A Two-Dimensional Variant of Newton’s Method and a Three-Point Hermite Interpolation: Fourth- and Eighth-Order Optimal Iterative Schemes
A nonlinear equation f(x)=0 is mathematically transformed to a coupled system of quasi-linear equations in the two-dimensional space. Then, a linearized approximation renders a fractional iterative scheme xn+1=xn−f(xn)/[a+bf(xn)], which requires one evaluation of the given function per iteration. A...
Saved in:
| Published in: | Mathematics (Basel) Vol. 11; no. 21; p. 4529 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2023
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A nonlinear equation f(x)=0 is mathematically transformed to a coupled system of quasi-linear equations in the two-dimensional space. Then, a linearized approximation renders a fractional iterative scheme xn+1=xn−f(xn)/[a+bf(xn)], which requires one evaluation of the given function per iteration. A local convergence analysis is adopted to determine the optimal values of a and b. Moreover, upon combining the fractional iterative scheme to the generalized quadrature methods, the fourth-order optimal iterative schemes are derived. The finite differences based on three data are used to estimate the optimal values of a and b. We recast the Newton iterative method to two types of derivative-free iterative schemes by using the finite difference technique. A three-point generalized Hermite interpolation technique is developed, which includes the weight functions with certain constraints. Inserting the derived interpolation formulas into the triple Newton method, the eighth-order optimal iterative schemes are constructed, of which four evaluations of functions per iteration are required. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math11214529 |