Unbalanced budget distribution for automatic algorithm configuration

Optimization algorithms often have several critical setting parameters and the improvement of the empirical performance of these algorithms depends on tuning them. Manually configuration of such parameters is a tedious task that results in unsatisfactory outputs. Therefore, several automatic algorit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 26; číslo 3; s. 1315 - 1330
Hlavní autoři: Ghambari, Soheila, Rakhshani, Hojjat, Lepagnot, Julien, Jourdan, Laetitia, Idoumghar, Lhassane
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Verlag
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimization algorithms often have several critical setting parameters and the improvement of the empirical performance of these algorithms depends on tuning them. Manually configuration of such parameters is a tedious task that results in unsatisfactory outputs. Therefore, several automatic algorithm configuration frameworks have been proposed to regulate the parameters of a given algorithm for a series of problem instances. Although the developed frameworks perform very well to deal with various problems, however, there is still a trade-off between the accuracy and budget requirements that need to be addressed. This work investigates the performance of unbalanced distribution of budget for different configurations to deal with the automatic algorithm configuration problem. Inspired by the bandit-based approaches, the main goal is to find a better configuration that substantially improves the performance of the target algorithm while using a smaller run time budget. In this work, non-dominated sorting genetic algorithm II is employed as a target algorithm using jMetalPy software platform and the multimodal multi-objective optimization (MMO) test suite of CEC’2020 is used as a set of test problems. We did a comprehensive comparison with other known methods including random search, Bayesian optimization, sequential model-based algorithm configuration (SMAC), iterated local search in parameter configuration space (ParamILS), iterated racing for automatic algorithm configuration (irace), and many-objective automatic algorithm configuration (MAC) methods. In order to characterize, validate and evaluate the performance of these methods, hypervolume (HV), generational distance, and epsilon indicator ( I ϵ + ) are used as performance indicators. The experimental results interestingly proved the efficiency of the proposed approach for automatic algorithm configuration with a minimum time budget in comparison with other competitors.
AbstractList Optimization algorithms often have several critical setting parameters and the improvement of the empirical performance of these algorithms depends on tuning them. Manually configuration of such parameters is a tedious task that results in unsatisfactory outputs. Therefore, several automatic algorithm configuration frameworks have been proposed to regulate the parameters of a given algorithm for a series of problem instances. Although the developed frameworks perform very well to deal with various problems, however, there is still a trade-off between the accuracy and budget requirements that need to be addressed. This work investigates the performance of unbalanced distribution of budget for different configurations to deal with the automatic algorithm configuration problem. Inspired by the bandit-based approaches, the main goal is to find a better configuration that substantially improves the performance of the target algorithm while using a smaller run time budget. In this work, non-dominated sorting genetic algorithm II is employed as a target algorithm using jMetalPy software platform and the multimodal multi-objective optimization (MMO) test suite of CEC’2020 is used as a set of test problems. We did a comprehensive comparison with other known methods including random search, Bayesian optimization, sequential model-based algorithm configuration (SMAC), iterated local search in parameter configuration space (ParamILS), iterated racing for automatic algorithm configuration (irace), and many-objective automatic algorithm configuration (MAC) methods. In order to characterize, validate and evaluate the performance of these methods, hypervolume (HV), generational distance, and epsilon indicator ( I ϵ + ) are used as performance indicators. The experimental results interestingly proved the efficiency of the proposed approach for automatic algorithm configuration with a minimum time budget in comparison with other competitors.
Author Idoumghar, Lhassane
Lepagnot, Julien
Jourdan, Laetitia
Rakhshani, Hojjat
Ghambari, Soheila
Author_xml – sequence: 1
  givenname: Soheila
  orcidid: 0000-0003-2724-1843
  surname: Ghambari
  fullname: Ghambari, Soheila
  email: ghambari.soheila@gmail.com
  organization: IRIMAS UR 7499, Université de Haut-Alsace
– sequence: 2
  givenname: Hojjat
  surname: Rakhshani
  fullname: Rakhshani, Hojjat
  organization: IRIMAS UR 7499, Université de Haut-Alsace
– sequence: 3
  givenname: Julien
  surname: Lepagnot
  fullname: Lepagnot, Julien
  organization: IRIMAS UR 7499, Université de Haut-Alsace
– sequence: 4
  givenname: Laetitia
  surname: Jourdan
  fullname: Jourdan, Laetitia
  organization: CRIStAL, UMR 9189, CNRS, Centrale Lille, Université de Lille
– sequence: 5
  givenname: Lhassane
  surname: Idoumghar
  fullname: Idoumghar, Lhassane
  organization: IRIMAS UR 7499, Université de Haut-Alsace
BackLink https://hal.science/hal-03445787$$DView record in HAL
BookMark eNp9kD1vwyAQhlGVSk3S_oFOXjvQgsGAxyj9SKVIXZoZYQwOkQMV4Er593WSqkOHTHc6vc-d7pmBiQ_eAHCP0SNGiD8lhCqEICoxRIwiAg9XYIopIZBTXk9OfQk5o-QGzFLaoTHJKzIFzxvfqF55bdqiGdrO5KJ1KUfXDNkFX9gQCzXksFfZ6UL1XYgub_eFDt66bojqmLoF11b1ydz91jnYvL58Lldw_fH2vlysoSaszlBYa01tRGkNJW3DtbYCm4YyaxmrDcO0rtrGKstLrOrWCCZKVbWlpnVjjUBkDh7Oe7eql1_R7VU8yKCcXC3W8jhDhNKKC_6Nx2x5zuoYUorG_gEYyaMzeXYmRxPy5EweRkj8g7TLpxdzVK6_jJIzmsY7vjNR7sIQ_ajjEvUDpt-FYA
CitedBy_id crossref_primary_10_1162_evco_a_00354
Cites_doi 10.1023/A:1006556606079
10.1016/j.ins.2020.11.040
10.1145/3377930.3389831
10.1007/s11227-021-03915-0
10.1007/978-3-642-02538-9_13
10.1007/s10586-021-03291-7
10.3233/HIS-210008
10.1007/3-540-45356-3_83
10.1007/978-3-642-25566-3_40
10.1109/JPROC.2015.2494218
10.1016/j.neucom.2020.07.061
10.1109/CEC48606.2020.9185695
10.1007/s10462-020-09906-6
10.1007/978-3-030-18764-4
10.1109/4235.771166
10.1007/978-3-319-54157-0_5
10.1016/j.cie.2021.107250
10.1016/j.swevo.2021.100888
10.1016/j.swevo.2019.100598
10.1109/ICTAI50040.2020.00027
10.1016/j.cma.2020.113609
10.1007/s10479-021-04075-3
10.1007/978-3-030-12598-1_20
10.1613/jair.2861
10.1109/4235.797969
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s00500-021-06403-y
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1330
ExternalDocumentID oai:HAL:hal-03445787v1
10_1007_s00500_021_06403_y
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
1XC
ID FETCH-LOGICAL-c369t-8fffe9e82fe43db7ccf81eb46ff669e61495dbfaf721a9de8682a5d2c49bfe803
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713930100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Tue Oct 14 20:31:30 EDT 2025
Sat Nov 29 03:36:12 EST 2025
Tue Nov 18 22:08:47 EST 2025
Fri Feb 21 02:46:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Automatic algorithm configuration
Multi-objective optimization
Bandit-based approaches
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-8fffe9e82fe43db7ccf81eb46ff669e61495dbfaf721a9de8682a5d2c49bfe803
ORCID 0000-0003-2724-1843
0000-0002-4170-6830
OpenAccessLink https://link.springer.com/10.1007/s00500-021-06403-y
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03445787v1
crossref_primary_10_1007_s00500_021_06403_y
crossref_citationtrail_10_1007_s00500_021_06403_y
springer_journals_10_1007_s00500_021_06403_y
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Verlag
References Bartz-Beielstein T, Filipič B, Korošec P, Talbi EG (2020) High-performance simulation-based optimization. Springer
ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
EibenÁEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans Evol Comput19993212414110.1109/4235.771166
Rakhshani H, Idoumghar L, Lepagnot J, Brévilliers M (2019) Mac: many-objective automatic algorithm configuration. In: International conference on evolutionary multi-criterion optimization. Springer, pp 241–253
Abualigah L, Alkhrabsheh M (2021) Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. J Supercomput:1–26
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: International conference on learning and intelligent optimization. Springer, pp 507–523
LiLJamiesonKDeSalvoGRostamizadehATalwalkarAHyperband: a novel bandit-based approach to hyperparameter optimizationJ Mach Learn Res20171816765681638270731468.68204
Vermetten D, Wang H, Doerr C, Back T (2020) Integrated vs. sequential approaches for selecting and tuning cma-es variants. In: ACM genetic and evolutionary computation conference (GECCO’20)
MaronOMooreAWThe racing algorithm: model selection for lazy learnersArtif Intell Rev1997111–519322510.1023/A:1006556606079
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858
HalimAHIsmailIDasSPerformance assessment of the metaheuristic optimization algorithms: an exhaustive reviewArtif Intell Rev20215432323240910.1007/s10462-020-09906-6
Hutter F, Hoos HH, Stützle T (2007) Automatic algorithm configuration based on local search. In: Aaai, vol 7, pp 1152–1157
FriedmanJHastieTTibshiraniRThe elements of statistical learning2001New YorkSpringer0973.62007
HutterFHoosHHLeyton-BrownKStützleTParamils: an automatic algorithm configuration frameworkJ Artif Intell Res20093626730610.1613/jair.2861
Benitez-HidalgoANebroAJGarcia-NietoJOregiIDel SerJjmetalpy: a python framework for multi-objective optimization with metaheuristicsSwarm Evol Comput20195110059810.1016/j.swevo.2019.100598
Golabi M, Ghambari S, Lepagnot J, Jourdan L, Brévilliers M, Idoumghar L (2020) Bypassing or flying above the obstacles? A novel multi-objective uav path planning problem. In: 2020 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8
Jamieson K, Talwalkar A (2016) Non-stochastic best arm identification and hyperparameter optimization. In: Artificial intelligence and statistics, pp 240–248
PalakondaVMallipeddiRSuganthanPNAn ensemble approach with external archive for multi-and many-objective optimization with adaptive mating mechanism and two-level environmental selectionInf Sci2021555164197419819210.1016/j.ins.2020.11.040
Falkner S, Klein A, Hutter F (2018) Bohb: robust and efficient hyperparameter optimization at scale. In: International conference on machine learning. PMLR, pp 1437–1446
Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and iterated f-race: an overview. In: Experimental methods for the analysis of optimization algorithms. Springer, pp 311–336
Stützle T (2016) Automatic algorithm configuration: methods, applications, and perspectives. In: IJCCI (ECTA), p 7
ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: a review of bayesian optimizationProc IEEE2015104114817510.1109/JPROC.2015.2494218
López-IbáñezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOper Res Persp2016343583579175
Ghambari S, Golabi M, Lepagnot J, Brévilliers M, Jourdan L, Idoumghar L (2020) An enhanced nsga-ii for multiobjective uav path planning in urban environments. In: 2020 IEEE 32nd international conference on tools with artificial intelligence (ICTAI), pp 106–111 . https://doi.org/10.1109/ICTAI50040.2020.00027
YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing202041529531610.1016/j.neucom.2020.07.061
Blot A, Pernet A, Jourdan L, Kessaci-Marmion M.É, Hoos HH (2017) Automatically configuring multi-objective local search using multi-objective optimisation. In: International conference on evolutionary multi-criterion optimization. Springer, pp 61–76
Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021b) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609
Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021c) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250
Bharati S, Podder P, Mondal M, Prasath V (2021) Co-resnet: optimized resnet model for covid-19 diagnosis from x-ray images. Int J Hybrid Intell Syst (Preprint):1–15
Hutter F (2009) Automated configuration of algorithms for solving hard computational problems. Ph.D. thesis, University of British Columbia
Corazza M, di Tollo G, Fasano G, Pesenti R (2021) A novel hybrid pso-based metaheuristic for costly portfolio selection problems. Ann Oper Res:1–29
Abualigah L, Diabat A, Abd Elaziz M (2021a) Intelligent workflow scheduling for big data applications in iot cloud computing environments. Cluster Comput:1–20
Osaba E, Villar-Rodriguez E, Del Ser J, Nebro AJ, Molina D, LaTorre A, Suganthan PN, Coello CAC, Herrera F (2021) A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol Comput:100888
BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res201213128130529137011283.68282
Eggensperger K, Feurer M, Hutter F, Bergstra J, Snoek J, Hoos H, Leyton-Brown K (2013) Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In: NIPS workshop on Bayesian optimization in theory and practice, vol 10, p 3
Liang J, Yue C, Li G, Qu B, Suganthan P, Yu K (2020) Problem definitions and evaluation criteria for the cec 2021 on multimodal multiobjective path planning optimization. Zhengzhou University and Nanyang Technological University, Tech. rep
6403_CR4
6403_CR3
6403_CR2
6403_CR1
J Friedman (6403_CR16) 2001
6403_CR26
B Shahriari (6403_CR32) 2015; 104
L Yang (6403_CR35) 2020; 415
6403_CR9
6403_CR8
6403_CR29
AH Halim (6403_CR19) 2021; 54
6403_CR5
L Li (6403_CR25) 2017; 18
6403_CR20
6403_CR21
6403_CR24
6403_CR23
ÁE Eiben (6403_CR14) 1999; 3
M López-Ibáñez (6403_CR27) 2016; 3
J Bergstra (6403_CR7) 2012; 13
V Palakonda (6403_CR30) 2021; 555
6403_CR15
F Hutter (6403_CR22) 2009; 36
6403_CR17
A Benitez-Hidalgo (6403_CR6) 2019; 51
6403_CR18
6403_CR31
6403_CR11
6403_CR33
6403_CR10
6403_CR13
E Zitzler (6403_CR36) 1999; 3
6403_CR12
6403_CR34
O Maron (6403_CR28) 1997; 11
References_xml – reference: Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-race and iterated f-race: an overview. In: Experimental methods for the analysis of optimization algorithms. Springer, pp 311–336
– reference: Liang J, Yue C, Li G, Qu B, Suganthan P, Yu K (2020) Problem definitions and evaluation criteria for the cec 2021 on multimodal multiobjective path planning optimization. Zhengzhou University and Nanyang Technological University, Tech. rep
– reference: LiLJamiesonKDeSalvoGRostamizadehATalwalkarAHyperband: a novel bandit-based approach to hyperparameter optimizationJ Mach Learn Res20171816765681638270731468.68204
– reference: Benitez-HidalgoANebroAJGarcia-NietoJOregiIDel SerJjmetalpy: a python framework for multi-objective optimization with metaheuristicsSwarm Evol Comput20195110059810.1016/j.swevo.2019.100598
– reference: Osaba E, Villar-Rodriguez E, Del Ser J, Nebro AJ, Molina D, LaTorre A, Suganthan PN, Coello CAC, Herrera F (2021) A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol Comput:100888
– reference: Stützle T (2016) Automatic algorithm configuration: methods, applications, and perspectives. In: IJCCI (ECTA), p 7
– reference: Corazza M, di Tollo G, Fasano G, Pesenti R (2021) A novel hybrid pso-based metaheuristic for costly portfolio selection problems. Ann Oper Res:1–29
– reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858
– reference: ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: a review of bayesian optimizationProc IEEE2015104114817510.1109/JPROC.2015.2494218
– reference: PalakondaVMallipeddiRSuganthanPNAn ensemble approach with external archive for multi-and many-objective optimization with adaptive mating mechanism and two-level environmental selectionInf Sci2021555164197419819210.1016/j.ins.2020.11.040
– reference: Abualigah L, Alkhrabsheh M (2021) Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing. J Supercomput:1–26
– reference: Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021b) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609
– reference: Eggensperger K, Feurer M, Hutter F, Bergstra J, Snoek J, Hoos H, Leyton-Brown K (2013) Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In: NIPS workshop on Bayesian optimization in theory and practice, vol 10, p 3
– reference: Vermetten D, Wang H, Doerr C, Back T (2020) Integrated vs. sequential approaches for selecting and tuning cma-es variants. In: ACM genetic and evolutionary computation conference (GECCO’20)
– reference: Hutter F, Hoos HH, Stützle T (2007) Automatic algorithm configuration based on local search. In: Aaai, vol 7, pp 1152–1157
– reference: Rakhshani H, Idoumghar L, Lepagnot J, Brévilliers M (2019) Mac: many-objective automatic algorithm configuration. In: International conference on evolutionary multi-criterion optimization. Springer, pp 241–253
– reference: Bartz-Beielstein T, Filipič B, Korošec P, Talbi EG (2020) High-performance simulation-based optimization. Springer
– reference: López-IbáñezMDubois-LacosteJCáceresLPBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOper Res Persp2016343583579175
– reference: YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing202041529531610.1016/j.neucom.2020.07.061
– reference: Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: International conference on learning and intelligent optimization. Springer, pp 507–523
– reference: Bharati S, Podder P, Mondal M, Prasath V (2021) Co-resnet: optimized resnet model for covid-19 diagnosis from x-ray images. Int J Hybrid Intell Syst (Preprint):1–15
– reference: Golabi M, Ghambari S, Lepagnot J, Jourdan L, Brévilliers M, Idoumghar L (2020) Bypassing or flying above the obstacles? A novel multi-objective uav path planning problem. In: 2020 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8
– reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans Evol Comput19993425727110.1109/4235.797969
– reference: Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021c) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250
– reference: Jamieson K, Talwalkar A (2016) Non-stochastic best arm identification and hyperparameter optimization. In: Artificial intelligence and statistics, pp 240–248
– reference: FriedmanJHastieTTibshiraniRThe elements of statistical learning2001New YorkSpringer0973.62007
– reference: EibenÁEHinterdingRMichalewiczZParameter control in evolutionary algorithmsIEEE Trans Evol Comput19993212414110.1109/4235.771166
– reference: HutterFHoosHHLeyton-BrownKStützleTParamils: an automatic algorithm configuration frameworkJ Artif Intell Res20093626730610.1613/jair.2861
– reference: MaronOMooreAWThe racing algorithm: model selection for lazy learnersArtif Intell Rev1997111–519322510.1023/A:1006556606079
– reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ Mach Learn Res201213128130529137011283.68282
– reference: Falkner S, Klein A, Hutter F (2018) Bohb: robust and efficient hyperparameter optimization at scale. In: International conference on machine learning. PMLR, pp 1437–1446
– reference: Abualigah L, Diabat A, Abd Elaziz M (2021a) Intelligent workflow scheduling for big data applications in iot cloud computing environments. Cluster Comput:1–20
– reference: HalimAHIsmailIDasSPerformance assessment of the metaheuristic optimization algorithms: an exhaustive reviewArtif Intell Rev20215432323240910.1007/s10462-020-09906-6
– reference: Hutter F (2009) Automated configuration of algorithms for solving hard computational problems. Ph.D. thesis, University of British Columbia
– reference: Blot A, Pernet A, Jourdan L, Kessaci-Marmion M.É, Hoos HH (2017) Automatically configuring multi-objective local search using multi-objective optimisation. In: International conference on evolutionary multi-criterion optimization. Springer, pp 61–76
– reference: Ghambari S, Golabi M, Lepagnot J, Brévilliers M, Jourdan L, Idoumghar L (2020) An enhanced nsga-ii for multiobjective uav path planning in urban environments. In: 2020 IEEE 32nd international conference on tools with artificial intelligence (ICTAI), pp 106–111 . https://doi.org/10.1109/ICTAI50040.2020.00027
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 6403_CR7
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 193
  issue: 1–5
  year: 1997
  ident: 6403_CR28
  publication-title: Artif Intell Rev
  doi: 10.1023/A:1006556606079
– volume: 555
  start-page: 164
  year: 2021
  ident: 6403_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.11.040
– ident: 6403_CR20
– ident: 6403_CR34
  doi: 10.1145/3377930.3389831
– ident: 6403_CR1
  doi: 10.1007/s11227-021-03915-0
– ident: 6403_CR9
  doi: 10.1007/978-3-642-02538-9_13
– ident: 6403_CR2
  doi: 10.1007/s10586-021-03291-7
– ident: 6403_CR8
  doi: 10.3233/HIS-210008
– ident: 6403_CR12
  doi: 10.1007/3-540-45356-3_83
– ident: 6403_CR21
  doi: 10.1007/978-3-642-25566-3_40
– ident: 6403_CR26
– ident: 6403_CR24
– volume: 104
  start-page: 148
  issue: 1
  year: 2015
  ident: 6403_CR32
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 415
  start-page: 295
  year: 2020
  ident: 6403_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– ident: 6403_CR18
  doi: 10.1109/CEC48606.2020.9185695
– volume: 3
  start-page: 43
  year: 2016
  ident: 6403_CR27
  publication-title: Oper Res Persp
– volume: 54
  start-page: 2323
  issue: 3
  year: 2021
  ident: 6403_CR19
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09906-6
– volume-title: The elements of statistical learning
  year: 2001
  ident: 6403_CR16
– ident: 6403_CR13
– ident: 6403_CR5
  doi: 10.1007/978-3-030-18764-4
– volume: 3
  start-page: 124
  issue: 2
  year: 1999
  ident: 6403_CR14
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.771166
– ident: 6403_CR15
– ident: 6403_CR10
  doi: 10.1007/978-3-319-54157-0_5
– ident: 6403_CR4
  doi: 10.1016/j.cie.2021.107250
– ident: 6403_CR29
  doi: 10.1016/j.swevo.2021.100888
– volume: 18
  start-page: 6765
  issue: 1
  year: 2017
  ident: 6403_CR25
  publication-title: J Mach Learn Res
– volume: 51
  start-page: 100598
  year: 2019
  ident: 6403_CR6
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.100598
– ident: 6403_CR17
  doi: 10.1109/ICTAI50040.2020.00027
– ident: 6403_CR33
– ident: 6403_CR3
  doi: 10.1016/j.cma.2020.113609
– ident: 6403_CR11
  doi: 10.1007/s10479-021-04075-3
– ident: 6403_CR23
– ident: 6403_CR31
  doi: 10.1007/978-3-030-12598-1_20
– volume: 36
  start-page: 267
  year: 2009
  ident: 6403_CR22
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.2861
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 6403_CR36
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
SSID ssj0021753
Score 2.3007739
Snippet Optimization algorithms often have several critical setting parameters and the improvement of the empirical performance of these algorithms depends on tuning...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1315
SubjectTerms Artificial Intelligence
Computational Intelligence
Computer Science
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Operations Research
Optimization
Robotics
Title Unbalanced budget distribution for automatic algorithm configuration
URI https://link.springer.com/article/10.1007/s00500-021-06403-y
https://hal.science/hal-03445787
Volume 26
WOSCitedRecordID wos000713930100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8I-KAPoqgRP0hjfNMl0M3SPaJCeDCEoBjelrVrgQTBwCDhv7c3ukWNIdG3Zbl2y_Wud5e7-x3ADRWSukyHjjFG1PEE9x2hPPNUZxFiufCwrpNhE_VOhw8Gftc2hS3Savc0JZnc1FmzG0KVVB0sKcDsk-usc1AwX-Cojr2XtyzMstiTxhEwvqMxuLZV5vc9vpmj3AiLIX9kRBND0yr-7xcP4cA6lqSxkYQj2FHTEhTToQ3E6nAJ9r8gEB7DU38qsLhRqoiIZTRUMYkQStdOwSLGpSXhMp4lwK4knAxn83E8eicmitbj4XIjPifQbzVfH9uOHazgSJf5scO11spXnGrlIb6ylJrXlPCY1oz5imHUFAkdahMehn6kOOM0vI-o9HyhFa-6p5CfzqbqDIjvSowJpeAi9DyPCuFqTnGcDReM62oZail_A2lRx3H4xSTI8JITpgWGaUHCtGBdhttszccGc2Mr9bU5towQ4bLbjecA3yGcId5Iq1oZ7tITC6ySLrbsef438gvYo9gVkRRzX0I-ni_VFezKVTxezCtQeGh2ur1KIqWf78LgVA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8AvXB-YnzM4hvWtjSmKWPoo6Jc4hO2Vtp0mQbaCdbK_jfm-vSoiKCvpVyDeVyyd1xd78fwDGVivrcRJ51RtRjUgSe1Mw-NXiMWC4iapicbKLR6YheL7hzQ2GTotu9KEnmN3U57IZQJTUPWwqw-uR777Mwz6zHwka--4enMs1y2JM2ELCxo3W4blTm5zW-uKPZATZDfquI5o6mWfnfL67CigssyfnUEtZgRifrUClIG4g7w-uw_AmBcAMuHxOJzY1Kx0RmcV-nJEYoXceCRWxIS6IsHeXAriR67o_Gw3TwQmwWbYb9bGo-m_DYvOpetDxHrOApnwepJ4wxOtCCGs0QX1kpI-paMm4M54HmmDXF0kTGpodREGvBBY3OYqpYII0WNX8L5pJRoreBBL7CnFBJISPGGJXSN4IinY2QXJhaFeqFfkPlUMeR_OI5LPGSc6WFVmlhrrTwvQon5TevU8yNX6WP7LaVggiX3Tpvh_gO4QzxRnqrV-G02LHQHdLJL2vu_E38EBZb3dt22L7u3OzCEsUJibyxew_m0nGm92FBvaXDyfggt9QPbTfhng
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-ciuiD06k4P4P4pmVbGrP0cahDUcbAD_ZWmjTZBtrJ1g787821XZkiA_GtlGsIl0vvjrv7_QDOqVTU5SZwrDOiDpPCc6Rm9qnJQ8RyEUHTpGQTzU5H9Hped26KP-12n5Uks5kGRGmK4tpHaGrF4BvCltQdbC_ASpTrfJZghSFpEObrT69FypXjUNqgwMaR1vnmYzO_r_HNNZUG2Bj5ozqaOp12-f_b3YLNPOAkrcxCtmFJRxUoz8gcSH63K7Axh0y4AzcvkcSmR6VDIpOwr2MSIsRuzo5FbKhLgiQepYCvJHjrj8bDePBO7L7MsJ9kZrULL-3b5-s7JydccJTLvdgRxhjtaUGNZoi7rJQRDS0ZN4ZzT3PMpkJpAmPTxsALteCCBlchVcyTRou6uwfL0SjS-0A8V2GuqKSQAWOMSukaQZHmRkguTL0KjZmufZWjkSMpxptf4CinSvOt0vxUaf5nFS6Kbz4yLI6F0mf2CAtBhNG-az36-A5hDvFPNW1U4XJ2en5-eScL1jz4m_gprHVv2v7jfefhENYpDk6k_d5HsByPE30Mq2oaDyfjk9RovwDoOOqC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unbalanced+budget+distribution+for+automatic+algorithm+configuration&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Ghambari%2C+Soheila&rft.au=Rakhshani%2C+Hojjat&rft.au=Lepagnot%2C+Julien&rft.au=Jourdan%2C+Laetitia&rft.date=2022-02-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=3&rft.spage=1315&rft.epage=1330&rft_id=info:doi/10.1007%2Fs00500-021-06403-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_06403_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon