Enhanced energy management of dual-stage hybrid energy storage systems with a novel adaptive robust control algorithm
This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation st...
Gespeichert in:
| Veröffentlicht in: | International journal of electrical power & energy systems Jg. 167; S. 110603 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2025
Elsevier |
| Schlagworte: | |
| ISSN: | 0142-0615 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation strategy (Indirect Adaptive Robust RBF Neural Network IAR-RBFNN) estimates state and unknown functions. The IAR-RBFNN for the NHESS is resilient and robust, subject to bounded but unknown disturbances that can affect the fuel-cell and ultra-capacitor currents and the output voltage of a DC bus. The proposed controller switches between the two power converters to track the ideal current levels and help regulate the DC-bus voltage to higher levels to improve efficiency. To overcome the effect of the disturbances, the proposed controller contains a robustifying term, and the adaptation laws are guaranteed to be ultimately bounded using an e-modification approach. Additionally, the approximation capacity of radial basis function neural network (RBFNN) systems is employed to estimate the entire system dynamics, unlike only estimation disturbance or a few system parameters. The performance of the proposed control strategy is further evaluated against other reported studies in the literature in terms of several performance indicators. Quantitative results demonstrate that the proposed controller achieves RMSE values of 0.13 Ω for IFC, 0.25 Ω for IPB, and 2.5 V for VDC, significantly outperforming the ATSMC and ORAT2F methods which recorded higher RMSEs of 0.41 Ω, 0.65 Ω, and 3.51 V, respectively. The results reveal that the proposed controller outperforms the benchmarking control strategies regarding the tracking performance for the fuel-cell and ultra-capacitor ideal currents.
•A novel robust controller for energy management of hybrid electric vehicles.•IAR-RBFNN used for output voltage regulation of DC Bus of Fuel Cell HEVs.•Improved efficiency of DC-bus voltage of hybrid FC+UC energy system.•Adaptive estimation of the unknown model and external disturbances. |
|---|---|
| AbstractList | This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation strategy (Indirect Adaptive Robust RBF Neural Network IAR-RBFNN) estimates state and unknown functions. The IAR-RBFNN for the NHESS is resilient and robust, subject to bounded but unknown disturbances that can affect the fuel-cell and ultra-capacitor currents and the output voltage of a DC bus. The proposed controller switches between the two power converters to track the ideal current levels and help regulate the DC-bus voltage to higher levels to improve efficiency. To overcome the effect of the disturbances, the proposed controller contains a robustifying term, and the adaptation laws are guaranteed to be ultimately bounded using an e-modification approach. Additionally, the approximation capacity of radial basis function neural network (RBFNN) systems is employed to estimate the entire system dynamics, unlike only estimation disturbance or a few system parameters. The performance of the proposed control strategy is further evaluated against other reported studies in the literature in terms of several performance indicators. Quantitative results demonstrate that the proposed controller achieves RMSE values of 0.13 Ω for IFC, 0.25 Ω for IPB, and 2.5 V for VDC, significantly outperforming the ATSMC and ORAT2F methods which recorded higher RMSEs of 0.41 Ω, 0.65 Ω, and 3.51 V, respectively. The results reveal that the proposed controller outperforms the benchmarking control strategies regarding the tracking performance for the fuel-cell and ultra-capacitor ideal currents.
•A novel robust controller for energy management of hybrid electric vehicles.•IAR-RBFNN used for output voltage regulation of DC Bus of Fuel Cell HEVs.•Improved efficiency of DC-bus voltage of hybrid FC+UC energy system.•Adaptive estimation of the unknown model and external disturbances. This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation strategy (Indirect Adaptive Robust RBF Neural Network IAR-RBFNN) estimates state and unknown functions. The IAR-RBFNN for the NHESS is resilient and robust, subject to bounded but unknown disturbances that can affect the fuel-cell and ultra-capacitor currents and the output voltage of a DC bus. The proposed controller switches between the two power converters to track the ideal current levels and help regulate the DC-bus voltage to higher levels to improve efficiency. To overcome the effect of the disturbances, the proposed controller contains a robustifying term, and the adaptation laws are guaranteed to be ultimately bounded using an e-modification approach. Additionally, the approximation capacity of radial basis function neural network (RBFNN) systems is employed to estimate the entire system dynamics, unlike only estimation disturbance or a few system parameters. The performance of the proposed control strategy is further evaluated against other reported studies in the literature in terms of several performance indicators. Quantitative results demonstrate that the proposed controller achieves RMSE values of 0.13 Ω for IFC, 0.25 Ω for IPB, and 2.5 V for VDC, significantly outperforming the ATSMC and ORAT2F methods which recorded higher RMSEs of 0.41 Ω, 0.65 Ω, and 3.51 V, respectively. The results reveal that the proposed controller outperforms the benchmarking control strategies regarding the tracking performance for the fuel-cell and ultra-capacitor ideal currents. |
| ArticleNumber | 110603 |
| Author | Taghavifar, Hadi Taghavifar, Hamid |
| Author_xml | – sequence: 1 givenname: Hamid surname: Taghavifar fullname: Taghavifar, Hamid organization: Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada – sequence: 2 givenname: Hadi surname: Taghavifar fullname: Taghavifar, Hadi email: hadi.taghavifar@uit.no organization: Department of Technology and Safety (ITS), UiT-The Arctic University of Norway, Tromso, Norway |
| BookMark | eNp9kE1r3DAQhnVIoUmaf9CD_oC3kvVh61IoIW0DgV6asxhL410ZW1ok7Zb99_XWIceeBl7mfZh57shNTBEJ-czZjjOuv0y7MOERy65lrdpxzjQTN-SWcdk2THP1kdyVMjHGOiPbW3J6igeIDj3FiHl_oQtE2OOCsdI0Un-CuSl1TejhMuTwvlZqyte0XErFpdA_oR4o0JjOOFPwcKzhjDSn4VQqdSnWnNZ83qe8Li6fyIcR5oIPb_OevH5_-v34s3n59eP58dtL44Q2tVFOchh9qxVH1Q-tH0bRe8OUaSWaflQD67kehXat9OMgpJMIHXBt-r4DycU9ed64PsFkjzkskC82QbD_gpT3FnINbkaLwgjOOyW09FL2YDoPgxCDkShUb8TKkhvL5VRKxvGdx5m9qreT3dTbq3q7qV9rX7carn-eA2ZbXMCr8ZDR1fWQ8H_AX3pRk_w |
| Cites_doi | 10.1002/er.5808 10.1016/j.apenergy.2018.07.087 10.1016/j.jpowsour.2022.231696 10.1016/j.rser.2015.07.132 10.1109/JAS.2021.1004380 10.1109/TSTE.2014.2336896 10.1016/j.ijepes.2012.06.026 10.1016/j.eswa.2022.116714 10.1016/j.est.2023.108646 10.1109/TVT.2007.896970 10.1016/j.est.2021.102468 10.1186/s41601-022-00261-y 10.1016/j.ijhydene.2015.12.046 10.1016/j.ijhydene.2022.02.236 10.1109/JSYST.2020.3020275 10.1016/j.ijhydene.2020.11.243 10.1080/15325008.2023.2261467 10.1016/j.renene.2021.06.038 10.1016/j.est.2021.103165 10.1016/j.est.2021.102280 10.1109/TIE.2009.2025283 10.1049/iet-gtd.2018.5019 10.1016/j.energy.2018.08.112 10.1109/TCSI.2023.3264536 10.1109/TIA.2024.3413052 10.1109/MIE.2019.2913015 10.1109/TIE.2017.2767544 10.1016/j.paerosci.2020.100620 10.3390/app12083880 10.1109/ACCESS.2019.2912511 10.1016/j.energy.2019.116142 10.1002/er.8709 10.1016/j.est.2022.105045 10.1002/er.8671 10.1002/er.4166 10.1109/MIE.2020.3016914 10.1016/j.est.2021.103079 10.1016/j.est.2021.103201 10.1016/j.fuel.2023.129019 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.ijepes.2025.110603 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | oai_doaj_org_article_e3931175364d448a97dab33b94e35893 10_1016_j_ijepes_2025_110603 S0142061525001541 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSH SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c369t-5c41afd2651e58b2dbf38d905924e98f5b0816f36c24dfb34c4ea7a169887a413 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001452263800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Fri Oct 03 12:44:39 EDT 2025 Sat Nov 29 07:59:33 EST 2025 Sat Apr 26 15:42:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonlinear hybrid energy storage (NHES) Hybrid electric vehicles (HEVs) Renewable energy Adaptive control |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-5c41afd2651e58b2dbf38d905924e98f5b0816f36c24dfb34c4ea7a169887a413 |
| OpenAccessLink | https://doaj.org/article/e3931175364d448a97dab33b94e35893 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e3931175364d448a97dab33b94e35893 crossref_primary_10_1016_j_ijepes_2025_110603 elsevier_sciencedirect_doi_10_1016_j_ijepes_2025_110603 |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Sulaiman, Hannan, Mohamed, Ker, Majlan, Daud (b8) 2018; 228 Elhaki, Shojaei, Mehrmohammadi (b44) 2022; 197 Ahmed, Afzal, Ahmad, Hasan (b39) 2021; 43 Lu, Corzine, Ferdowsi (b17) 2007; 56 Guo, Yang, Zhang, Wang, Wang (b10) 2022; 7 Trinh, Truong, Ahn (b29) 2022; 12 Ghavidel, Mousavi-G (b30) 2022; 47 Miret (b40) 2013 Rahman, Zehra, Ahmad, Armghan (b31) 2021; 37 Zhang, Maleki, Rosen, Liu (b3) 2018; 163 Wang, Sun, Li, Yang, Chen (b22) 2019; 189 Pradhan, Senapati, Malla, Nayak, Gjengedal (b33) 2020; 15 Rezaei, Abdollahi, Abdollahi, Filizadeh (b9) 2022; 53 Rahman, Zehra, Ahmad, Armghan (b37) 2021; 37 Guo, Yu, Zhu, Zhao, Wang, Wang (b12) 2022 Xu, Liu, Yan, Yan (b24) 2017; 65 Hu, Liu, Qi, Barth (b6) 2019; 13 Senapati, Pradhan, Samantaray, Nayak (b32) 2019; 13 Sulaiman, Hannan, Mohamed, Majlan, Daud (b4) 2015; 52 Senapati, Al Zaabi, Al Hosani, Al Jaafari, Pradhan, Muduli (b35) 2024 Leon, Dominguez, Wu, Alcaide, Reyes, Liu (b26) 2020; 15 Jacome, Dépature, Boulon, Solano (b21) 2021; 35 Kasimalla, Velisala (b1) 2018; 42 Arslan, Ahmad, Azeem, Liaquat (b23) 2021; 43 Elhaki, Shojaei, Mehrmohammadi (b42) 2022; 197 Pisal, Vidyarthi (b27) 2022; 542 Rajabzadeh, Bathaee, Golkar (b38) 2016; 41 Saravanan, Sobhana, Lakshmanan, Arulkumar (b2) 2023; 72 Li, Chen, Li, Liu, Huang (b20) 2012; 43 Senapati, Al Jaafaari, Al Hosani, Muduli (b34) 2023 Kollimalla, Mishra, Narasamma (b19) 2014; 5 Camara, Gualous, Gustin, Berthon, Dakyo (b18) 2009; 57 Wang, Wang, Song, Liang (b45) 2023; 70 Taghavifar, Taghavifar (b43) 2021; 46 Khan, Ahmad, Abideen (b16) 2019; 7 Mayingi, Puati Zau, Chowdhury, Ngoma (b13) 2023 Chmielewski, Piórkowski, Gumiński, Bogdziński, Możaryn (b15) 2018 Wu, Liu, Vazquez, Mazumder (b25) 2021; 9 Benmouna, Becherif, Boulon, Dépature, Ramadan (b28) 2021; 178 e Huma, Azeem, Ahmad, Armghan, Ahmed, Adil (b41) 2021; 42 Wang, Wu, Wang (b46) 2023; 352 Ding, Prasad, Lie (b5) 2021; 45 Mesbahi, Rizoug, Bartholomeüs, Sadoun, Khenfri, Le Moigne (b7) 2017; 2 Wang, Zhao, Li, Wang, Huang, You (b36) 2020; 116 Sun, Yang, Wang, Wang (b11) 2022 Rezaei, Abdollahi, Abdollahi, Filizadeh (b14) 2022; 53 Ghavidel (10.1016/j.ijepes.2025.110603_b30) 2022; 47 Benmouna (10.1016/j.ijepes.2025.110603_b28) 2021; 178 Rahman (10.1016/j.ijepes.2025.110603_b31) 2021; 37 Mesbahi (10.1016/j.ijepes.2025.110603_b7) 2017; 2 Elhaki (10.1016/j.ijepes.2025.110603_b44) 2022; 197 Chmielewski (10.1016/j.ijepes.2025.110603_b15) 2018 Li (10.1016/j.ijepes.2025.110603_b20) 2012; 43 Khan (10.1016/j.ijepes.2025.110603_b16) 2019; 7 Lu (10.1016/j.ijepes.2025.110603_b17) 2007; 56 Senapati (10.1016/j.ijepes.2025.110603_b35) 2024 Kasimalla (10.1016/j.ijepes.2025.110603_b1) 2018; 42 Rezaei (10.1016/j.ijepes.2025.110603_b9) 2022; 53 Xu (10.1016/j.ijepes.2025.110603_b24) 2017; 65 Ding (10.1016/j.ijepes.2025.110603_b5) 2021; 45 Mayingi (10.1016/j.ijepes.2025.110603_b13) 2023 Senapati (10.1016/j.ijepes.2025.110603_b32) 2019; 13 e Huma (10.1016/j.ijepes.2025.110603_b41) 2021; 42 Sulaiman (10.1016/j.ijepes.2025.110603_b8) 2018; 228 Wang (10.1016/j.ijepes.2025.110603_b22) 2019; 189 Pisal (10.1016/j.ijepes.2025.110603_b27) 2022; 542 Taghavifar (10.1016/j.ijepes.2025.110603_b43) 2021; 46 Pradhan (10.1016/j.ijepes.2025.110603_b33) 2020; 15 Guo (10.1016/j.ijepes.2025.110603_b10) 2022; 7 Hu (10.1016/j.ijepes.2025.110603_b6) 2019; 13 Camara (10.1016/j.ijepes.2025.110603_b18) 2009; 57 Miret (10.1016/j.ijepes.2025.110603_b40) 2013 Wang (10.1016/j.ijepes.2025.110603_b36) 2020; 116 Elhaki (10.1016/j.ijepes.2025.110603_b42) 2022; 197 Arslan (10.1016/j.ijepes.2025.110603_b23) 2021; 43 Wang (10.1016/j.ijepes.2025.110603_b45) 2023; 70 Sulaiman (10.1016/j.ijepes.2025.110603_b4) 2015; 52 Guo (10.1016/j.ijepes.2025.110603_b12) 2022 Rajabzadeh (10.1016/j.ijepes.2025.110603_b38) 2016; 41 Rahman (10.1016/j.ijepes.2025.110603_b37) 2021; 37 Ahmed (10.1016/j.ijepes.2025.110603_b39) 2021; 43 Zhang (10.1016/j.ijepes.2025.110603_b3) 2018; 163 Wang (10.1016/j.ijepes.2025.110603_b46) 2023; 352 Rezaei (10.1016/j.ijepes.2025.110603_b14) 2022; 53 Leon (10.1016/j.ijepes.2025.110603_b26) 2020; 15 Kollimalla (10.1016/j.ijepes.2025.110603_b19) 2014; 5 Trinh (10.1016/j.ijepes.2025.110603_b29) 2022; 12 Sun (10.1016/j.ijepes.2025.110603_b11) 2022 Senapati (10.1016/j.ijepes.2025.110603_b34) 2023 Wu (10.1016/j.ijepes.2025.110603_b25) 2021; 9 Saravanan (10.1016/j.ijepes.2025.110603_b2) 2023; 72 Jacome (10.1016/j.ijepes.2025.110603_b21) 2021; 35 |
| References_xml | – volume: 13 start-page: 16 year: 2019 end-page: 25 ident: b6 article-title: Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: Recent advances and prospects publication-title: IEEE Ind Electron Mag – volume: 43 year: 2021 ident: b39 article-title: Conditioned-based robust nonlinear control of plug-in hybrid electric vehicle with saturated control actions publication-title: J Energy Storage – volume: 7 start-page: 1 year: 2022 end-page: 17 ident: b10 article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network publication-title: Prot Control Mod Power Syst – volume: 45 start-page: 1627 year: 2021 end-page: 1644 ident: b5 article-title: Design of a hybrid energy management system using designed rule-based control strategy and genetic algorithm for the series-parallel plug-in hybrid electric vehicle publication-title: Int J Energy Res – volume: 53 year: 2022 ident: b9 article-title: Energy managment strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends publication-title: J Energy Storage – volume: 197 year: 2022 ident: b44 article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles publication-title: Expert Syst Appl – volume: 42 start-page: 4263 year: 2018 end-page: 4283 ident: b1 article-title: A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric vehicles publication-title: Int J Energy Res – volume: 5 start-page: 1137 year: 2014 end-page: 1144 ident: b19 article-title: Design and analysis of novel control strategy for battery and supercapacitor storage system publication-title: IEEE Trans Sustain Energy – volume: 37 year: 2021 ident: b31 article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy publication-title: J Energy Storage – volume: 70 start-page: 3005 year: 2023 end-page: 3016 ident: b45 article-title: Finite-time adaptive neural network observer-based output voltage-tracking control for DC–DC boost converters publication-title: IEEE Trans Circuits Syst I Regul Pap – volume: 53 year: 2022 ident: b14 article-title: Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends publication-title: J Energy Storage – volume: 12 start-page: 3880 year: 2022 ident: b29 article-title: Development of fuzzy-adaptive control based energy management strategy for PEM fuel cell hybrid tramway system publication-title: Appl Sci – volume: 116 year: 2020 ident: b36 article-title: Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles publication-title: Prog Aerosp Sci – volume: 57 start-page: 587 year: 2009 end-page: 597 ident: b18 article-title: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy publication-title: IEEE Trans Ind Electron – volume: 41 start-page: 3185 year: 2016 end-page: 3198 ident: b38 article-title: Dynamic modeling and nonlinear control of fuel cell vehicles with different hybrid power sources publication-title: Int J Hydrog Energy – volume: 72 year: 2023 ident: b2 article-title: Fuel cell electric vehicles equipped with energy storage system for energy management: A hybrid JS-RSA approach publication-title: J Energy Storage – volume: 15 start-page: 3585 year: 2020 end-page: 3596 ident: b33 article-title: Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT publication-title: IEEE Syst J – volume: 542 year: 2022 ident: b27 article-title: An optimal control for power management in super capacitors/battery of electric vehicles using Deep Neural Network publication-title: J Power Sources – volume: 13 start-page: 838 year: 2019 end-page: 849 ident: b32 article-title: Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration publication-title: IET Gener Transm Distrib – volume: 46 start-page: 7442 year: 2021 end-page: 7453 ident: b43 article-title: Adaptive robust control-based energy management of hybrid PV-Battery systems with improved transient performance publication-title: Int J Hydrog Energy – start-page: 1 year: 2023 end-page: 6 ident: b34 article-title: Flexible control approach for DC microgrid oriented electric vehicle charging station publication-title: 2023 IEEE IAS global conference on renewable energy and hydrogen technologies – volume: 197 year: 2022 ident: b42 article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles publication-title: Expert Syst Appl – volume: 9 start-page: 392 year: 2021 end-page: 406 ident: b25 article-title: Sliding mode control in power converters and drives: A review publication-title: IEEE/ CAA J Autom Sin – volume: 42 year: 2021 ident: b41 article-title: Robust integral backstepping controller for energy management in plugin hybrid electric vehicles publication-title: J Energy Storage – year: 2022 ident: b11 article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model publication-title: Int J Energy Res – volume: 15 start-page: 74 year: 2020 end-page: 88 ident: b26 article-title: Hybrid energy storage systems: Concepts, advantages, and applications publication-title: IEEE Ind Electron Mag – volume: 189 year: 2019 ident: b22 article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems publication-title: Energy – volume: 35 year: 2021 ident: b21 article-title: A benchmark of different starting modes of a passive Fuel Cell/Ultracapacitor hybrid source for an electric vehicle application publication-title: J Energy Storage – volume: 43 start-page: 514 year: 2012 end-page: 525 ident: b20 article-title: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic publication-title: Int J Electr Power Energy Syst – volume: 47 start-page: 14983 year: 2022 end-page: 15000 ident: b30 article-title: Observer-based type-2 fuzzy approach for robust control and energy management strategy of hybrid energy storage systems publication-title: Int J Hydrog Energy – volume: 7 start-page: 65693 year: 2019 end-page: 65702 ident: b16 article-title: Output voltage regulation of FC-UC based hybrid electric vehicle using integral backstepping control publication-title: IEEE Access – volume: 52 start-page: 802 year: 2015 end-page: 814 ident: b4 article-title: A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges publication-title: Renew Sustain Energy Rev – volume: 2 start-page: 99 year: 2017 end-page: 110 ident: b7 article-title: Optimal energy management for a li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach publication-title: IEEE Trans Intell Veh – volume: 56 start-page: 1506 year: 2007 end-page: 1515 ident: b17 article-title: A unique ultracapacitor direct integration scheme in multilevel motor drives for large vehicle propulsion publication-title: IEEE Trans Veh Technol – volume: 178 start-page: 1291 year: 2021 end-page: 1302 ident: b28 article-title: Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control publication-title: Renew Energy – volume: 352 year: 2023 ident: b46 article-title: Modeling and control for PEMFC hydrogen management subsystem based on neural network compensation and prescribed tracking accuracy publication-title: Fuel – year: 2013 ident: b40 article-title: Storage wars: Batteries vs. supercapacitors – start-page: 1 year: 2023 end-page: 22 ident: b13 article-title: Design of an improved hybrid lithium-ion-ultracapacitor energy storage system for transport vehicles publication-title: Electr Power Components Syst – volume: 228 start-page: 2061 year: 2018 end-page: 2079 ident: b8 article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations publication-title: Appl Energy – year: 2022 ident: b12 article-title: A state-of-health estimation method considering capacity recovery of lithium batteries publication-title: Int J Energy Res – volume: 43 year: 2021 ident: b23 article-title: Dual-stage adaptive control of hybrid energy storage system for electric vehicle application publication-title: J Energy Storage – start-page: 254 year: 2018 end-page: 264 ident: b15 article-title: Model-based research on ultracapacitors publication-title: Conference on automation – volume: 65 start-page: 6625 year: 2017 end-page: 6634 ident: b24 article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage publication-title: IEEE Trans Ind Electron – volume: 37 year: 2021 ident: b37 article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy publication-title: J Energy Storage – volume: 163 start-page: 191 year: 2018 end-page: 207 ident: b3 article-title: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage publication-title: Energy – year: 2024 ident: b35 article-title: Advancing electric vehicle charging ecosystems with intelligent control of DC microgrid stability publication-title: IEEE Trans Ind Appl – volume: 45 start-page: 1627 issue: 2 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b5 article-title: Design of a hybrid energy management system using designed rule-based control strategy and genetic algorithm for the series-parallel plug-in hybrid electric vehicle publication-title: Int J Energy Res doi: 10.1002/er.5808 – volume: 228 start-page: 2061 year: 2018 ident: 10.1016/j.ijepes.2025.110603_b8 article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.07.087 – volume: 542 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b27 article-title: An optimal control for power management in super capacitors/battery of electric vehicles using Deep Neural Network publication-title: J Power Sources doi: 10.1016/j.jpowsour.2022.231696 – volume: 52 start-page: 802 year: 2015 ident: 10.1016/j.ijepes.2025.110603_b4 article-title: A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.132 – volume: 9 start-page: 392 issue: 3 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b25 article-title: Sliding mode control in power converters and drives: A review publication-title: IEEE/ CAA J Autom Sin doi: 10.1109/JAS.2021.1004380 – volume: 5 start-page: 1137 issue: 4 year: 2014 ident: 10.1016/j.ijepes.2025.110603_b19 article-title: Design and analysis of novel control strategy for battery and supercapacitor storage system publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2014.2336896 – volume: 43 start-page: 514 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2025.110603_b20 article-title: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.06.026 – volume: 197 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b44 article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116714 – volume: 72 year: 2023 ident: 10.1016/j.ijepes.2025.110603_b2 article-title: Fuel cell electric vehicles equipped with energy storage system for energy management: A hybrid JS-RSA approach publication-title: J Energy Storage doi: 10.1016/j.est.2023.108646 – volume: 56 start-page: 1506 issue: 4 year: 2007 ident: 10.1016/j.ijepes.2025.110603_b17 article-title: A unique ultracapacitor direct integration scheme in multilevel motor drives for large vehicle propulsion publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2007.896970 – volume: 37 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b37 article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy publication-title: J Energy Storage doi: 10.1016/j.est.2021.102468 – start-page: 1 year: 2023 ident: 10.1016/j.ijepes.2025.110603_b34 article-title: Flexible control approach for DC microgrid oriented electric vehicle charging station – volume: 7 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b10 article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network publication-title: Prot Control Mod Power Syst doi: 10.1186/s41601-022-00261-y – volume: 41 start-page: 3185 issue: 4 year: 2016 ident: 10.1016/j.ijepes.2025.110603_b38 article-title: Dynamic modeling and nonlinear control of fuel cell vehicles with different hybrid power sources publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2015.12.046 – volume: 47 start-page: 14983 issue: 33 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b30 article-title: Observer-based type-2 fuzzy approach for robust control and energy management strategy of hybrid energy storage systems publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.02.236 – volume: 15 start-page: 3585 issue: 3 year: 2020 ident: 10.1016/j.ijepes.2025.110603_b33 article-title: Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT publication-title: IEEE Syst J doi: 10.1109/JSYST.2020.3020275 – volume: 46 start-page: 7442 issue: 10 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b43 article-title: Adaptive robust control-based energy management of hybrid PV-Battery systems with improved transient performance publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2020.11.243 – start-page: 1 year: 2023 ident: 10.1016/j.ijepes.2025.110603_b13 article-title: Design of an improved hybrid lithium-ion-ultracapacitor energy storage system for transport vehicles publication-title: Electr Power Components Syst doi: 10.1080/15325008.2023.2261467 – volume: 178 start-page: 1291 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b28 article-title: Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control publication-title: Renew Energy doi: 10.1016/j.renene.2021.06.038 – volume: 43 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b23 article-title: Dual-stage adaptive control of hybrid energy storage system for electric vehicle application publication-title: J Energy Storage doi: 10.1016/j.est.2021.103165 – volume: 2 start-page: 99 issue: 2 year: 2017 ident: 10.1016/j.ijepes.2025.110603_b7 article-title: Optimal energy management for a li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach publication-title: IEEE Trans Intell Veh – volume: 35 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b21 article-title: A benchmark of different starting modes of a passive Fuel Cell/Ultracapacitor hybrid source for an electric vehicle application publication-title: J Energy Storage doi: 10.1016/j.est.2021.102280 – volume: 37 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b31 article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy publication-title: J Energy Storage doi: 10.1016/j.est.2021.102468 – volume: 57 start-page: 587 issue: 2 year: 2009 ident: 10.1016/j.ijepes.2025.110603_b18 article-title: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2009.2025283 – volume: 197 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b42 article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116714 – volume: 13 start-page: 838 issue: 6 year: 2019 ident: 10.1016/j.ijepes.2025.110603_b32 article-title: Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2018.5019 – volume: 163 start-page: 191 year: 2018 ident: 10.1016/j.ijepes.2025.110603_b3 article-title: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage publication-title: Energy doi: 10.1016/j.energy.2018.08.112 – volume: 70 start-page: 3005 issue: 7 year: 2023 ident: 10.1016/j.ijepes.2025.110603_b45 article-title: Finite-time adaptive neural network observer-based output voltage-tracking control for DC–DC boost converters publication-title: IEEE Trans Circuits Syst I Regul Pap doi: 10.1109/TCSI.2023.3264536 – start-page: 254 year: 2018 ident: 10.1016/j.ijepes.2025.110603_b15 article-title: Model-based research on ultracapacitors – year: 2024 ident: 10.1016/j.ijepes.2025.110603_b35 article-title: Advancing electric vehicle charging ecosystems with intelligent control of DC microgrid stability publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2024.3413052 – year: 2013 ident: 10.1016/j.ijepes.2025.110603_b40 – volume: 13 start-page: 16 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2025.110603_b6 article-title: Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: Recent advances and prospects publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2019.2913015 – volume: 65 start-page: 6625 issue: 8 year: 2017 ident: 10.1016/j.ijepes.2025.110603_b24 article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2767544 – volume: 116 year: 2020 ident: 10.1016/j.ijepes.2025.110603_b36 article-title: Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2020.100620 – volume: 12 start-page: 3880 issue: 8 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b29 article-title: Development of fuzzy-adaptive control based energy management strategy for PEM fuel cell hybrid tramway system publication-title: Appl Sci doi: 10.3390/app12083880 – volume: 7 start-page: 65693 year: 2019 ident: 10.1016/j.ijepes.2025.110603_b16 article-title: Output voltage regulation of FC-UC based hybrid electric vehicle using integral backstepping control publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912511 – volume: 189 year: 2019 ident: 10.1016/j.ijepes.2025.110603_b22 article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems publication-title: Energy doi: 10.1016/j.energy.2019.116142 – year: 2022 ident: 10.1016/j.ijepes.2025.110603_b11 article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model publication-title: Int J Energy Res doi: 10.1002/er.8709 – volume: 53 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b14 article-title: Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends publication-title: J Energy Storage doi: 10.1016/j.est.2022.105045 – year: 2022 ident: 10.1016/j.ijepes.2025.110603_b12 article-title: A state-of-health estimation method considering capacity recovery of lithium batteries publication-title: Int J Energy Res doi: 10.1002/er.8671 – volume: 42 start-page: 4263 issue: 14 year: 2018 ident: 10.1016/j.ijepes.2025.110603_b1 article-title: A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric vehicles publication-title: Int J Energy Res doi: 10.1002/er.4166 – volume: 15 start-page: 74 issue: 1 year: 2020 ident: 10.1016/j.ijepes.2025.110603_b26 article-title: Hybrid energy storage systems: Concepts, advantages, and applications publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2020.3016914 – volume: 42 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b41 article-title: Robust integral backstepping controller for energy management in plugin hybrid electric vehicles publication-title: J Energy Storage doi: 10.1016/j.est.2021.103079 – volume: 43 year: 2021 ident: 10.1016/j.ijepes.2025.110603_b39 article-title: Conditioned-based robust nonlinear control of plug-in hybrid electric vehicle with saturated control actions publication-title: J Energy Storage doi: 10.1016/j.est.2021.103201 – volume: 53 year: 2022 ident: 10.1016/j.ijepes.2025.110603_b9 article-title: Energy managment strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends publication-title: J Energy Storage doi: 10.1016/j.est.2022.105045 – volume: 352 year: 2023 ident: 10.1016/j.ijepes.2025.110603_b46 article-title: Modeling and control for PEMFC hydrogen management subsystem based on neural network compensation and prescribed tracking accuracy publication-title: Fuel doi: 10.1016/j.fuel.2023.129019 |
| SSID | ssj0007942 |
| Score | 2.4305124 |
| Snippet | This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles.... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Index Database Publisher |
| StartPage | 110603 |
| SubjectTerms | Adaptive control Hybrid electric vehicles (HEVs) Nonlinear hybrid energy storage (NHES) Renewable energy |
| Title | Enhanced energy management of dual-stage hybrid energy storage systems with a novel adaptive robust control algorithm |
| URI | https://dx.doi.org/10.1016/j.ijepes.2025.110603 https://doaj.org/article/e3931175364d448a97dab33b94e35893 |
| Volume | 167 |
| WOSCitedRecordID | wos001452263800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0142-0615 databaseCode: DOA dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0007942 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHvQgPnF9kYPX4DZJ0-aosqIi4kFlbyVpJrqi7bIPwX9vpmllT3rxGoakTId5JN98Q8hp3wq8XFNMmUQwWRrOdM4Fc5lXMgdfyubF9Pkuu7_Ph0P9sDDqCzFhkR44Ku4MhBYNnaSSLpQSRmfOWCGsliDSEGzR-_Yz3RVTrQ8OVsYjeJHj7IK0a5prkF2jNxgDUnXzFFHwqhuY1Qalhrt_ITYtxJurTbLRJor0PH7gFlmCapusL9AH7pD5oHptHvApNB189OMHy0JrT7HLioXk7wXo6xc2ZnViCIjE1cjiPKV4F0sNrepPeKfGmTG6QDqp7Xw6oy2WnZr3l3oSBD92ydPV4PHymrVjFFgplJ6xtJSJ8Y6rNIE0t9xZL3KnQ17FJejcpxaHb3ihSi6dt0KWEkxmEqWDAzIhyO2R5aquYJ9Qjw39tm9Ah8IwAR9CW57K0kqX94E70SOs02MxjmwZRQcjeyui3gvUexH13iMXqOwfWeS6bhaCBRStBRR_WUCPZN2vKtq0IaYDYavRr8cf_Mfxh2QNt4zwsSOyPJvM4Zislp-z0XRyQlbObwbD25PGPL8Bcyfm9Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+energy+management+of+dual-stage+hybrid+energy+storage+systems+with+a+novel+adaptive+robust+control+algorithm&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Taghavifar%2C+Hamid&rft.au=Taghavifar%2C+Hadi&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=167&rft_id=info:doi/10.1016%2Fj.ijepes.2025.110603&rft.externalDocID=S0142061525001541 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |