Convergence Analysis of Batch Gradient Algorithm for Three Classes of Sigma-Pi Neural Networks

Sigma-Pi (Σ-Π) neural networks (SPNNs) are known to provide more powerful mapping capability than traditional feed-forward neural networks. A unified convergence analysis for the batch gradient algorithm for SPNN learning is presented, covering three classes of SPNNs: Σ-Π-Σ, Σ-Σ-Π and Σ-Π-Σ-Π. The m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural processing letters Ročník 26; číslo 3; s. 177 - 189
Hlavní autoři: Zhang, Chao, Wu, Wei, Xiong, Yan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer 01.12.2007
Springer Nature B.V
Témata:
ISSN:1370-4621, 1573-773X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sigma-Pi (Σ-Π) neural networks (SPNNs) are known to provide more powerful mapping capability than traditional feed-forward neural networks. A unified convergence analysis for the batch gradient algorithm for SPNN learning is presented, covering three classes of SPNNs: Σ-Π-Σ, Σ-Σ-Π and Σ-Π-Σ-Π. The monotonicity of the error function in the iteration is also guaranteed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-007-9050-0