Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates
Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and oft...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 51; číslo 8; s. 3925 - 3937 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results. |
|---|---|
| AbstractList | Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results. Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results.Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function of the optimization problem is expensive or difficult to access. However, the performance of DDEAs relies on their surrogate quality and often deteriorates if the amount of available data decreases. To solve these problems, this article proposes a new DDEA framework with perturbation-based ensemble surrogates (DDEA-PES), which contain two efficient mechanisms. The first is a diverse surrogate generation method that can generate diverse surrogates through performing data perturbations on the available data. The second is a selective ensemble method that selects some of the prebuilt surrogates to form a final ensemble surrogate model. By combining these two mechanisms, the proposed DDEA-PES framework has three advantages, including larger data quantity, better data utilization, and higher surrogate accuracy. To validate the effectiveness of the proposed framework, this article provides both theoretical and experimental analyses. For the experimental comparisons, a specific DDEA-PES algorithm is developed as an instance by adopting a genetic algorithm as the optimizer and radial basis function neural networks as the base models. The experimental results on widely used benchmarks and an aerodynamic airfoil design real-world optimization problem show that the proposed DDEA-PES algorithm outperforms some state-of-the-art DDEAs. Moreover, when compared with traditional nondata-driven methods, the proposed DDEA-PES algorithm only requires about 2% computational budgets to produce competitive results. |
| Author | Zhan, Zhi-Hui Li, Jian-Yu Wang, Hua Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Jian-Yu orcidid: 0000-0002-6143-9207 surname: Li fullname: Li, Jian-Yu organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui email: zhanapollo@163.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Hua orcidid: 0000-0002-8465-0996 surname: Wang fullname: Wang, Hua organization: College of Engineering and Science, Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, Australia – sequence: 4 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun email: csjun@scut.edu.cn organization: Victoria University, Melbourne, VIC, Australia |
| BookMark | eNp9kU1PwyAch4mZcVP3AYyXJl68dAJteTm6OV-SRU3UGE-E0X9nl64oUBO_vdQZDx4EAgSeH4GHfTRobQsIHRE8IQTLs8fZy3RCMcWTDGNBBd5BI0qYSCnlxeB3zvgQjb1f41hEXJJiDw0zyjkTgo3Q7YUOOr1w9Qe0yfzDNl2obavdZ3LerKyrw-smeY59cg8udG6p--10qj2Uybz1sFk2kDx0ztmVDuAP0W6lGw_jn_EAPV3OH2fX6eLu6mZ2vkhNxmRIWVFKHRtZZtho4JqKSkugRY6LylQli1UTgw0TpuI5W5aClhxXEWQGSJ4doNPtuW_Ovnfgg9rU3kDT6BZs5xXNMyoKWRAa0ZM_6Np2ro23U7QouOSScBIpvqWMs947qJSpw_djg9N1owhWvXXVW1e9dfVjPSbJn-SbqzfR4L-Z422mBoBfXhIWPwZnXxcWjbQ |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1007_s10791_025_09671_6 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1109_TEVC_2021_3065659 crossref_primary_10_1016_j_swevo_2025_102093 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_1109_TEVC_2022_3182810 crossref_primary_10_1016_j_asoc_2024_112464 crossref_primary_10_1109_TBDATA_2022_3232761 crossref_primary_10_1109_TEVC_2021_3051608 crossref_primary_10_1109_TCYB_2022_3175533 crossref_primary_10_1016_j_eswa_2023_120826 crossref_primary_10_26599_BDMA_2022_9020046 crossref_primary_10_1016_j_ins_2025_122585 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1109_TEVC_2023_3338693 crossref_primary_10_1007_s10489_024_05612_w crossref_primary_10_1109_TETCI_2023_3313555 crossref_primary_10_1016_j_swevo_2025_102003 crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_1109_TEVC_2022_3232776 crossref_primary_10_1016_j_knosys_2023_111018 crossref_primary_10_1007_s12559_024_10383_0 crossref_primary_10_3390_en15031061 crossref_primary_10_1016_j_asoc_2025_113440 crossref_primary_10_1007_s00521_024_10203_4 crossref_primary_10_1016_j_asoc_2025_113367 crossref_primary_10_1016_j_asoc_2025_112901 crossref_primary_10_1109_ACCESS_2024_3501775 crossref_primary_10_1109_TEVC_2022_3170638 crossref_primary_10_1109_TCYB_2024_3469371 crossref_primary_10_1109_TITS_2022_3180760 crossref_primary_10_1109_TEVC_2023_3287213 crossref_primary_10_1016_j_swevo_2025_102034 crossref_primary_10_1007_s41019_025_00283_0 crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_TCYB_2021_3064676 crossref_primary_10_1109_TEVC_2022_3231493 crossref_primary_10_1109_TCYB_2021_3118783 crossref_primary_10_1109_TCYB_2022_3170344 crossref_primary_10_1109_TCYB_2021_3125362 crossref_primary_10_1109_TCYB_2022_3153964 crossref_primary_10_1007_s40747_023_01179_0 crossref_primary_10_1080_01969722_2020_1827797 crossref_primary_10_1109_TCYB_2024_3443396 crossref_primary_10_1109_TEVC_2023_3291614 crossref_primary_10_1007_s13755_024_00295_6 crossref_primary_10_1007_s11280_024_01275_2 crossref_primary_10_1109_TEVC_2021_3131236 crossref_primary_10_1109_TEVC_2024_3361000 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1109_ACCESS_2022_3204039 crossref_primary_10_1109_TCYB_2021_3102642 crossref_primary_10_1007_s40747_021_00506_7 crossref_primary_10_1111_mice_13354 crossref_primary_10_1109_TEVC_2022_3149601 crossref_primary_10_3390_math10060943 crossref_primary_10_1007_s40747_022_00910_7 crossref_primary_10_1109_TCYB_2022_3158391 crossref_primary_10_1109_TCYB_2020_3028070 crossref_primary_10_1109_TETCI_2020_3047410 crossref_primary_10_3390_app15169068 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1007_s12559_023_10128_5 crossref_primary_10_1016_j_asoc_2022_109263 crossref_primary_10_1109_TNNLS_2021_3106399 crossref_primary_10_1007_s40747_025_01812_0 crossref_primary_10_1109_TG_2023_3236490 crossref_primary_10_1016_j_asoc_2023_110228 crossref_primary_10_1109_TCYB_2021_3120188 crossref_primary_10_1049_cit2_12106 crossref_primary_10_1016_j_eswa_2023_121783 |
| Cites_doi | 10.1109/TKDE.2014.2345380 10.1109/TEVC.2018.2834881 10.1109/TEVC.2013.2262111 10.1109/TEVC.2017.2675628 10.1109/TCYB.2018.2809430 10.1109/TCYB.2019.2933499 10.1080/00401706.1987.10488205 10.1109/TCYB.2018.2794503 10.1109/TSMCB.2012.2209115 10.1109/TEVC.2013.2248012 10.1109/TKDE.2017.2720168 10.2166/hydro.2017.063 10.1109/TCYB.2018.2869674 10.1109/TEVC.2018.2869001 10.1109/TEVC.2020.2979740 10.1007/s00500-003-0328-5 10.1109/TCYB.2015.2459137 10.1115/DETC2001/DAC-21063 10.1109/TEVC.2016.2555315 10.1109/TEVC.2017.2785351 10.1109/TEVC.2019.2944180 10.1109/TCYB.2020.2977956 10.1109/TEVC.2019.2910721 10.1016/j.ins.2012.09.030 10.1109/TCYB.2016.2579658 10.1109/TPDS.2016.2597826 10.1109/TCYB.2018.2832640 10.1109/TEVC.2005.859464 10.1109/TEVC.2018.2849331 10.1109/TEVC.2002.800884 10.2514/3.58379 10.1201/b12207 10.1109/TEVC.2016.2622301 10.1109/TCYB.2019.2927780 10.1002/mcda.1605 10.1109/TCYB.2014.2374695 10.1016/j.cageo.2016.02.022 10.1109/TEVC.2005.859463 10.1109/TITS.2020.2994779 10.1007/s00500-014-1283-z 10.1109/TEVC.2017.2693320 10.1109/TCYB.2017.2710978 10.1080/10426914.2016.1269923 10.1109/CEC.2017.7969486 10.1109/TCBB.2017.2705094 10.1109/TEVC.2018.2869247 10.1109/TEVC.2018.2875430 10.1080/02626667.2019.1584400 10.1109/TNNLS.2019.2920887 10.1109/TITS.2019.2946711 10.1109/TCYB.2018.2868493 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3008280 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 3937 |
| ExternalDocumentID | 10_1109_TCYB_2020_3008280 9163270 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundations of China grantid: 61772207; 61873097 funderid: 10.13039/501100001809 – fundername: Outstanding Youth Science Foundation grantid: 61822602 – fundername: Guangdong-Hong Kong Joint Innovation Platform grantid: 2018B050502006 – fundername: National Key Research and Development Program of China grantid: 2019YFB2102102 funderid: 10.13039/501100012166 – fundername: Key-Area Research and Development of Guangdong Province grantid: 2020B010166002 – fundername: Guangdong Natural Science Foundation Research Team grantid: 2018B030312003 funderid: 10.13039/501100003453 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c369t-65d9ad9a1b30cae7a28fa9e25405fcfd6d6da1c0c68cf746bd82d70f7a26ce143 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681200300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 16:23:06 EDT 2025 Mon Jun 30 06:45:16 EDT 2025 Sat Nov 29 02:02:31 EST 2025 Tue Nov 18 21:41:07 EST 2025 Wed Aug 27 02:39:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-65d9ad9a1b30cae7a28fa9e25405fcfd6d6da1c0c68cf746bd82d70f7a26ce143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6143-9207 0000-0003-0862-0514 0000-0002-8465-0996 0000-0001-7835-9871 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9163270 |
| PMID | 32776886 |
| PQID | 2557979171 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9163270 crossref_citationtrail_10_1109_TCYB_2020_3008280 proquest_journals_2557979171 proquest_miscellaneous_2432859512 crossref_primary_10_1109_TCYB_2020_3008280 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref10 zhan (ref17) 2019 ref16 ref19 ref18 ref51 ref50 mart?ez (ref27) 2013 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 zhang (ref6) 2019 ref8 deb (ref54) 1997; 1 ref7 ref9 abbott (ref59) 2012 ref4 ref3 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 (ref60) 2013 guo (ref23) 2016 ref26 ref25 ref20 ref22 ref21 ref28 zhou (ref24) 2005 ref29 christelis (ref34) 2017; 57 |
| References_xml | – ident: ref42 doi: 10.1109/TKDE.2014.2345380 – ident: ref19 doi: 10.1109/TEVC.2018.2834881 – ident: ref49 doi: 10.1109/TEVC.2013.2262111 – ident: ref28 doi: 10.1109/TEVC.2017.2675628 – ident: ref29 doi: 10.1109/TCYB.2018.2809430 – ident: ref7 doi: 10.1109/TCYB.2019.2933499 – ident: ref55 doi: 10.1080/00401706.1987.10488205 – ident: ref50 doi: 10.1109/TCYB.2018.2794503 – volume: 57 start-page: 481 year: 2017 ident: ref34 article-title: Physics-based and data-driven surrogate models for pumping optimization of coastal aquifers publication-title: European Water – ident: ref12 doi: 10.1109/TSMCB.2012.2209115 – ident: ref40 doi: 10.1109/TEVC.2013.2248012 – ident: ref46 doi: 10.1109/TKDE.2017.2720168 – ident: ref33 doi: 10.2166/hydro.2017.063 – ident: ref1 doi: 10.1109/TCYB.2018.2869674 – start-page: 1 year: 2016 ident: ref23 article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces publication-title: Proc IEEE Symp Series Comput Intell – ident: ref4 doi: 10.1109/TEVC.2018.2869001 – ident: ref41 doi: 10.1109/TEVC.2020.2979740 – year: 2019 ident: ref17 article-title: Adaptive distributed differential evolution publication-title: IEEE Trans Cybern – ident: ref22 doi: 10.1007/s00500-003-0328-5 – ident: ref44 doi: 10.1109/TCYB.2015.2459137 – start-page: 2832 year: 2005 ident: ref24 article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm publication-title: Proc IEEE Congr Evol Comput – ident: ref20 doi: 10.1115/DETC2001/DAC-21063 – ident: ref18 doi: 10.1109/TEVC.2016.2555315 – ident: ref47 doi: 10.1109/TEVC.2017.2785351 – volume: 1 start-page: 67 year: 1997 ident: ref54 article-title: Self-adaptive genetic-algorithms with simulated binary crossover publication-title: Evol Comput – year: 2019 ident: ref6 article-title: Cooperative co-evolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties publication-title: IEEE Trans Cybern – ident: ref11 doi: 10.1109/TEVC.2019.2944180 – year: 2013 ident: ref60 publication-title: XFOIL – ident: ref5 doi: 10.1109/TCYB.2020.2977956 – ident: ref9 doi: 10.1109/TEVC.2019.2910721 – ident: ref48 doi: 10.1016/j.ins.2012.09.030 – start-page: 1405 year: 2013 ident: ref27 article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems publication-title: Proc ACM Genet Evol Comput Conf – ident: ref45 doi: 10.1109/TCYB.2016.2579658 – ident: ref16 doi: 10.1109/TPDS.2016.2597826 – ident: ref35 doi: 10.1109/TCYB.2018.2832640 – ident: ref56 doi: 10.1109/TEVC.2005.859464 – ident: ref58 doi: 10.1109/TEVC.2018.2849331 – ident: ref26 doi: 10.1109/TEVC.2002.800884 – ident: ref57 doi: 10.2514/3.58379 – ident: ref53 doi: 10.1201/b12207 – ident: ref25 doi: 10.1109/TEVC.2016.2622301 – ident: ref10 doi: 10.1109/TCYB.2019.2927780 – ident: ref38 doi: 10.1002/mcda.1605 – ident: ref43 doi: 10.1109/TCYB.2014.2374695 – ident: ref31 doi: 10.1016/j.cageo.2016.02.022 – ident: ref51 doi: 10.1109/TEVC.2005.859463 – ident: ref36 doi: 10.1109/TITS.2020.2994779 – ident: ref30 doi: 10.1007/s00500-014-1283-z – ident: ref52 doi: 10.1109/TEVC.2017.2693320 – ident: ref39 doi: 10.1109/TCYB.2017.2710978 – year: 2012 ident: ref59 publication-title: Theory of Wing Sections Including a Summary of Airfoil Data – ident: ref3 doi: 10.1080/10426914.2016.1269923 – ident: ref2 doi: 10.1109/CEC.2017.7969486 – ident: ref14 doi: 10.1109/TCBB.2017.2705094 – ident: ref21 doi: 10.1109/TEVC.2018.2869247 – ident: ref15 doi: 10.1109/TEVC.2018.2875430 – ident: ref32 doi: 10.1080/02626667.2019.1584400 – ident: ref8 doi: 10.1109/TNNLS.2019.2920887 – ident: ref37 doi: 10.1109/TITS.2019.2946711 – ident: ref13 doi: 10.1109/TCYB.2018.2868493 |
| SSID | ssj0000816898 |
| Score | 2.587933 |
| Snippet | Data-driven evolutionary algorithms (DDEAs) aim to utilize data and surrogates to drive optimization, which is useful and efficient when the objective function... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3925 |
| SubjectTerms | Buildings Data models Data-driven evolutionary algorithm (DDEA) Design optimization ensemble surrogates Evolutionary algorithms Evolutionary computation genetic algorithm (GA) Genetic algorithms Iron Neural networks Optimization Perturbation Perturbation methods Radial basis function |
| Title | Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates |
| URI | https://ieeexplore.ieee.org/document/9163270 https://www.proquest.com/docview/2557979171 https://www.proquest.com/docview/2432859512 |
| Volume | 51 |
| WOSCitedRecordID | wos000681200300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S0EMvTdK0dJsHKvTQlKqxLa9kHfPY0ENZAnl0ezKyHmlgYwfbG8i_z0irmEJCoMgIgcfCaEaa-aTRDMAXnrrKiFzTPBdYiczQAmEzHTvLeG6kTYKD7OUvMZ0Ws5k8XYHvw10Ya21wPrM_fDOc5ZtGL_xW2T6aMiwTCNBfCcGXd7WG_ZSQQCKkvs2wQdGqEPEQM03k_vnRn0MEgxli1BC0zSeAw67Q1vaXqP_RSCHFypN1OSibk7X_-811eBuNSnKwlIINWLH1O9iI07YjX2Ns6b1NmB6rXtHj1q9xZHIX5U619-RgftW01_3fG_Iba3JqW1RGVeAbPURVZ8ik7uxNNbfkbNG2jd9-697Dxcnk_OgnjSkVqGZc9pSPjVT4pBVLtLJCZYVT0mbebnPaGY5FpTrRvNBO5LwyRWZE4pCQa4u21QdYrZvafgTiZMUKIY2wORbHZKHHzKVsbBKB_NcjSB6HtdQx3rhPezEvA-5IZOmZUnqmlJEpI_g2fHK7DLbxEvGmH_qBMI76CLYfeVfG6diViJuEFIhM0xF8Hl7jRPKnI6q2zQJpcuaD-aEB9On5nrfgTeYdWoL33zas9u3C7sBrfddfd-0uyuSs2A0y-QBkuNvF |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KO9heunXdWLpu1aAP25ga23Is67EfKS3NQmHZ1j0ZWR9rIbWL7RT63--kqGawMigyQuCzMLqT7n7S6Q5gN4ttqXmqaJpyrHiiaY6wmY6sYVmqhYm8g-yPCZ9O84sLcb4CX_q7MMYY73xm9lzTn-XrWi3cVtkQTRmWcAToay5zllje1up3VHwKCZ_8NsEGRbuCh2PMOBLD2eGvA4SDCaJUH7bNpYDDztDadteo_9JJPsnKPyuzVzfHzx_3oy9gPZiVZH8pBxuwYqqXsBEmbks-hujSnzZheiQ7SY8at8qR8W2QPNnckf3577q56i6vyU-syblpUB2VnnP0AJWdJuOqNdfl3JBvi6ap3QZc-wq-H49nhyc0JFWgimWio9lIC4lPXLJIScNlklspTOIsN6uszrDIWEUqy5XlaVbqPNE8skiYKYPW1WtYrerKvAFiRclyLjQ3KRbLRK5GzMZspCOOEqAGEN0Pa6FCxHGX-GJeeOQRicIxpXBMKQJTBvC5_-RmGW7jf8Sbbuh7wjDqA9i-510RJmRbIHLigiM2jQfwoX-NU8mdj8jK1AukSZkL54cm0NbDPe_A05PZ10kxOZ2evYVniXNv8b6A27DaNQvzDp6o2-6qbd57yfwD4LTeLA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Evolutionary+Algorithm+With+Perturbation-Based+Ensemble+Surrogates&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Jian-Yu%2C+Li&rft.au=Zhi-Hui+Zhan&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Jun&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=8&rft.spage=3925&rft_id=info:doi/10.1109%2FTCYB.2020.3008280&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |