Autoencoder for words

This paper presents a training method that encodes each word into a different vector in semantic space and its relation to low entropy coding. Elman network is employed in the method to process word sequences from literary works. The trained codes possess reduced entropy and are used in ranking, ind...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 139; s. 84 - 96
Hlavní autoři: Liou, Cheng-Yuan, Cheng, Wei-Chen, Liou, Jiun-Wei, Liou, Daw-Ran
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 02.09.2014
Elsevier
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a training method that encodes each word into a different vector in semantic space and its relation to low entropy coding. Elman network is employed in the method to process word sequences from literary works. The trained codes possess reduced entropy and are used in ranking, indexing, and categorizing literary works. A modification of the method to train the multi-vector for each polysemous word is also presented where each vector represents a different meaning of its word. These multiple vectors can accommodate several different meanings of their word. This method is applied to the stylish analyses of two Chinese novels, Dream of the Red Chamber and Romance of the Three Kingdoms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2013.09.055