Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis

Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on mathematical software Jg. 43; H. 3
Hauptverfasser: Li, Huamin, Linderman, George C, Szlam, Arthur, Stanton, Kelly P, Kluger, Yuval, Tygert, Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.01.2017
Schlagworte:
ISSN:0098-3500
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks' MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0098-3500
DOI:10.1145/3004053