Shape constrained additive models

A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent shape constrained model components by mildly non-linear extensions of P-splines. Models can contain multiple shape constrained and unconstra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics and computing Ročník 25; číslo 3; s. 543 - 559
Hlavní autori: Pya, Natalya, Wood, Simon N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2015
Predmet:
ISSN:0960-3174, 1573-1375, 1573-1375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent shape constrained model components by mildly non-linear extensions of P-splines. Models can contain multiple shape constrained and unconstrained terms as well as shape constrained multi-dimensional smooths. The constraints considered are on the sign of the first or/and the second derivatives of the smooth terms. A key advantage of the approach is that it facilitates efficient estimation of smoothing parameters as an integral part of model estimation, via GCV or AIC, and numerically robust algorithms for this are presented. We also derive simulation free approximate Bayesian confidence intervals for the smooth components, which are shown to achieve close to nominal coverage probabilities. Applications are presented using real data examples including the risk of disease in relation to proximity to municipal incinerators and the association between air pollution and health.
AbstractList A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent shape constrained model components by mildly non-linear extensions of P-splines. Models can contain multiple shape constrained and unconstrained terms as well as shape constrained multi-dimensional smooths. The constraints considered are on the sign of the first or/and the second derivatives of the smooth terms. A key advantage of the approach is that it facilitates efficient estimation of smoothing parameters as an integral part of model estimation, via GCV or AIC, and numerically robust algorithms for this are presented. We also derive simulation free approximate Bayesian confidence intervals for the smooth components, which are shown to achieve close to nominal coverage probabilities. Applications are presented using real data examples including the risk of disease in relation to proximity to municipal incinerators and the association between air pollution and health.
Author Wood, Simon N.
Pya, Natalya
Author_xml – sequence: 1
  givenname: Natalya
  surname: Pya
  fullname: Pya, Natalya
  email: n.y.pya@bath.ac.uk
  organization: Mathematical Sciences, University of Bath
– sequence: 2
  givenname: Simon N.
  surname: Wood
  fullname: Wood, Simon N.
  organization: Mathematical Sciences, University of Bath
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-162090$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNp9kMtOAjEUhhuDiYA-gDt8gGpPO9PSJUFFExIXXrYnnWkHS6Al7YzGt3cIuHHB5pzN_53LNyKDEIMj5BrYLTCm7jIA55wyEFQXxZSqMzKEUgkKQpUDMmRaMipAFRdklPOaMQApiiG5ef00OzepY8htMj44OzHW-tZ_uck2WrfJl-S8MZvsro59TN4fH97mT3T5sniez5a0FlK3VAvNTFXD1IoC6r5IxaUVlauVbERVWicVTAGgklVZWK2lkVZKDg1zQjQgxoQe5uZvt-sq3CW_NekHo_F47z9mGNMKu22HIDnTrM-rQ75OMefkGqx9a1ofw_6RDQLDvRk8mMHeDO7NoOpJ-Ef-7TrF8ON1fTasXMJ17FLohZyAfgHUQHZu
CitedBy_id crossref_primary_10_1002_ieam_4148
crossref_primary_10_1016_j_dendro_2022_125940
crossref_primary_10_1007_s11749_020_00716_0
crossref_primary_10_1016_j_enconman_2023_117324
crossref_primary_10_1093_biostatistics_kxz068
crossref_primary_10_1016_j_jmaa_2025_129992
crossref_primary_10_1111_biom_13114
crossref_primary_10_1111_ecog_05610
crossref_primary_10_1002_alz_12214
crossref_primary_10_1016_j_ecosta_2017_06_001
crossref_primary_10_1016_j_fishres_2025_107324
crossref_primary_10_1002_qre_70031
crossref_primary_10_1016_j_fcr_2021_108314
crossref_primary_10_1111_nph_17869
crossref_primary_10_1111_nph_18959
crossref_primary_10_34133_plantphenomics_0053
crossref_primary_10_1111_mms_12944
crossref_primary_10_1111_ejss_13560
crossref_primary_10_1016_j_eswa_2024_124654
crossref_primary_10_12688_wellcomeopenres_16562_3
crossref_primary_10_1002_acn3_51515
crossref_primary_10_1016_j_scitotenv_2022_153322
crossref_primary_10_12688_wellcomeopenres_16562_1
crossref_primary_10_12688_wellcomeopenres_16562_2
crossref_primary_10_1007_s11336_021_09832_8
crossref_primary_10_1038_nmicrobiol_2016_126
crossref_primary_10_1038_s41467_019_09907_2
crossref_primary_10_1289_EHP5204
crossref_primary_10_1177_1471082X231176120
crossref_primary_10_1038_s41587_019_0071_9
crossref_primary_10_1186_s40663_016_0061_z
crossref_primary_10_1016_S2352_4642_18_30025_7
crossref_primary_10_1111_2041_210X_12756
crossref_primary_10_1016_j_cell_2025_04_017
crossref_primary_10_1016_j_mcpro_2025_100999
crossref_primary_10_1080_10618600_2025_2507428
crossref_primary_10_1007_s13595_018_0735_5
crossref_primary_10_1093_molbev_msab073
crossref_primary_10_1093_biostatistics_kxac023
crossref_primary_10_3390_f9040174
crossref_primary_10_1016_j_scitotenv_2016_07_084
crossref_primary_10_1007_s11869_016_0398_z
crossref_primary_10_1016_j_scitotenv_2023_169463
crossref_primary_10_1086_691779
crossref_primary_10_1029_2020WR027971
crossref_primary_10_1002_jeq2_20138
crossref_primary_10_1016_j_ress_2025_111115
crossref_primary_10_1177_1471082X221117612
crossref_primary_10_1038_s41893_020_00631_0
crossref_primary_10_1007_s11749_020_00711_5
crossref_primary_10_1007_s11749_020_00715_1
crossref_primary_10_1016_j_bja_2024_05_001
crossref_primary_10_1093_llc_fqad097
crossref_primary_10_1121_1_5023220
crossref_primary_10_1016_j_scitotenv_2019_134505
crossref_primary_10_1016_j_jhe_2024_102039
crossref_primary_10_3389_fpls_2021_698640
crossref_primary_10_1007_s00122_025_05008_5
crossref_primary_10_1371_journal_pgen_1010546
crossref_primary_10_1007_s00267_022_01599_7
crossref_primary_10_1016_j_fishres_2025_107461
crossref_primary_10_3389_fevo_2021_679673
crossref_primary_10_1017_S1748499521000105
crossref_primary_10_1111_ddi_13271
crossref_primary_10_1016_j_fishres_2022_106422
crossref_primary_10_1109_TCSS_2022_3149000
crossref_primary_10_1214_18_STS671
crossref_primary_10_1177_1471082X221114177
crossref_primary_10_1214_18_STS672
crossref_primary_10_1007_s00181_020_01932_1
crossref_primary_10_1002_bdr2_2046
crossref_primary_10_1080_00401706_2023_2224524
crossref_primary_10_1080_10618600_2020_1724544
crossref_primary_10_1093_biostatistics_kxy024
crossref_primary_10_1111_geb_70104
crossref_primary_10_1038_s41467_024_54572_9
crossref_primary_10_1007_s13595_018_0773_z
crossref_primary_10_1029_2019MS001939
crossref_primary_10_1016_j_apenergy_2024_124537
crossref_primary_10_1038_s41598_021_95302_1
crossref_primary_10_1002_sim_9612
crossref_primary_10_1080_10618600_2020_1868303
crossref_primary_10_1093_evolut_qpaf138
crossref_primary_10_1016_j_dendro_2015_12_001
crossref_primary_10_1007_s11119_021_09785_z
crossref_primary_10_1016_j_amc_2022_127679
crossref_primary_10_1016_j_csda_2021_107343
crossref_primary_10_1007_s10479_024_06007_3
crossref_primary_10_1016_j_gfs_2024_100774
crossref_primary_10_1371_journal_pcbi_1013293
crossref_primary_10_1016_j_tacc_2025_101564
crossref_primary_10_1038_s41467_024_53415_x
crossref_primary_10_1093_genetics_iyab124
crossref_primary_10_3390_f12030274
crossref_primary_10_1038_s41598_022_05837_0
crossref_primary_10_1073_pnas_2413715122
crossref_primary_10_1214_18_STS665
crossref_primary_10_1016_j_neuroimage_2018_03_027
crossref_primary_10_1111_nph_16456
crossref_primary_10_1007_s10115_018_1201_2
crossref_primary_10_1111_sjos_12581
crossref_primary_10_1007_s11222_017_9799_6
crossref_primary_10_1111_bmsp_12195
crossref_primary_10_1007_s11222_014_9520_y
crossref_primary_10_1021_acs_est_5c07241
crossref_primary_10_1016_j_ecosta_2020_05_005
crossref_primary_10_1016_j_csda_2019_03_011
crossref_primary_10_1111_geb_13070
crossref_primary_10_1177_0049124120986188
crossref_primary_10_1016_j_csda_2023_107796
crossref_primary_10_1371_journal_pgen_1006547
crossref_primary_10_1007_s11869_021_00985_0
crossref_primary_10_1016_j_csda_2022_107550
crossref_primary_10_1093_plphys_kiae203
crossref_primary_10_1016_j_ejor_2016_09_008
crossref_primary_10_3389_fevo_2018_00149
crossref_primary_10_3390_rs16224294
crossref_primary_10_1080_01621459_2019_1593178
crossref_primary_10_3390_w13182580
crossref_primary_10_1186_s13059_024_03290_y
crossref_primary_10_1016_j_compag_2020_105880
crossref_primary_10_1016_j_biocon_2018_06_031
crossref_primary_10_1007_s13595_019_0846_7
crossref_primary_10_1016_j_ecolmodel_2019_108926
crossref_primary_10_1080_01621459_2023_2191820
crossref_primary_10_1016_j_insmatheco_2024_05_004
crossref_primary_10_1007_s10994_024_06641_9
crossref_primary_10_1038_s42003_025_07938_8
crossref_primary_10_3389_fmars_2022_849878
crossref_primary_10_1111_rssc_12566
crossref_primary_10_1002_jaa2_102
crossref_primary_10_1038_s41598_021_01700_w
crossref_primary_10_1093_biomtc_ujae098
crossref_primary_10_1038_s41598_021_95323_w
crossref_primary_10_1093_ornithapp_duab038
crossref_primary_10_2139_ssrn_4728674
crossref_primary_10_1007_s13595_018_0737_3
crossref_primary_10_1016_j_ecolmodel_2024_110632
crossref_primary_10_1111_2041_210X_14057
crossref_primary_10_1111_rssb_12137
crossref_primary_10_1109_JBHI_2024_3364499
crossref_primary_10_1016_j_dadm_2019_08_003
crossref_primary_10_1111_nph_17243
crossref_primary_10_1126_scitranslmed_aau6242
crossref_primary_10_1057_s41272_024_00478_6
crossref_primary_10_1007_s11634_020_00404_9
crossref_primary_10_1186_s12859_023_05289_x
crossref_primary_10_1038_s41586_020_2126_y
crossref_primary_10_1111_plb_13573
crossref_primary_10_1088_1748_9326_ac13f1
crossref_primary_10_1186_s40658_023_00591_2
crossref_primary_10_1109_TR_2024_3505077
crossref_primary_10_1080_00401706_2020_1731604
crossref_primary_10_1140_epjds_s13688_018_0144_x
crossref_primary_10_1063_5_0065722
crossref_primary_10_1111_1365_2656_13687
crossref_primary_10_1007_s11869_024_01507_4
crossref_primary_10_1016_j_csda_2022_107614
crossref_primary_10_1080_1540496X_2018_1437542
crossref_primary_10_1249_MSS_0000000000001955
crossref_primary_10_1016_j_ygcen_2015_09_033
crossref_primary_10_1080_10485252_2021_2014834
crossref_primary_10_1111_fme_12629
crossref_primary_10_1371_journal_pone_0318820
crossref_primary_10_3389_frai_2022_1015604
crossref_primary_10_1016_j_cmi_2022_02_017
crossref_primary_10_1111_nph_16146
crossref_primary_10_1371_journal_pntd_0008273
crossref_primary_10_1093_biostatistics_kxae019
crossref_primary_10_1016_j_agrformet_2022_108970
crossref_primary_10_1111_biom_13528
crossref_primary_10_3390_f12010075
crossref_primary_10_1016_j_csda_2020_107092
crossref_primary_10_1214_15_AOS1425
crossref_primary_10_1093_treephys_tpae044
crossref_primary_10_1016_j_checat_2022_11_008
crossref_primary_10_3390_app15020818
crossref_primary_10_1016_j_media_2025_103537
crossref_primary_10_1002_eap_2280
crossref_primary_10_1002_sim_70064
crossref_primary_10_1002_sim_8680
crossref_primary_10_1093_icesjms_fsaf073
Cites_doi 10.1038/bjc.1996.122
10.1137/0915069
10.1111/j.1467-9868.2008.00691.x
10.2307/2532449
10.1007/BF01404567
10.1137/0717021
10.1080/02664760801920960
10.1002/cjs.10094
10.1080/10629360600851974
10.1111/j.1467-9868.2007.00646.x
10.1002/sim.1306
10.1214/08-AOAS167
10.1093/biomet/asn010
10.1198/1061860043010
10.1198/106186002853
10.1111/j.1467-842X.2006.00450.x
10.1214/ss/1177012761
10.1198/016214504000001457
10.1080/01621459.1987.10478426
10.1002/cjs.10137
10.1093/biomet/asp035
10.1111/j.1467-9868.2010.00749.x
10.1348/000711005X84293
10.1198/073500107000000223
10.1093/biomet/asq081
10.1214/ss/1038425655
10.1214/aos/1015956708
10.1080/10485250410001681167
10.1111/1541-0420.00035
10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2
10.1007/978-1-4612-6333-3
10.1201/9781420010404
ContentType Journal Article
Copyright The Author(s) 2014
Copyright_xml – notice: The Author(s) 2014
DBID C6C
AAYXX
CITATION
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOI 10.1007/s11222-013-9448-7
DatabaseName SpringerOpen
CrossRef
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 559
ExternalDocumentID oai_DiVA_org_umu_162090
10_1007_s11222_013_9448_7
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ID FETCH-LOGICAL-c369t-9390abc18d341cd346726d3bec76f3b5de6718111b6b54d996a6d6621f0e33f13
IEDL.DBID RSV
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352705000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
1573-1375
IngestDate Tue Nov 04 16:42:53 EST 2025
Tue Nov 18 21:42:54 EST 2025
Sat Nov 29 03:32:41 EST 2025
Fri Feb 21 02:34:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Convex smoothing
P-splines
Monotonic smoothing
Generalized additive model
Language English
License http://creativecommons.org/licenses/by/2.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-9390abc18d341cd346726d3bec76f3b5de6718111b6b54d996a6d6621f0e33f13
OpenAccessLink https://link.springer.com/10.1007/s11222-013-9448-7
PageCount 17
ParticipantIDs swepub_primary_oai_DiVA_org_umu_162090
crossref_citationtrail_10_1007_s11222_013_9448_7
crossref_primary_10_1007_s11222_013_9448_7
springer_journals_10_1007_s11222_013_9448_7
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Rousson (CR29) 2008; 35
Li, Ruppert (CR21) 2008; 95
Dunson, Neelon (CR8) 2003; 59
Meyer (CR23) 2008; 2
CR39
Kauermann, Krivobokova, Fahrmeir (CR16) 2009; 71
Wood (CR40) 2006; 48
Craven, Wahba (CR5) 1979; 31
De Boor (CR6) 1978
Ramsay (CR28) 1988; 3
Wood (CR41) 2008; 70
Fritsch, Carlson (CR11) 1980; 17
Wahba (CR34) 1983; 45
Bollaerts, Eilers, van Mechelen (CR2) 2006; 59
Elliott, Shaddick, Kleinschmidt, Jolley, Walls, Beresford, Grundy (CR10) 1996; 73
Eilers, Marx (CR9) 1996; 11
Kelly, Rice (CR18) 1990; 46
Meyer, Woodroofe (CR25) 2000; 28
Villalobos, Wahba (CR33) 1987; 82
Kauermann, Opsomer (CR17) 2011; 98
Ruppert (CR30) 2002; 11
Claeskens, Krivobokova, Opsomer (CR4) 2009; 96
Wood (CR38) 2004; 99
Marra, Wood (CR22) 2012; 39
Dunson (CR7) 2005; 100
Wood (CR36) 1994; 15
Zhang (CR43) 2004; 16
Hastie, Tibshirani (CR13) 1990
Silverman (CR31) 1985; 47
Wood (CR37) 2001; 71
Meyer (CR24) 2012; 40
Peng, Welty (CR27) 2004; 4
Kim, Gu (CR19) 2004; 66
Shaddick, Choo, Walker (CR32) 2007; 77
Lang, Brezger (CR20) 2004; 13
Nychka (CR26) 1988; 88
Akaike, Petrov, Csaki (CR1) 1973
Wang, Meyer (CR35) 2011; 39
Golub, van Loan (CR12) 1996
Brezger, Steiner (CR3) 2008; 26
Holmes, Heard (CR15) 2003; 22
He, Shi (CR14) 1998; 93
Wood (CR42) 2011; 73
C Kelly (9448_CR18) 1990; 46
S Wood (9448_CR41) 2008; 70
J Zhang (9448_CR43) 2004; 16
T Hastie (9448_CR13) 1990
9448_CR31
H Akaike (9448_CR1) 1973
V Rousson (9448_CR29) 2008; 35
X He (9448_CR14) 1998; 93
9448_CR19
P Craven (9448_CR5) 1979; 31
9448_CR39
9448_CR38
S Wood (9448_CR36) 1994; 15
9448_CR37
G Kauermann (9448_CR17) 2011; 98
S Lang (9448_CR20) 2004; 13
9448_CR34
J Wang (9448_CR35) 2011; 39
M Meyer (9448_CR23) 2008; 2
P Eilers (9448_CR9) 1996; 11
G Kauermann (9448_CR16) 2009; 71
P Elliott (9448_CR10) 1996; 73
C Boor De (9448_CR6) 1978
S Wood (9448_CR42) 2011; 73
C Holmes (9448_CR15) 2003; 22
F Fritsch (9448_CR11) 1980; 17
G Shaddick (9448_CR32) 2007; 77
D Dunson (9448_CR8) 2003; 59
G Claeskens (9448_CR4) 2009; 96
9448_CR22
M Meyer (9448_CR25) 2000; 28
D Ruppert (9448_CR30) 2002; 11
Y Li (9448_CR21) 2008; 95
S Wood (9448_CR40) 2006; 48
A Brezger (9448_CR3) 2008; 26
R Peng (9448_CR27) 2004; 4
K Bollaerts (9448_CR2) 2006; 59
9448_CR26
M Meyer (9448_CR24) 2012; 40
J Ramsay (9448_CR28) 1988; 3
G Golub (9448_CR12) 1996
M Villalobos (9448_CR33) 1987; 82
D Dunson (9448_CR7) 2005; 100
References_xml – volume: 73
  start-page: 702
  year: 1996
  end-page: 710
  ident: CR10
  article-title: Cancer incidence near municipal solid waste incinerators in Great Britain
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1996.122
– volume: 15
  start-page: 1126
  issue: 5
  year: 1994
  end-page: 1133
  ident: CR36
  article-title: Monotonic smoothing splines fitted by cross validation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915069
– volume: 71
  start-page: 487
  issue: 2
  year: 2009
  end-page: 503
  ident: CR16
  article-title: Some asymptotic results on generalized penalized spline smoothing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2008.00691.x
– volume: 45
  start-page: 133
  year: 1983
  end-page: 150
  ident: CR34
  article-title: Bayesian confidence intervals for the cross validated smoothing spline
  publication-title: J. R. Stat. Soc: Ser. B.
– ident: CR39
– volume: 46
  start-page: 1071
  year: 1990
  end-page: 1085
  ident: CR18
  article-title: Monotone smoothing with application to dose-response curves and the assessment of synergism
  publication-title: Biometrics
  doi: 10.2307/2532449
– volume: 31
  start-page: 377
  year: 1979
  end-page: 403
  ident: CR5
  article-title: Smoothing noisy data with spline functions
  publication-title: Numer. Math.
  doi: 10.1007/BF01404567
– volume: 17
  start-page: 238
  issue: 2
  year: 1980
  end-page: 246
  ident: CR11
  article-title: Monotone piecewise cubic interpolation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0717021
– volume: 35
  start-page: 659
  issue: 6
  year: 2008
  end-page: 670
  ident: CR29
  article-title: Monotone fitting for developmental variables
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760801920960
– volume: 39
  start-page: 89
  issue: 1
  year: 2011
  end-page: 107
  ident: CR35
  article-title: Testing the monotonicity or convexity of a function using regression splines
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.10094
– volume: 88
  start-page: 1134
  year: 1988
  end-page: 1143
  ident: CR26
  article-title: Bayesian confidence intervals for smoothing splines
  publication-title: J. Am. Stat. Assoc.
– volume: 77
  start-page: 945
  issue: 11
  year: 2007
  end-page: 954
  ident: CR32
  article-title: Modelling correlated count data with covariates
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/10629360600851974
– volume: 70
  start-page: 495
  issue: 3
  year: 2008
  end-page: 518
  ident: CR41
  article-title: Fast stable direct fitting and smoothness selection for generalized additive models
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2007.00646.x
– volume: 22
  start-page: 623
  year: 2003
  end-page: 638
  ident: CR15
  article-title: Generalized monotonic regression using random change points
  publication-title: Stat. Med.
  doi: 10.1002/sim.1306
– volume: 2
  start-page: 1013
  issue: 3
  year: 2008
  end-page: 1033
  ident: CR23
  article-title: Inference using shape-restricted regression splines
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS167
– volume: 47
  start-page: 1
  year: 1985
  end-page: 52
  ident: CR31
  article-title: Some aspects of the spline smoothing approach to nonparametric regression curve fitting
  publication-title: J. R. Stat. Soc.: Ser. B.
– volume: 99
  start-page: 673
  year: 2004
  end-page: 686
  ident: CR38
  article-title: Stable and efficient multiple smoothing parameter estimation for generalized additive models
  publication-title: J. Am. Stat. Assoc.
– volume: 4
  start-page: 10
  issue: 2
  year: 2004
  end-page: 14
  ident: CR27
  article-title: The NMMAPSdata package
  publication-title: R News
– volume: 95
  start-page: 415
  issue: 2
  year: 2008
  end-page: 436
  ident: CR21
  article-title: On the asymptotics of penalized splines
  publication-title: Biometrika
  doi: 10.1093/biomet/asn010
– volume: 13
  start-page: 183
  issue: 1
  year: 2004
  end-page: 212
  ident: CR20
  article-title: Bayesian P-splines
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/1061860043010
– year: 1978
  ident: CR6
  publication-title: A Practical Guide to Splines
– volume: 11
  start-page: 735
  issue: 4
  year: 2002
  end-page: 757
  ident: CR30
  article-title: Selecting the number of knots for penalized splines
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186002853
– volume: 48
  start-page: 445
  issue: 4
  year: 2006
  end-page: 464
  ident: CR40
  article-title: On confidence intervals for generalized additive models based on penalized regression splines
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/j.1467-842X.2006.00450.x
– volume: 3
  start-page: 425
  issue: 4
  year: 1988
  end-page: 461
  ident: CR28
  article-title: Monotone regression splines in action (with discussion)
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012761
– volume: 100
  start-page: 618
  issue: 470
  year: 2005
  end-page: 627
  ident: CR7
  article-title: Bayesian semiparametric isotonic regression for count data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001457
– volume: 82
  start-page: 239
  issue: 397
  year: 1987
  end-page: 248
  ident: CR33
  article-title: Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478426
– volume: 40
  start-page: 190
  issue: 1
  year: 2012
  end-page: 206
  ident: CR24
  article-title: Constrained penalized splines
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.10137
– volume: 96
  start-page: 529
  issue: 3
  year: 2009
  end-page: 544
  ident: CR4
  article-title: Asymptotic properties of penalized spline estimators
  publication-title: Biometrica
  doi: 10.1093/biomet/asp035
– year: 1990
  ident: CR13
  publication-title: Generalized Additive Models
– volume: 66
  start-page: 37
  issue: 2
  year: 2004
  end-page: 356
  ident: CR19
  article-title: Smoothing spline gaussian regression: more scalable computation via efficient approximation
  publication-title: J. R. Stat. Soc: Ser. B.
– volume: 39
  start-page: 53
  issue: 1
  year: 2012
  end-page: 74
  ident: CR22
  article-title: Coverage properties of confidence intervals for generalized additive model components
  publication-title: Scand. J. Stat.
– volume: 73
  start-page: 1
  issue: 1
  year: 2011
  end-page: 34
  ident: CR42
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 93
  start-page: 643
  issue: 442
  year: 1998
  end-page: 650
  ident: CR14
  article-title: Monotone B-spline smoothing
  publication-title: J. Am. Stat. Assoc.
– volume: 59
  start-page: 451
  year: 2006
  end-page: 469
  ident: CR2
  article-title: Simple and multiple P-splines regression with shape constraints
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711005X84293
– volume: 26
  start-page: 90
  issue: 1
  year: 2008
  end-page: 104
  ident: CR3
  article-title: Monotonic regression based on Bayesian P-splines: an application to estimating price response functions from store-level scanner data
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1198/073500107000000223
– volume: 98
  start-page: 225
  issue: 1
  year: 2011
  end-page: 230
  ident: CR17
  article-title: Data-driven selection of the spline dimension in penalized spline regression
  publication-title: Biometrika
  doi: 10.1093/biomet/asq081
– volume: 11
  start-page: 89
  year: 1996
  end-page: 121
  ident: CR9
  article-title: Flexible smoothing with B-splines and penalties
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1038425655
– year: 1973
  ident: CR1
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Second International Symposium on Information Theory
– volume: 28
  start-page: 1083
  issue: 4
  year: 2000
  end-page: 1104
  ident: CR25
  article-title: On the degrees of freedom in shape-restricted regression
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1015956708
– year: 1996
  ident: CR12
  publication-title: Matrix Computations
– volume: 71
  start-page: 1
  issue: 1
  year: 2001
  end-page: 25
  ident: CR37
  article-title: Partially specified ecological models
  publication-title: Ecol. Monogr.
– volume: 16
  start-page: 779
  issue: 5
  year: 2004
  end-page: 796
  ident: CR43
  article-title: A simple and efficient monotone smoother using smoothing splines
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485250410001681167
– volume: 59
  start-page: 286
  year: 2003
  end-page: 295
  ident: CR8
  article-title: Bayesian inference on order-constrained parameters in generalized linear models
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00035
– ident: 9448_CR26
– volume: 59
  start-page: 286
  year: 2003
  ident: 9448_CR8
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00035
– volume: 77
  start-page: 945
  issue: 11
  year: 2007
  ident: 9448_CR32
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/10629360600851974
– volume: 95
  start-page: 415
  issue: 2
  year: 2008
  ident: 9448_CR21
  publication-title: Biometrika
  doi: 10.1093/biomet/asn010
– volume: 3
  start-page: 425
  issue: 4
  year: 1988
  ident: 9448_CR28
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012761
– volume: 13
  start-page: 183
  issue: 1
  year: 2004
  ident: 9448_CR20
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/1061860043010
– ident: 9448_CR22
– ident: 9448_CR34
– volume: 16
  start-page: 779
  issue: 5
  year: 2004
  ident: 9448_CR43
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485250410001681167
– volume: 48
  start-page: 445
  issue: 4
  year: 2006
  ident: 9448_CR40
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/j.1467-842X.2006.00450.x
– volume: 93
  start-page: 643
  issue: 442
  year: 1998
  ident: 9448_CR14
  publication-title: J. Am. Stat. Assoc.
– volume: 70
  start-page: 495
  issue: 3
  year: 2008
  ident: 9448_CR41
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2007.00646.x
– volume: 96
  start-page: 529
  issue: 3
  year: 2009
  ident: 9448_CR4
  publication-title: Biometrica
  doi: 10.1093/biomet/asp035
– ident: 9448_CR38
– volume: 35
  start-page: 659
  issue: 6
  year: 2008
  ident: 9448_CR29
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760801920960
– volume: 40
  start-page: 190
  issue: 1
  year: 2012
  ident: 9448_CR24
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.10137
– volume: 17
  start-page: 238
  issue: 2
  year: 1980
  ident: 9448_CR11
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0717021
– volume: 82
  start-page: 239
  issue: 397
  year: 1987
  ident: 9448_CR33
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478426
– volume: 11
  start-page: 89
  year: 1996
  ident: 9448_CR9
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1038425655
– ident: 9448_CR37
  doi: 10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2
– volume: 46
  start-page: 1071
  year: 1990
  ident: 9448_CR18
  publication-title: Biometrics
  doi: 10.2307/2532449
– volume: 28
  start-page: 1083
  issue: 4
  year: 2000
  ident: 9448_CR25
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1015956708
– volume-title: Second International Symposium on Information Theory
  year: 1973
  ident: 9448_CR1
– volume: 59
  start-page: 451
  year: 2006
  ident: 9448_CR2
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711005X84293
– volume: 100
  start-page: 618
  issue: 470
  year: 2005
  ident: 9448_CR7
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001457
– volume: 71
  start-page: 487
  issue: 2
  year: 2009
  ident: 9448_CR16
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2008.00691.x
– volume: 98
  start-page: 225
  issue: 1
  year: 2011
  ident: 9448_CR17
  publication-title: Biometrika
  doi: 10.1093/biomet/asq081
– volume: 31
  start-page: 377
  year: 1979
  ident: 9448_CR5
  publication-title: Numer. Math.
  doi: 10.1007/BF01404567
– volume: 11
  start-page: 735
  issue: 4
  year: 2002
  ident: 9448_CR30
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186002853
– ident: 9448_CR31
– volume: 22
  start-page: 623
  year: 2003
  ident: 9448_CR15
  publication-title: Stat. Med.
  doi: 10.1002/sim.1306
– volume: 73
  start-page: 1
  issue: 1
  year: 2011
  ident: 9448_CR42
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2010.00749.x
– ident: 9448_CR19
– volume: 15
  start-page: 1126
  issue: 5
  year: 1994
  ident: 9448_CR36
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915069
– volume: 2
  start-page: 1013
  issue: 3
  year: 2008
  ident: 9448_CR23
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS167
– volume: 4
  start-page: 10
  issue: 2
  year: 2004
  ident: 9448_CR27
  publication-title: R News
– volume: 73
  start-page: 702
  year: 1996
  ident: 9448_CR10
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1996.122
– volume-title: A Practical Guide to Splines
  year: 1978
  ident: 9448_CR6
  doi: 10.1007/978-1-4612-6333-3
– volume-title: Matrix Computations
  year: 1996
  ident: 9448_CR12
– ident: 9448_CR39
  doi: 10.1201/9781420010404
– volume-title: Generalized Additive Models
  year: 1990
  ident: 9448_CR13
– volume: 39
  start-page: 89
  issue: 1
  year: 2011
  ident: 9448_CR35
  publication-title: Can. J. Stat.
  doi: 10.1002/cjs.10094
– volume: 26
  start-page: 90
  issue: 1
  year: 2008
  ident: 9448_CR3
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1198/073500107000000223
SSID ssj0011634
Score 2.528386
Snippet A framework is presented for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. We represent...
SourceID swepub
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 543
SubjectTerms Artificial Intelligence
Convex smoothing
Generalized additive model
Mathematics and Statistics
Monotonic smoothing
P-splines
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title Shape constrained additive models
URI https://link.springer.com/article/10.1007/s11222-013-9448-7
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-162090
Volume 25
WOSCitedRecordID wos000352705000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-jAfnE7F-UUF8UEptE2bNI9DHT7oEKdjbyFpUhV0G_vw7_fSr6HIQF_60vQa7pK7X7jL7wDOEokvDJOuTxLqhmmq3VgikJM-VdpXnokzxpv-Het248GAPxT3uKdltXuZksw89eKym4-xzLXdCDieKVy2CmsY7WK7Gx97_Sp1gAAj44xCaI4OhoVlKvM3Ed-DUfnbH6yhWaTpNP41xy3YLICl085XwjasmGETGmXTBqfYw03YuK-IWqdNqFuwmXM178Bp71WOjZNYyGg7Rxjt2HIj6xCdrGPOdBeeOzdPV7du0ULBTQjlM5cT7kmV-LHGaJXgg7KAaoL2YTQlKtKGYnBCf6eoikKNhx9JNaWBn3qGkNQne1AbjoZmHxwuGfMixdNAsjDUaFAdc8WUUiRQMQta4JW6FEnBL24n-y4WzMhWOwK1I6x2BGvBRfXJOCfXWDb4stS5KPbZdNno89yGlWDLo3391m-L0eRFzD_mwqeBx72DP4k9hDoipiiveDyC2mwyN8ewnnyiqSYn2UL8Ak811hE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cs4Hp1Px2wrig1Jomy5pHkUditsQN8feQtKkKug2Nuff76UfG4oM9KUvTa_hLrn7hbv8DuA0lvjCMOn6JKZumCTajSQCOelTpX3lmShlvOk2WKsV9Xr8Ib_HPS6q3YuUZOqpZ5fdfIxlru1GwPFM4bJFWAoxYNk6vsd2d5o6QICRckYhNEcHw8IilfmbiO_BqPjtD9bQNNLUK_-a4zqs5cDSucxWwgYsmH4VKkXTBiffw1VYbU6JWsdVKFuwmXE1b8JJ-0UOjRNbyGg7Rxjt2HIj6xCdtGPOeAue6jedq1s3b6HgxoTyD5cT7kkV-5HGaBXjg7KAaoL2YTQhqqYNxeCE_k5RVQs1Hn4k1ZQGfuIZQhKfbEOpP-ibHXC4ZMyrKZ4EkoWhRoPqiCumlCKBiliwC16hSxHn_OJ2sm9ixoxstSNQO8JqR7BdOJ9-MszINeYNvih0LvJ9Np43-iyz4VSw5dG-fu1eisHoWUzeJ8Kngce9vT-JPYaV206zIRp3rft9KCN6qmXVjwdQ-hhNzCEsx59ottFRuii_AGEu2PU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBR1WszxXEg7K4u9kmm2OxFsVaCtXiLSSbrAralj78_U720aJIQbzsZZMwzCQzX0jyfQBnscQfhknXJzF1wyTRbiQRyEmfKu0rz0Qp4023yVqt6PmZt3Od01Fx2704kszeNFiWpt74aqCTq9nDNx_rmmuVCTjuL1y2CEuh1Qyy2_VOd3qMgGAj5Y9CmI7JhoXFseZvQ3wvTIUJPxhE06rT2Pi3vZuwngNOp5bNkC1YML0ybBRiDk6-tsuw9jAlcB2VYdWC0IzDeRtOO69yYJzYQkmrKGG0Y68h2UTppEo6ox14atw8Xt-6ubSCGxPKxy4n3JMq9iONVSzGD2UB1QTjxmhCVFUbikUL86Ciqhpq3BRJqikN_MQzhCQ-2YVSr98ze-BwyZhXVTwJJAtDjYHWEVdMKUUCFbGgAl7hVxHnvOPW2HcxY0y23hHoHWG9I1gFLqZdBhnpxrzGl4X_Rb7-RvNan2fxnA5s-bXrb92a6A9fxORjInwaeNzb_9OwJ7DSrjdE8651fwCrCKqq2aXIQyiNhxNzBMvxJ0ZteJzOzy86NOHZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+constrained+additive+models&rft.jtitle=Statistics+and+computing&rft.au=Pya%2C+Natalya&rft.au=Wood%2C+Simon+N.&rft.date=2015-05-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=25&rft.issue=3&rft.spage=543&rft.epage=559&rft_id=info:doi/10.1007%2Fs11222-013-9448-7&rft.externalDocID=10_1007_s11222_013_9448_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon