Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates

Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and oft...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 51; číslo 8; s. 3925 - 3937
Hlavní autoři: Li, Jian-Yu, Zhan, Zhi-Hui, Wang, Hua, Zhang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results.
AbstractList Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results.
Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results.Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results.
Author Zhan, Zhi-Hui
Li, Jian-Yu
Wang, Hua
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jian-Yu
  orcidid: 0000-0002-6143-9207
  surname: Li
  fullname: Li, Jian-Yu
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  email: zhanapollo@163.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Hua
  orcidid: 0000-0002-8465-0996
  surname: Wang
  fullname: Wang, Hua
  organization: College of Engineering and Science, Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  email: csjun@scut.edu.cn
  organization: Victoria University, Melbourne, VIC, Australia
BookMark eNp9kU1PwyAch4mZcVP3AYyXJl68dAJteTm6OV-SRU3UGE-E0X9nl64oUBO_vdQZDx4EAgSeH4GHfTRobQsIHRE8IQTLs8fZy3RCMcWTDGNBBd5BI0qYSCnlxeB3zvgQjb1f41hEXJJiDw0zyjkTgo3Q7YUOOr1w9Qe0yfzDNl2obavdZ3LerKyrw-smeY59cg8udG6p--10qj2Uybz1sFk2kDx0ztmVDuAP0W6lGw_jn_EAPV3OH2fX6eLu6mZ2vkhNxmRIWVFKHRtZZtho4JqKSkugRY6LylQli1UTgw0TpuI5W5aClhxXEWQGSJ4doNPtuW_Ovnfgg9rU3kDT6BZs5xXNMyoKWRAa0ZM_6Np2ro23U7QouOSScBIpvqWMs947qJSpw_djg9N1owhWvXXVW1e9dfVjPSbJn-SbqzfR4L-Z422mBoBfXhIWPwZnXxcWjbQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s10791_025_09671_6
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1109_TEVC_2021_3065659
crossref_primary_10_1016_j_swevo_2025_102093
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_1109_TEVC_2022_3182810
crossref_primary_10_1016_j_asoc_2024_112464
crossref_primary_10_1109_TBDATA_2022_3232761
crossref_primary_10_1109_TEVC_2021_3051608
crossref_primary_10_1109_TCYB_2022_3175533
crossref_primary_10_1016_j_eswa_2023_120826
crossref_primary_10_26599_BDMA_2022_9020046
crossref_primary_10_1016_j_ins_2025_122585
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1109_TEVC_2023_3338693
crossref_primary_10_1007_s10489_024_05612_w
crossref_primary_10_1109_TETCI_2023_3313555
crossref_primary_10_1016_j_swevo_2025_102003
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_1109_TEVC_2022_3232776
crossref_primary_10_1016_j_knosys_2023_111018
crossref_primary_10_1007_s12559_024_10383_0
crossref_primary_10_3390_en15031061
crossref_primary_10_1016_j_asoc_2025_113440
crossref_primary_10_1007_s00521_024_10203_4
crossref_primary_10_1016_j_asoc_2025_113367
crossref_primary_10_1016_j_asoc_2025_112901
crossref_primary_10_1109_ACCESS_2024_3501775
crossref_primary_10_1109_TEVC_2022_3170638
crossref_primary_10_1109_TCYB_2024_3469371
crossref_primary_10_1109_TITS_2022_3180760
crossref_primary_10_1109_TEVC_2023_3287213
crossref_primary_10_1016_j_swevo_2025_102034
crossref_primary_10_1007_s41019_025_00283_0
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_TCYB_2021_3064676
crossref_primary_10_1109_TEVC_2022_3231493
crossref_primary_10_1109_TCYB_2021_3118783
crossref_primary_10_1109_TCYB_2022_3170344
crossref_primary_10_1109_TCYB_2021_3125362
crossref_primary_10_1109_TCYB_2022_3153964
crossref_primary_10_1007_s40747_023_01179_0
crossref_primary_10_1080_01969722_2020_1827797
crossref_primary_10_1109_TCYB_2024_3443396
crossref_primary_10_1109_TEVC_2023_3291614
crossref_primary_10_1007_s13755_024_00295_6
crossref_primary_10_1007_s11280_024_01275_2
crossref_primary_10_1109_TEVC_2021_3131236
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1109_ACCESS_2022_3204039
crossref_primary_10_1109_TCYB_2021_3102642
crossref_primary_10_1007_s40747_021_00506_7
crossref_primary_10_1111_mice_13354
crossref_primary_10_1109_TEVC_2022_3149601
crossref_primary_10_3390_math10060943
crossref_primary_10_1007_s40747_022_00910_7
crossref_primary_10_1109_TCYB_2022_3158391
crossref_primary_10_1109_TCYB_2020_3028070
crossref_primary_10_1109_TETCI_2020_3047410
crossref_primary_10_3390_app15169068
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1007_s12559_023_10128_5
crossref_primary_10_1016_j_asoc_2022_109263
crossref_primary_10_1109_TNNLS_2021_3106399
crossref_primary_10_1007_s40747_025_01812_0
crossref_primary_10_1109_TG_2023_3236490
crossref_primary_10_1016_j_asoc_2023_110228
crossref_primary_10_1109_TCYB_2021_3120188
crossref_primary_10_1049_cit2_12106
crossref_primary_10_1016_j_eswa_2023_121783
Cites_doi 10.1109/TKDE.2014.2345380
10.1109/TEVC.2018.2834881
10.1109/TEVC.2013.2262111
10.1109/TEVC.2017.2675628
10.1109/TCYB.2018.2809430
10.1109/TCYB.2019.2933499
10.1080/00401706.1987.10488205
10.1109/TCYB.2018.2794503
10.1109/TSMCB.2012.2209115
10.1109/TEVC.2013.2248012
10.1109/TKDE.2017.2720168
10.2166/hydro.2017.063
10.1109/TCYB.2018.2869674
10.1109/TEVC.2018.2869001
10.1109/TEVC.2020.2979740
10.1007/s00500-003-0328-5
10.1109/TCYB.2015.2459137
10.1115/DETC2001/DAC-21063
10.1109/TEVC.2016.2555315
10.1109/TEVC.2017.2785351
10.1109/TEVC.2019.2944180
10.1109/TCYB.2020.2977956
10.1109/TEVC.2019.2910721
10.1016/j.ins.2012.09.030
10.1109/TCYB.2016.2579658
10.1109/TPDS.2016.2597826
10.1109/TCYB.2018.2832640
10.1109/TEVC.2005.859464
10.1109/TEVC.2018.2849331
10.1109/TEVC.2002.800884
10.2514/3.58379
10.1201/b12207
10.1109/TEVC.2016.2622301
10.1109/TCYB.2019.2927780
10.1002/mcda.1605
10.1109/TCYB.2014.2374695
10.1016/j.cageo.2016.02.022
10.1109/TEVC.2005.859463
10.1109/TITS.2020.2994779
10.1007/s00500-014-1283-z
10.1109/TEVC.2017.2693320
10.1109/TCYB.2017.2710978
10.1080/10426914.2016.1269923
10.1109/CEC.2017.7969486
10.1109/TCBB.2017.2705094
10.1109/TEVC.2018.2869247
10.1109/TEVC.2018.2875430
10.1080/02626667.2019.1584400
10.1109/TNNLS.2019.2920887
10.1109/TITS.2019.2946711
10.1109/TCYB.2018.2868493
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3008280
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3937
ExternalDocumentID 10_1109_TCYB_2020_3008280
9163270
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundations of China
  grantid: 61772207; 61873097
  funderid: 10.13039/501100001809
– fundername: Outstanding Youth Science Foundation
  grantid: 61822602
– fundername: Guangdong-Hong Kong Joint Innovation Platform
  grantid: 2018B050502006
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB2102102
  funderid: 10.13039/501100012166
– fundername: Key-Area Research and Development of Guangdong Province
  grantid: 2020B010166002
– fundername: Guangdong Natural Science Foundation Research Team
  grantid: 2018B030312003
  funderid: 10.13039/501100003453
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c369t-65d9ad9a1b30cae7a28fa9e25405fcfd6d6da1c0c68cf746bd82d70f7a26ce143
IEDL.DBID RIE
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681200300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 16:23:06 EDT 2025
Mon Jun 30 06:45:16 EDT 2025
Sat Nov 29 02:02:31 EST 2025
Tue Nov 18 21:41:07 EST 2025
Wed Aug 27 02:39:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-65d9ad9a1b30cae7a28fa9e25405fcfd6d6da1c0c68cf746bd82d70f7a26ce143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6143-9207
0000-0003-0862-0514
0000-0002-8465-0996
0000-0001-7835-9871
OpenAccessLink https://ieeexplore.ieee.org/document/9163270
PMID 32776886
PQID 2557979171
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_9163270
crossref_citationtrail_10_1109_TCYB_2020_3008280
proquest_journals_2557979171
proquest_miscellaneous_2432859512
crossref_primary_10_1109_TCYB_2020_3008280
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
zhan (ref17) 2019
ref16
ref19
ref18
ref51
ref50
mart?ez (ref27) 2013
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
zhang (ref6) 2019
ref8
deb (ref54) 1997; 1
ref7
ref9
abbott (ref59) 2012
ref4
ref3
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
(ref60) 2013
guo (ref23) 2016
ref26
ref25
ref20
ref22
ref21
ref28
zhou (ref24) 2005
ref29
christelis (ref34) 2017; 57
References_xml – ident: ref42
  doi: 10.1109/TKDE.2014.2345380
– ident: ref19
  doi: 10.1109/TEVC.2018.2834881
– ident: ref49
  doi: 10.1109/TEVC.2013.2262111
– ident: ref28
  doi: 10.1109/TEVC.2017.2675628
– ident: ref29
  doi: 10.1109/TCYB.2018.2809430
– ident: ref7
  doi: 10.1109/TCYB.2019.2933499
– ident: ref55
  doi: 10.1080/00401706.1987.10488205
– ident: ref50
  doi: 10.1109/TCYB.2018.2794503
– volume: 57
  start-page: 481
  year: 2017
  ident: ref34
  article-title: Physics-based and data-driven surrogate models for pumping optimization of coastal aquifers
  publication-title: European Water
– ident: ref12
  doi: 10.1109/TSMCB.2012.2209115
– ident: ref40
  doi: 10.1109/TEVC.2013.2248012
– ident: ref46
  doi: 10.1109/TKDE.2017.2720168
– ident: ref33
  doi: 10.2166/hydro.2017.063
– ident: ref1
  doi: 10.1109/TCYB.2018.2869674
– start-page: 1
  year: 2016
  ident: ref23
  article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces
  publication-title: Proc IEEE Symp Series Comput Intell
– ident: ref4
  doi: 10.1109/TEVC.2018.2869001
– ident: ref41
  doi: 10.1109/TEVC.2020.2979740
– year: 2019
  ident: ref17
  article-title: Adaptive distributed differential evolution
  publication-title: IEEE Trans Cybern
– ident: ref22
  doi: 10.1007/s00500-003-0328-5
– ident: ref44
  doi: 10.1109/TCYB.2015.2459137
– start-page: 2832
  year: 2005
  ident: ref24
  article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref20
  doi: 10.1115/DETC2001/DAC-21063
– ident: ref18
  doi: 10.1109/TEVC.2016.2555315
– ident: ref47
  doi: 10.1109/TEVC.2017.2785351
– volume: 1
  start-page: 67
  year: 1997
  ident: ref54
  article-title: Self-adaptive genetic-algorithms with simulated binary crossover
  publication-title: Evol Comput
– year: 2019
  ident: ref6
  article-title: Cooperative co-evolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties
  publication-title: IEEE Trans Cybern
– ident: ref11
  doi: 10.1109/TEVC.2019.2944180
– year: 2013
  ident: ref60
  publication-title: XFOIL
– ident: ref5
  doi: 10.1109/TCYB.2020.2977956
– ident: ref9
  doi: 10.1109/TEVC.2019.2910721
– ident: ref48
  doi: 10.1016/j.ins.2012.09.030
– start-page: 1405
  year: 2013
  ident: ref27
  article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems
  publication-title: Proc ACM Genet Evol Comput Conf
– ident: ref45
  doi: 10.1109/TCYB.2016.2579658
– ident: ref16
  doi: 10.1109/TPDS.2016.2597826
– ident: ref35
  doi: 10.1109/TCYB.2018.2832640
– ident: ref56
  doi: 10.1109/TEVC.2005.859464
– ident: ref58
  doi: 10.1109/TEVC.2018.2849331
– ident: ref26
  doi: 10.1109/TEVC.2002.800884
– ident: ref57
  doi: 10.2514/3.58379
– ident: ref53
  doi: 10.1201/b12207
– ident: ref25
  doi: 10.1109/TEVC.2016.2622301
– ident: ref10
  doi: 10.1109/TCYB.2019.2927780
– ident: ref38
  doi: 10.1002/mcda.1605
– ident: ref43
  doi: 10.1109/TCYB.2014.2374695
– ident: ref31
  doi: 10.1016/j.cageo.2016.02.022
– ident: ref51
  doi: 10.1109/TEVC.2005.859463
– ident: ref36
  doi: 10.1109/TITS.2020.2994779
– ident: ref30
  doi: 10.1007/s00500-014-1283-z
– ident: ref52
  doi: 10.1109/TEVC.2017.2693320
– ident: ref39
  doi: 10.1109/TCYB.2017.2710978
– year: 2012
  ident: ref59
  publication-title: Theory of Wing Sections Including a Summary of Airfoil Data
– ident: ref3
  doi: 10.1080/10426914.2016.1269923
– ident: ref2
  doi: 10.1109/CEC.2017.7969486
– ident: ref14
  doi: 10.1109/TCBB.2017.2705094
– ident: ref21
  doi: 10.1109/TEVC.2018.2869247
– ident: ref15
  doi: 10.1109/TEVC.2018.2875430
– ident: ref32
  doi: 10.1080/02626667.2019.1584400
– ident: ref8
  doi: 10.1109/TNNLS.2019.2920887
– ident: ref37
  doi: 10.1109/TITS.2019.2946711
– ident: ref13
  doi: 10.1109/TCYB.2018.2868493
SSID ssj0000816898
Score 2.587933
Snippet Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3925
SubjectTerms Buildings
Data models
Data-driven evolutionary algorithm (DDEA)
Design optimization
ensemble surrogates
Evolutionary algorithms
Evolutionary computation
genetic algorithm (GA)
Genetic algorithms
Iron
Neural networks
Optimization
Perturbation
Perturbation methods
Radial basis function
Title Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates
URI https://ieeexplore.ieee.org/document/9163270
https://www.proquest.com/docview/2557979171
https://www.proquest.com/docview/2432859512
Volume 51
WOSCitedRecordID wos000681200300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S0EMvTdK0dJsHKvTQlKqxLa9kHfPY0ENZAnl0ezKyHmlgYwfbG8i_z0irmEJCoMgIgcfCaEaa-aTRDMAXnrrKiFzTPBdYiczQAmEzHTvLeG6kTYKD7OUvMZ0Ws5k8XYHvw10Ya21wPrM_fDOc5ZtGL_xW2T6aMiwTCNBfCcGXd7WG_ZSQQCKkvs2wQdGqEPEQM03k_vnRn0MEgxli1BC0zSeAw67Q1vaXqP_RSCHFypN1OSibk7X_-811eBuNSnKwlIINWLH1O9iI07YjX2Ns6b1NmB6rXtHj1q9xZHIX5U619-RgftW01_3fG_Iba3JqW1RGVeAbPURVZ8ik7uxNNbfkbNG2jd9-697Dxcnk_OgnjSkVqGZc9pSPjVT4pBVLtLJCZYVT0mbebnPaGY5FpTrRvNBO5LwyRWZE4pCQa4u21QdYrZvafgTiZMUKIY2wORbHZKHHzKVsbBKB_NcjSB6HtdQx3rhPezEvA-5IZOmZUnqmlJEpI_g2fHK7DLbxEvGmH_qBMI76CLYfeVfG6diViJuEFIhM0xF8Hl7jRPKnI6q2zQJpcuaD-aEB9On5nrfgTeYdWoL33zas9u3C7sBrfddfd-0uyuSs2A0y-QBkuNvF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KO9heunXdWLpu1aAP25ga23Is67EfKS3NQmHZ1j0ZWR9rIbWL7RT63--kqGawMigyQuCzMLqT7n7S6Q5gN4ttqXmqaJpyrHiiaY6wmY6sYVmqhYm8g-yPCZ9O84sLcb4CX_q7MMYY73xm9lzTn-XrWi3cVtkQTRmWcAToay5zllje1up3VHwKCZ_8NsEGRbuCh2PMOBLD2eGvA4SDCaJUH7bNpYDDztDadteo_9JJPsnKPyuzVzfHzx_3oy9gPZiVZH8pBxuwYqqXsBEmbks-hujSnzZheiQ7SY8at8qR8W2QPNnckf3577q56i6vyU-syblpUB2VnnP0AJWdJuOqNdfl3JBvi6ap3QZc-wq-H49nhyc0JFWgimWio9lIC4lPXLJIScNlklspTOIsN6uszrDIWEUqy5XlaVbqPNE8skiYKYPW1WtYrerKvAFiRclyLjQ3KRbLRK5GzMZspCOOEqAGEN0Pa6FCxHGX-GJeeOQRicIxpXBMKQJTBvC5_-RmGW7jf8Sbbuh7wjDqA9i-510RJmRbIHLigiM2jQfwoX-NU8mdj8jK1AukSZkL54cm0NbDPe_A05PZ10kxOZ2evYVniXNv8b6A27DaNQvzDp6o2-6qbd57yfwD4LTeLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Evolutionary+Algorithm+With+Perturbation-Based+Ensemble+Surrogates&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Jian-Yu%2C+Li&rft.au=Zhi-Hui+Zhan&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Jun&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=8&rft.spage=3925&rft_id=info:doi/10.1109%2FTCYB.2020.3008280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon