Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis

Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Math...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACM transactions on mathematical software Ročník 43; číslo 3
Hlavní autoři: Li, Huamin, Linderman, George C, Szlam, Arthur, Stanton, Kelly P, Kluger, Yuval, Tygert, Mark
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2017
Témata:
ISSN:0098-3500
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).
AbstractList Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).
Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).
Author Stanton, Kelly P
Tygert, Mark
Li, Huamin
Linderman, George C
Kluger, Yuval
Szlam, Arthur
Author_xml – sequence: 1
  givenname: Huamin
  surname: Li
  fullname: Li, Huamin
  organization: Program in Applied Mathematics, 51 Prospect St., Yale University, New Haven, CT 06510
– sequence: 2
  givenname: George C
  surname: Linderman
  fullname: Linderman, George C
  organization: Program in Applied Mathematics, 51 Prospect St., Yale University, New Haven, CT 06510
– sequence: 3
  givenname: Arthur
  surname: Szlam
  fullname: Szlam, Arthur
  organization: Facebook, 8th floor, 770 Broadway, New York, NY 10003
– sequence: 4
  givenname: Kelly P
  surname: Stanton
  fullname: Stanton, Kelly P
  organization: Yale University, School of Medicine, Department of Pathology, Suite 505L, 300 George St., New Haven, CT 06520
– sequence: 5
  givenname: Yuval
  surname: Kluger
  fullname: Kluger, Yuval
  organization: Yale University, School of Medicine, Department of Pathology, Suite 505L, 300 George St., New Haven, CT 06520
– sequence: 6
  givenname: Mark
  surname: Tygert
  fullname: Tygert, Mark
  organization: Facebook, 1 Facebook Way, Menlo Park, CA 94025
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28983138$$D View this record in MEDLINE/PubMed
BookMark eNpFkEtLAzEYRbOo2FbFfyBZuhn9kpl0Enel-CgUFNGViyFPjeQxTqaL-ustWHF1N-ceLneOJikni9A5gStCGnZdAzTA6gmaAQhe1QxgiualfAIAJS05RlPKBa9JzWfobRne8-DHj4hFS27wMuF17IONNo1y9Dnh7LDEzzKZHP23Nfi_4PKAnwaftO9lwKsc-_2QNO4dMuyKL6foyMlQ7NkhT9Dr3e3L6qHaPN6vV8tNpeuFGCsuSWMUIVoLUHqhwGjXaKY4papttdGMKO6gdYw3giptwFptW6sdI0ZZR0_Q5a-3H_LX1paxi75oG4JMNm9LR0TDW8YYXezRiwO6VdGarh98lMOu-zuE_gC7bWGt
CitedBy_id crossref_primary_10_1002_gepi_22136
crossref_primary_10_1088_2632_2153_ab8240
crossref_primary_10_1002_2017WR021870
crossref_primary_10_1007_s10915_023_02411_2
crossref_primary_10_1515_mcma_2023_2012
crossref_primary_10_1137_23M1558537
crossref_primary_10_1137_22M1538648
crossref_primary_10_1155_2021_9840335
crossref_primary_10_1017_jpr_2020_21
crossref_primary_10_1109_TMTT_2021_3090798
crossref_primary_10_1145_3506691
crossref_primary_10_1137_17M1111590
crossref_primary_10_1021_jasms_4c00314
crossref_primary_10_1137_17M1141977
crossref_primary_10_1137_22M154079X
crossref_primary_10_1017_S0962492920000021
crossref_primary_10_1137_23M1548323
crossref_primary_10_1109_TPAMI_2018_2839198
crossref_primary_10_1137_18M118966X
crossref_primary_10_1007_s11227_022_04524_1
crossref_primary_10_1007_s13253_020_00415_1
crossref_primary_10_1137_20M1355720
crossref_primary_10_1137_21M1466244
crossref_primary_10_1137_17M1138480
crossref_primary_10_3390_a15060190
crossref_primary_10_1007_s10618_023_00976_y
crossref_primary_10_1038_s41592_018_0308_4
crossref_primary_10_1145_3660629
crossref_primary_10_1002_nme_6068
crossref_primary_10_1186_s13059_019_1900_3
crossref_primary_10_1186_s13059_019_1639_x
ContentType Journal Article
DBID NPM
7X8
DOI 10.1145/3004053
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
ExternalDocumentID 28983138
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA158167
– fundername: NHGRI NIH HHS
  grantid: F30 HG010102
– fundername: NIGMS NIH HHS
  grantid: T32 GM007205
– fundername: NHGRI NIH HHS
  grantid: R01 HG008383
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
6OB
85S
8US
9M8
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
AAYOK
ABFSI
ABPPZ
ABTAH
ACGFO
ACGOD
ACIWK
ACM
ACNCT
ADBCU
ADL
ADPZR
AEBYY
AENEX
AENSD
AFFNX
AFWIH
AFWXC
AGHSJ
AI.
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
D0L
E.L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
H~9
I07
IAO
ICD
IEA
IGS
IOF
ITC
LHSKQ
MS~
MVM
NHB
NPM
OHT
P1C
P2P
PKN
PQQKQ
RNS
ROL
RXW
TAE
TWZ
U5U
UAO
UHB
UPT
VH1
W7O
X6Y
XJT
XOL
ZCA
ZY4
7X8
AEFXT
AEJOY
AETEA
AKRVB
AMVHM
ID FETCH-LOGICAL-c369t-8a14db11cc90bc6b0dcf4c5b822b77cdc51b8f07f58492bcd0eece7ecf51dbef2
IEDL.DBID 7X8
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395512100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3500
IngestDate Fri Sep 05 09:28:07 EDT 2025
Wed Feb 19 02:44:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SVD
Algorithms
Performance
singular value decomposition
PCA
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-8a14db11cc90bc6b0dcf4c5b822b77cdc51b8f07f58492bcd0eece7ecf51dbef2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28983138
PQID 1948755526
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1948755526
pubmed_primary_28983138
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACM transactions on mathematical software
PublicationTitleAlternate ACM Trans Math Softw
PublicationYear 2017
SSID ssj0002171
Score 2.4499264
Snippet Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/28983138
https://www.proquest.com/docview/1948755526
Volume 43
WOSCitedRecordID wos000395512100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl7U9f0kggc9FJO26cOLLOLixWURhQUPSzJJdMFtV7t68Nc7aVP2JAheSi_TKZlJ5ptJ8g0hZ0nMpQS0QBLJPED8rwMER3kABsODFIlKIK6bTaT9fjYc5gNfcKv8scp2TawXal2Cq5FfYrKN0FqIMLmevgeua5TbXfUtNBbJcoRQxh3pSodztnCE27zlzIwEY82lWcwAxKUjmmKuI_JvuLKOL731__7ZBlnzyJJ2G1fokAVTbJL1tmsD9ZN4k3T8W0XPPef0xRZ57r694DdnrxOap_yKdgta8wZP_NWkgpaWSvogC11Oxt9G07kAwl46aGr2qN8pLAsUoy3fyTZ56t0-3twFvu9CAFGSz4JM8lgrzgFypiBRTIONQSjEEipNQYPgKrMstQhe8lCBZsaASQ1YwbUyNtwhSwVq2iPUhiAjG2rgTMaZ0ZJpIxHBCIOwwPJ0n5y2YzpCv3abFbIw5Wc1mo_qPtltDDOaNgQcI0wSM7R3dvAH6UOyGrpIXFdNjsiyxVltjskKfM3G1cdJ7TD47A_ufwAxLMye
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+971%3A+An+Implementation+of+a+Randomized+Algorithm+for+Principal+Component+Analysis&rft.jtitle=ACM+transactions+on+mathematical+software&rft.au=Li%2C+Huamin&rft.au=Linderman%2C+George+C&rft.au=Szlam%2C+Arthur&rft.au=Stanton%2C+Kelly+P&rft.date=2017-01-01&rft.issn=0098-3500&rft.volume=43&rft.issue=3&rft_id=info:doi/10.1145%2F3004053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3500&client=summon