 crossref_primary_10_1007_s11749_020_00711_5 crossref_primary_10_1007_s11749_020_00715_1 crossref_primary_10_1016_j_bja_2024_05_001 crossref_primary_10_1093_llc_fqad097 crossref_primary_10_1121_1_5023220 crossref_primary_10_1016_j_scitotenv_2019_134505 crossref_primary_10_1016_j_jhe_2024_102039 crossref_primary_10_3389_fpls_2021_698640 crossref_primary_10_1007_s00122_025_05008_5 crossref_primary_10_1371_journal_pgen_1010546 crossref_primary_10_1007_s00267_022_01599_7 crossref_primary_10_1016_j_fishres_2025_107461 crossref_primary_10_3389_fevo_2021_679673 crossref_primary_10_1017_S1748499521000105 crossref_primary_10_1111_ddi_13271 crossref_primary_10_1016_j_fishres_2022_106422 crossref_primary_10_1109_TCSS_2022_3149000 crossref_primary_10_1214_18_STS671 crossref_primary_10_1177_1471082X221114177 crossref_primary_10_1214_18_STS672 crossref_primary_10_1007_s00181_020_01932_1 crossref_primary_10_1002_bdr2_2046 crossref_primary_10_1080_00401706_2023_2224524 crossref_primary_10_1080_10618600_2020_1724544 crossref_primary_10_1093_biostatistics_kxy024 crossref_primary_10_1111_geb_70104 crossref_primary_10_1038_s41467_024_54572_9 crossref_primary_10_1007_s13595_018_0773_z crossref_primary_10_1029_2019MS001939 crossref_primary_10_1016_j_apenergy_2024_124537 crossref_primary_10_1038_s41598_021_95302_1 crossref_primary_10_1002_sim_9612 crossref_primary_10_1080_10618600_2020_1868303 crossref_primary_10_1093_evolut_qpaf138 crossref_primary_10_1016_j_dendro_2015_12_001 crossref_primary_10_1007_s11119_021_09785_z crossref_primary_10_1016_j_amc_2022_127679 crossref_primary_10_1016_j_csda_2021_107343 crossref_primary_10_1007_s10479_024_06007_3 crossref_primary_10_1016_j_gfs_2024_100774 crossref_primary_10_1371_journal_pcbi_1013293 crossref_primary_10_1016_j_tacc_2025_101564 crossref_primary_10_1038_s41467_024_53415_x crossref_primary_10_1093_genetics_iyab124 crossref_primary_10_3390_f12030274 crossref_primary_10_1038_s41598_022_05837_0 crossref_primary_10_1073_pnas_2413715122 crossref_primary_10_1214_18_STS665 crossref_primary_10_1016_j_neuroimage_2018_03_027 crossref_primary_10_1111_nph_16456 crossref_primary_10_1007_s10115_018_1201_2 crossref_primary_10_1111_sjos_12581 crossref_primary_10_1007_s11222_017_9799_6 crossref_primary_10_1111_bmsp_12195 crossref_primary_10_1007_s11222_014_9520_y crossref_primary_10_1021_acs_est_5c07241 crossref_primary_10_1016_j_ecosta_2020_05_005 crossref_primary_10_1016_j_csda_2019_03_011 crossref_primary_10_1111_geb_13070 crossref_primary_10_1177_0049124120986188 crossref_primary_10_1016_j_csda_2023_107796 crossref_primary_10_1371_journal_pgen_1006547 crossref_primary_10_1007_s11869_021_00985_0 crossref_primary_10_1016_j_csda_2022_107550 crossref_primary_10_1093_plphys_kiae203 crossref_primary_10_1016_j_ejor_2016_09_008 crossref_primary_10_3389_fevo_2018_00149 crossref_primary_10_3390_rs16224294 crossref_primary_10_1080_01621459_2019_1593178 crossref_primary_10_3390_w13182580 crossref_primary_10_1186_s13059_024_03290_y crossref_primary_10_1016_j_compag_2020_105880 crossref_primary_10_1016_j_biocon_2018_06_031 crossref_primary_10_1007_s13595_019_0846_7 crossref_primary_10_1016_j_ecolmodel_2019_108926 crossref_primary_10_1080_01621459_2023_2191820 crossref_primary_10_1016_j_insmatheco_2024_05_004 crossref_primary_10_1007_s10994_024_06641_9 crossref_primary_10_1038_s42003_025_07938_8 crossref_primary_10_3389_fmars_2022_849878 crossref_primary_10_1111_rssc_12566 crossref_primary_10_1002_jaa2_102 crossref_primary_10_1038_s41598_021_01700_w crossref_primary_10_1093_biomtc_ujae098 crossref_primary_10_1038_s41598_021_95323_w crossref_primary_10_1093_ornithapp_duab038 crossref_primary_10_2139_ssrn_4728674 crossref_primary_10_1007_s13595_018_0737_3 crossref_primary_10_1016_j_ecolmodel_2024_110632 crossref_primary_10_1111_2041_210X_14057 crossref_primary_10_1111_rssb_12137 crossref_primary_10_1109_JBHI_2024_3364499 crossref_primary_10_1016_j_dadm_2019_08_003 crossref_primary_10_1111_nph_17243 crossref_primary_10_1126_scitranslmed_aau6242 crossref_primary_10_1057_s41272_024_00478_6 crossref_primary_10_1007_s11634_020_00404_9 crossref_primary_10_1186_s12859_023_05289_x crossref_primary_10_1038_s41586_020_2126_y crossref_primary_10_1111_plb_13573 crossref_primary_10_1088_1748_9326_ac13f1 crossref_primary_10_1186_s40658_023_00591_2 crossref_primary_10_1109_TR_2024_3505077 crossref_primary_10_1080_00401706_2020_1731604 crossref_primary_10_1140_epjds_s13688_018_0144_x crossref_primary_10_1063_5_0065722 crossref_primary_10_1111_1365_2656_13687 crossref_primary_10_1007_s11869_024_01507_4 crossref_primary_10_1016_j_csda_2022_107614 crossref_primary_10_1080_1540496X_2018_1437542 crossref_primary_10_1249_MSS_0000000000001955 crossref_primary_10_1016_j_ygcen_2015_09_033 crossref_primary_10_1080_10485252_2021_2014834 crossref_primary_10_1111_fme_12629 crossref_primary_10_1371_journal_pone_0318820 crossref_primary_10_3389_frai_2022_1015604 crossref_primary_10_1016_j_cmi_2022_02_017 crossref_primary_10_1111_nph_16146 crossref_primary_10_1371_journal_pntd_0008273 crossref_primary_10_1093_biostatistics_kxae019 crossref_primary_10_1016_j_agrformet_2022_108970 crossref_primary_10_1111_biom_13528 crossref_primary_10_3390_f12010075 crossref_primary_10_1016_j_csda_2020_107092 crossref_primary_10_1214_15_AOS1425 crossref_primary_10_1093_treephys_tpae044 crossref_primary_10_1016_j_checat_2022_11_008 crossref_primary_10_3390_app15020818 crossref_primary_10_1016_j_media_2025_103537 crossref_primary_10_1002_eap_2280 crossref_primary_10_1002_sim_70064 crossref_primary_10_1002_sim_8680 crossref_primary_10_1093_icesjms_fsaf073 |
| Cites_doi | 10.1038/bjc.1996.122 10.1137/0915069 10.1111/j.1467-9868.2008.00691.x 10.2307/2532449 10.1007/BF01404567 10.1137/0717021 10.1080/02664760801920960 10.1002/cjs.10094 10.1080/10629360600851974 10.1111/j.1467-9868.2007.00646.x 10.1002/sim.1306 10.1214/08-AOAS167 10.1093/biomet/asn010 10.1198/1061860043010 10.1198/106186002853 10.1111/j.1467-842X.2006.00450.x 10.1214/ss/1177012761 10.1198/016214504000001457 10.1080/01621459.1987.10478426 10.1002/cjs.10137 10.1093/biomet/asp035 10.1111/j.1467-9868.2010.00749.x 10.1348/000711005X84293 10.1198/073500107000000223 10.1093/biomet/asq081 10.1214/ss/1038425655 10.1214/aos/1015956708 10.1080/10485250410001681167 10.1111/1541-0420.00035 10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2 10.1007/978-1-4612-6333-3 10.1201/9781420010404 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014 |
| Copyright_xml | – notice: The Author(s) 2014 |
| DBID | C6C AAYXX CITATION ADHXS ADTPV AOWAS D8T D93 ZZAVC |
| DOI | 10.1007/s11222-013-9448-7 |
| DatabaseName | SpringerOpen CrossRef SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| EndPage | 559 |
| ExternalDocumentID | oai_DiVA_org_umu_162090 10_1007_s11222_013_9448_7 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADHXS ADTPV AOWAS D8T D93 ZZAVC |
| ID | FETCH-LOGICAL-c369t-9390abc18d341cd346726d3bec76f3b5de6718111b6b54d996a6d6621f0e33f13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352705000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3174 1573-1375 |
| IngestDate | Tue Nov 04 16:42:53 EST 2025 Tue Nov 18 21:42:54 EST 2025 Sat Nov 29 03:32:41 EST 2025 Fri Feb 21 02:34:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Convex smoothing P-splines Monotonic smoothing Generalized additive model |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-9390abc18d341cd346726d3bec76f3b5de6718111b6b54d996a6d6621f0e33f13 |
| OpenAccessLink | https://link.springer.com/10.1007/s11222-013-9448-7 |
| PageCount | 17 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_umu_162090 crossref_citationtrail_10_1007_s11222_013_9448_7 crossref_primary_10_1007_s11222_013_9448_7 springer_journals_10_1007_s11222_013_9448_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2015 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | Rousson (CR29) 2008; 35 Li, Ruppert (CR21) 2008; 95 Dunson, Neelon (CR8) 2003; 59 Meyer (CR23) 2008; 2 CR39 Kauermann, Krivobokova, Fahrmeir (CR16) 2009; 71 Wood (CR40) 2006; 48 Craven, Wahba (CR5) 1979; 31 De Boor (CR6) 1978 Ramsay (CR28) 1988; 3 Wood (CR41) 2008; 70 Fritsch, Carlson (CR11) 1980; 17 Wahba (CR34) 1983; 45 Bollaerts, Eilers, van Mechelen (CR2) 2006; 59 Elliott, Shaddick, Kleinschmidt, Jolley, Walls, Beresford, Grundy (CR10) 1996; 73 Eilers, Marx (CR9) 1996; 11 Kelly, Rice (CR18) 1990; 46 Meyer, Woodroofe (CR25) 2000; 28 Villalobos, Wahba (CR33) 1987; 82 Kauermann, Opsomer (CR17) 2011; 98 Ruppert (CR30) 2002; 11 Claeskens, Krivobokova, Opsomer (CR4) 2009; 96 Wood (CR38) 2004; 99 Marra, Wood (CR22) 2012; 39 Dunson (CR7) 2005; 100 Wood (CR36) 1994; 15 Zhang (CR43) 2004; 16 Hastie, Tibshirani (CR13) 1990 Silverman (CR31) 1985; 47 Wood (CR37) 2001; 71 Meyer (CR24) 2012; 40 Peng, Welty (CR27) 2004; 4 Kim, Gu (CR19) 2004; 66 Shaddick, Choo, Walker (CR32) 2007; 77 Lang, Brezger (CR20) 2004; 13 Nychka (CR26) 1988; 88 Akaike, Petrov, Csaki (CR1) 1973 Wang, Meyer (CR35) 2011; 39 Golub, van Loan (CR12) 1996 Brezger, Steiner (CR3) 2008; 26 Holmes, Heard (CR15) 2003; 22 He, Shi (CR14) 1998; 93 Wood (CR42) 2011; 73 C Kelly (9448_CR18) 1990; 46 S Wood (9448_CR41) 2008; 70 J Zhang (9448_CR43) 2004; 16 T Hastie (9448_CR13) 1990 9448_CR31 H Akaike (9448_CR1) 1973 V Rousson (9448_CR29) 2008; 35 X He (9448_CR14) 1998; 93 9448_CR19 P Craven (9448_CR5) 1979; 31 9448_CR39 9448_CR38 S Wood (9448_CR36) 1994; 15 9448_CR37 G Kauermann (9448_CR17) 2011; 98 S Lang (9448_CR20) 2004; 13 9448_CR34 J Wang (9448_CR35) 2011; 39 M Meyer (9448_CR23) 2008; 2 P Eilers (9448_CR9) 1996; 11 G Kauermann (9448_CR16) 2009; 71 P Elliott (9448_CR10) 1996; 73 C Boor De (9448_CR6) 1978 S Wood (9448_CR42) 2011; 73 C Holmes (9448_CR15) 2003; 22 F Fritsch (9448_CR11) 1980; 17 G Shaddick (9448_CR32) 2007; 77 D Dunson (9448_CR8) 2003; 59 G Claeskens (9448_CR4) 2009; 96 9448_CR22 M Meyer (9448_CR25) 2000; 28 D Ruppert (9448_CR30) 2002; 11 Y Li (9448_CR21) 2008; 95 S Wood (9448_CR40) 2006; 48 A Brezger (9448_CR3) 2008; 26 R Peng (9448_CR27) 2004; 4 K Bollaerts (9448_CR2) 2006; 59 9448_CR26 M Meyer (9448_CR24) 2012; 40 J Ramsay (9448_CR28) 1988; 3 G Golub (9448_CR12) 1996 M Villalobos (9448_CR33) 1987; 82 D Dunson (9448_CR7) 2005; 100 |
| References_xml | – volume: 73 start-page: 702 year: 1996 end-page: 710 ident: CR10 article-title: Cancer incidence near municipal solid waste incinerators in Great Britain publication-title: Br. J. Cancer doi: 10.1038/bjc.1996.122 – volume: 15 start-page: 1126 issue: 5 year: 1994 end-page: 1133 ident: CR36 article-title: Monotonic smoothing splines fitted by cross validation publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915069 – volume: 71 start-page: 487 issue: 2 year: 2009 end-page: 503 ident: CR16 article-title: Some asymptotic results on generalized penalized spline smoothing publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2008.00691.x – volume: 45 start-page: 133 year: 1983 end-page: 150 ident: CR34 article-title: Bayesian confidence intervals for the cross validated smoothing spline publication-title: J. R. Stat. Soc: Ser. B. – ident: CR39 – volume: 46 start-page: 1071 year: 1990 end-page: 1085 ident: CR18 article-title: Monotone smoothing with application to dose-response curves and the assessment of synergism publication-title: Biometrics doi: 10.2307/2532449 – volume: 31 start-page: 377 year: 1979 end-page: 403 ident: CR5 article-title: Smoothing noisy data with spline functions publication-title: Numer. Math. doi: 10.1007/BF01404567 – volume: 17 start-page: 238 issue: 2 year: 1980 end-page: 246 ident: CR11 article-title: Monotone piecewise cubic interpolation publication-title: SIAM J. Numer. Anal. doi: 10.1137/0717021 – volume: 35 start-page: 659 issue: 6 year: 2008 end-page: 670 ident: CR29 article-title: Monotone fitting for developmental variables publication-title: J. Appl. Stat. doi: 10.1080/02664760801920960 – volume: 39 start-page: 89 issue: 1 year: 2011 end-page: 107 ident: CR35 article-title: Testing the monotonicity or convexity of a function using regression splines publication-title: Can. J. Stat. doi: 10.1002/cjs.10094 – volume: 88 start-page: 1134 year: 1988 end-page: 1143 ident: CR26 article-title: Bayesian confidence intervals for smoothing splines publication-title: J. Am. Stat. Assoc. – volume: 77 start-page: 945 issue: 11 year: 2007 end-page: 954 ident: CR32 article-title: Modelling correlated count data with covariates publication-title: J. Stat. Comput. Simul. doi: 10.1080/10629360600851974 – volume: 70 start-page: 495 issue: 3 year: 2008 end-page: 518 ident: CR41 article-title: Fast stable direct fitting and smoothness selection for generalized additive models publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2007.00646.x – volume: 22 start-page: 623 year: 2003 end-page: 638 ident: CR15 article-title: Generalized monotonic regression using random change points publication-title: Stat. Med. doi: 10.1002/sim.1306 – volume: 2 start-page: 1013 issue: 3 year: 2008 end-page: 1033 ident: CR23 article-title: Inference using shape-restricted regression splines publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS167 – volume: 47 start-page: 1 year: 1985 end-page: 52 ident: CR31 article-title: Some aspects of the spline smoothing approach to nonparametric regression curve fitting publication-title: J. R. Stat. Soc.: Ser. B. – volume: 99 start-page: 673 year: 2004 end-page: 686 ident: CR38 article-title: Stable and efficient multiple smoothing parameter estimation for generalized additive models publication-title: J. Am. Stat. Assoc. – volume: 4 start-page: 10 issue: 2 year: 2004 end-page: 14 ident: CR27 article-title: The NMMAPSdata package publication-title: R News – volume: 95 start-page: 415 issue: 2 year: 2008 end-page: 436 ident: CR21 article-title: On the asymptotics of penalized splines publication-title: Biometrika doi: 10.1093/biomet/asn010 – volume: 13 start-page: 183 issue: 1 year: 2004 end-page: 212 ident: CR20 article-title: Bayesian P-splines publication-title: J. Comput. Graph. Stat. doi: 10.1198/1061860043010 – year: 1978 ident: CR6 publication-title: A Practical Guide to Splines – volume: 11 start-page: 735 issue: 4 year: 2002 end-page: 757 ident: CR30 article-title: Selecting the number of knots for penalized splines publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186002853 – volume: 48 start-page: 445 issue: 4 year: 2006 end-page: 464 ident: CR40 article-title: On confidence intervals for generalized additive models based on penalized regression splines publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2006.00450.x – volume: 3 start-page: 425 issue: 4 year: 1988 end-page: 461 ident: CR28 article-title: Monotone regression splines in action (with discussion) publication-title: Stat. Sci. doi: 10.1214/ss/1177012761 – volume: 100 start-page: 618 issue: 470 year: 2005 end-page: 627 ident: CR7 article-title: Bayesian semiparametric isotonic regression for count data publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000001457 – volume: 82 start-page: 239 issue: 397 year: 1987 end-page: 248 ident: CR33 article-title: Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478426 – volume: 40 start-page: 190 issue: 1 year: 2012 end-page: 206 ident: CR24 article-title: Constrained penalized splines publication-title: Can. J. Stat. doi: 10.1002/cjs.10137 – volume: 96 start-page: 529 issue: 3 year: 2009 end-page: 544 ident: CR4 article-title: Asymptotic properties of penalized spline estimators publication-title: Biometrica doi: 10.1093/biomet/asp035 – year: 1990 ident: CR13 publication-title: Generalized Additive Models – volume: 66 start-page: 37 issue: 2 year: 2004 end-page: 356 ident: CR19 article-title: Smoothing spline gaussian regression: more scalable computation via efficient approximation publication-title: J. R. Stat. Soc: Ser. B. – volume: 39 start-page: 53 issue: 1 year: 2012 end-page: 74 ident: CR22 article-title: Coverage properties of confidence intervals for generalized additive model components publication-title: Scand. J. Stat. – volume: 73 start-page: 1 issue: 1 year: 2011 end-page: 34 ident: CR42 article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2010.00749.x – volume: 93 start-page: 643 issue: 442 year: 1998 end-page: 650 ident: CR14 article-title: Monotone B-spline smoothing publication-title: J. Am. Stat. Assoc. – volume: 59 start-page: 451 year: 2006 end-page: 469 ident: CR2 article-title: Simple and multiple P-splines regression with shape constraints publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711005X84293 – volume: 26 start-page: 90 issue: 1 year: 2008 end-page: 104 ident: CR3 article-title: Monotonic regression based on Bayesian P-splines: an application to estimating price response functions from store-level scanner data publication-title: J. Bus. Econ. Stat. doi: 10.1198/073500107000000223 – volume: 98 start-page: 225 issue: 1 year: 2011 end-page: 230 ident: CR17 article-title: Data-driven selection of the spline dimension in penalized spline regression publication-title: Biometrika doi: 10.1093/biomet/asq081 – volume: 11 start-page: 89 year: 1996 end-page: 121 ident: CR9 article-title: Flexible smoothing with B-splines and penalties publication-title: Stat. Sci. doi: 10.1214/ss/1038425655 – year: 1973 ident: CR1 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Second International Symposium on Information Theory – volume: 28 start-page: 1083 issue: 4 year: 2000 end-page: 1104 ident: CR25 article-title: On the degrees of freedom in shape-restricted regression publication-title: Ann. Stat. doi: 10.1214/aos/1015956708 – year: 1996 ident: CR12 publication-title: Matrix Computations – volume: 71 start-page: 1 issue: 1 year: 2001 end-page: 25 ident: CR37 article-title: Partially specified ecological models publication-title: Ecol. Monogr. – volume: 16 start-page: 779 issue: 5 year: 2004 end-page: 796 ident: CR43 article-title: A simple and efficient monotone smoother using smoothing splines publication-title: J. Nonparametr. Stat. doi: 10.1080/10485250410001681167 – volume: 59 start-page: 286 year: 2003 end-page: 295 ident: CR8 article-title: Bayesian inference on order-constrained parameters in generalized linear models publication-title: Biometrics doi: 10.1111/1541-0420.00035 – ident: 9448_CR26 – volume: 59 start-page: 286 year: 2003 ident: 9448_CR8 publication-title: Biometrics doi: 10.1111/1541-0420.00035 – volume: 77 start-page: 945 issue: 11 year: 2007 ident: 9448_CR32 publication-title: J. Stat. Comput. Simul. doi: 10.1080/10629360600851974 – volume: 95 start-page: 415 issue: 2 year: 2008 ident: 9448_CR21 publication-title: Biometrika doi: 10.1093/biomet/asn010 – volume: 3 start-page: 425 issue: 4 year: 1988 ident: 9448_CR28 publication-title: Stat. Sci. doi: 10.1214/ss/1177012761 – volume: 13 start-page: 183 issue: 1 year: 2004 ident: 9448_CR20 publication-title: J. Comput. Graph. Stat. doi: 10.1198/1061860043010 – ident: 9448_CR22 – ident: 9448_CR34 – volume: 16 start-page: 779 issue: 5 year: 2004 ident: 9448_CR43 publication-title: J. Nonparametr. Stat. doi: 10.1080/10485250410001681167 – volume: 48 start-page: 445 issue: 4 year: 2006 ident: 9448_CR40 publication-title: Aust. N. Z. J. Stat. doi: 10.1111/j.1467-842X.2006.00450.x – volume: 93 start-page: 643 issue: 442 year: 1998 ident: 9448_CR14 publication-title: J. Am. Stat. Assoc. – volume: 70 start-page: 495 issue: 3 year: 2008 ident: 9448_CR41 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2007.00646.x – volume: 96 start-page: 529 issue: 3 year: 2009 ident: 9448_CR4 publication-title: Biometrica doi: 10.1093/biomet/asp035 – ident: 9448_CR38 – volume: 35 start-page: 659 issue: 6 year: 2008 ident: 9448_CR29 publication-title: J. Appl. Stat. doi: 10.1080/02664760801920960 – volume: 40 start-page: 190 issue: 1 year: 2012 ident: 9448_CR24 publication-title: Can. J. Stat. doi: 10.1002/cjs.10137 – volume: 17 start-page: 238 issue: 2 year: 1980 ident: 9448_CR11 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0717021 – volume: 82 start-page: 239 issue: 397 year: 1987 ident: 9448_CR33 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478426 – volume: 11 start-page: 89 year: 1996 ident: 9448_CR9 publication-title: Stat. Sci. doi: 10.1214/ss/1038425655 – ident: 9448_CR37 doi: 10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2 – volume: 46 start-page: 1071 year: 1990 ident: 9448_CR18 publication-title: Biometrics doi: 10.2307/2532449 – volume: 28 start-page: 1083 issue: 4 year: 2000 ident: 9448_CR25 publication-title: Ann. Stat. doi: 10.1214/aos/1015956708 – volume-title: Second International Symposium on Information Theory year: 1973 ident: 9448_CR1 – volume: 59 start-page: 451 year: 2006 ident: 9448_CR2 publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711005X84293 – volume: 100 start-page: 618 issue: 470 year: 2005 ident: 9448_CR7 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000001457 – volume: 71 start-page: 487 issue: 2 year: 2009 ident: 9448_CR16 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2008.00691.x – volume: 98 start-page: 225 issue: 1 year: 2011 ident: 9448_CR17 publication-title: Biometrika doi: 10.1093/biomet/asq081 – volume: 31 start-page: 377 year: 1979 ident: 9448_CR5 publication-title: Numer. Math. doi: 10.1007/BF01404567 – volume: 11 start-page: 735 issue: 4 year: 2002 ident: 9448_CR30 publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186002853 – ident: 9448_CR31 – volume: 22 start-page: 623 year: 2003 ident: 9448_CR15 publication-title: Stat. Med. doi: 10.1002/sim.1306 – volume: 73 start-page: 1 issue: 1 year: 2011 ident: 9448_CR42 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2010.00749.x – ident: 9448_CR19 – volume: 15 start-page: 1126 issue: 5 year: 1994 ident: 9448_CR36 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915069 – volume: 2 start-page: 1013 issue: 3 year: 2008 ident: 9448_CR23 publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS167 – volume: 4 start-page: 10 issue: 2 year: 2004 ident: 9448_CR27 publication-title: R News – volume: 73 start-page: 702 year: 1996 ident: 9448_CR10 publication-title: Br. J. Cancer doi: 10.1038/bjc.1996.122 – volume-title: A Practical Guide to Splines year: 1978 ident: 9448_CR6 doi: 10.1007/978-1-4612-6333-3 – volume-title: Matrix Computations year: 1996 ident: 9448_CR12 – ident: 9448_CR39 doi: 10.1201/9781420010404 – volume-title: Generalized Additive Models year: 1990 ident: 9448_CR13 – volume: 39 start-page: 89 issue: 1 year: 2011 ident: 9448_CR35 publication-title: Can. J. Stat. doi: 10.1002/cjs.10094 – volume: 26 start-page: 90 issue: 1 year: 2008 ident: 9448_CR3 publication-title: J. Bus. Econ. Stat. doi: 10.1198/073500107000000223 |
| SSID | ssj0011634 |
| Score | 2.528386 |
| Snippet | A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent... |
| SourceID | swepub crossref springer |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 543 |
| SubjectTerms | Artificial Intelligence Convex smoothing Generalized additive model Mathematics and Statistics Monotonic smoothing P-splines Probability and Statistics in Computer Science Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
| Title | Shape constrained additive models |
| URI | https://link.springer.com/article/10.1007/s11222-013-9448-7 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-162090 |
| Volume | 25 |
| WOSCitedRecordID | wos000352705000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-jAfnE7F-UUF8UEptE2bNI9DHT7oEKdjbyFpUhV0G_vw7_fSr6HIQF_60vQa7pK7X7jL7wDOEokvDJOuTxLqhmmq3VgikJM-VdpXnokzxpv-Het248GAPxT3uKdltXuZksw89eKym4-xzLXdCDieKVy2CmsY7WK7Gx97_Sp1gAAj44xCaI4OhoVlKvM3Ed-DUfnbH6yhWaTpNP41xy3YLICl085XwjasmGETGmXTBqfYw03YuK-IWqdNqFuwmXM178Bp71WOjZNYyGg7Rxjt2HIj6xCdrGPOdBeeOzdPV7du0ULBTQjlM5cT7kmV-LHGaJXgg7KAaoL2YTQlKtKGYnBCf6eoikKNhx9JNaWBn3qGkNQne1AbjoZmHxwuGfMixdNAsjDUaFAdc8WUUiRQMQta4JW6FEnBL24n-y4WzMhWOwK1I6x2BGvBRfXJOCfXWDb4stS5KPbZdNno89yGlWDLo3391m-L0eRFzD_mwqeBx72DP4k9hDoipiiveDyC2mwyN8ewnnyiqSYn2UL8Ak811hE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cs4Hp1Px2wrig1Jomy5pHkUditsQN8feQtKkKug2Nuff76UfG4oM9KUvTa_hLrn7hbv8DuA0lvjCMOn6JKZumCTajSQCOelTpX3lmShlvOk2WKsV9Xr8Ib_HPS6q3YuUZOqpZ5fdfIxlru1GwPFM4bJFWAoxYNk6vsd2d5o6QICRckYhNEcHw8IilfmbiO_BqPjtD9bQNNLUK_-a4zqs5cDSucxWwgYsmH4VKkXTBiffw1VYbU6JWsdVKFuwmXE1b8JJ-0UOjRNbyGg7Rxjt2HIj6xCdtGPOeAue6jedq1s3b6HgxoTyD5cT7kkV-5HGaBXjg7KAaoL2YTQhqqYNxeCE_k5RVQs1Hn4k1ZQGfuIZQhKfbEOpP-ibHXC4ZMyrKZ4EkoWhRoPqiCumlCKBiliwC16hSxHn_OJ2sm9ixoxstSNQO8JqR7BdOJ9-MszINeYNvih0LvJ9Np43-iyz4VSw5dG-fu1eisHoWUzeJ8Kngce9vT-JPYaV206zIRp3rft9KCN6qmXVjwdQ-hhNzCEsx59ottFRuii_AGEu2PU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBR1WszxXEg7K4u9kmm2OxFsVaCtXiLSSbrAralj78_U720aJIQbzsZZMwzCQzX0jyfQBnscQfhknXJzF1wyTRbiQRyEmfKu0rz0Qp4023yVqt6PmZt3Od01Fx2704kszeNFiWpt74aqCTq9nDNx_rmmuVCTjuL1y2CEuh1Qyy2_VOd3qMgGAj5Y9CmI7JhoXFseZvQ3wvTIUJPxhE06rT2Pi3vZuwngNOp5bNkC1YML0ybBRiDk6-tsuw9jAlcB2VYdWC0IzDeRtOO69yYJzYQkmrKGG0Y68h2UTppEo6ox14atw8Xt-6ubSCGxPKxy4n3JMq9iONVSzGD2UB1QTjxmhCVFUbikUL86Ciqhpq3BRJqikN_MQzhCQ-2YVSr98ze-BwyZhXVTwJJAtDjYHWEVdMKUUCFbGgAl7hVxHnvOPW2HcxY0y23hHoHWG9I1gFLqZdBhnpxrzGl4X_Rb7-RvNan2fxnA5s-bXrb92a6A9fxORjInwaeNzb_9OwJ7DSrjdE8651fwCrCKqq2aXIQyiNhxNzBMvxJ0ZteJzOzy86NOHZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+constrained+additive+models&rft.jtitle=Statistics+and+computing&rft.au=Pya%2C+Natalya&rft.au=Wood%2C+Simon+N.&rft.date=2015-05-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=25&rft.issue=3&rft.spage=543&rft.epage=559&rft_id=info:doi/10.1007%2Fs11222-013-9448-7&rft.externalDocID=10_1007_s11222_013_9448_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |