A Two-Dimensional Variant of Newton’s Method and a Three-Point Hermite Interpolation: Fourth- and Eighth-Order Optimal Iterative Schemes

A nonlinear equation f(x)=0 is mathematically transformed to a coupled system of quasi-linear equations in the two-dimensional space. Then, a linearized approximation renders a fractional iterative scheme xn+1=xn−f(xn)/[a+bf(xn)], which requires one evaluation of the given function per iteration. A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 21; s. 4529
Hlavní autoři: Liu, Chein-Shan, El-Zahar, Essam R., Chang, Chih-Wen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A nonlinear equation f(x)=0 is mathematically transformed to a coupled system of quasi-linear equations in the two-dimensional space. Then, a linearized approximation renders a fractional iterative scheme xn+1=xn−f(xn)/[a+bf(xn)], which requires one evaluation of the given function per iteration. A local convergence analysis is adopted to determine the optimal values of a and b. Moreover, upon combining the fractional iterative scheme to the generalized quadrature methods, the fourth-order optimal iterative schemes are derived. The finite differences based on three data are used to estimate the optimal values of a and b. We recast the Newton iterative method to two types of derivative-free iterative schemes by using the finite difference technique. A three-point generalized Hermite interpolation technique is developed, which includes the weight functions with certain constraints. Inserting the derived interpolation formulas into the triple Newton method, the eighth-order optimal iterative schemes are constructed, of which four evaluations of functions per iteration are required.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11214529