Enhanced energy management of dual-stage hybrid energy storage systems with a novel adaptive robust control algorithm

This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems Jg. 167; S. 110603
Hauptverfasser: Taghavifar, Hamid, Taghavifar, Hadi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2025
Elsevier
Schlagworte:
ISSN:0142-0615
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation strategy (Indirect Adaptive Robust RBF Neural Network IAR-RBFNN) estimates state and unknown functions. The IAR-RBFNN for the NHESS is resilient and robust, subject to bounded but unknown disturbances that can affect the fuel-cell and ultra-capacitor currents and the output voltage of a DC bus. The proposed controller switches between the two power converters to track the ideal current levels and help regulate the DC-bus voltage to higher levels to improve efficiency. To overcome the effect of the disturbances, the proposed controller contains a robustifying term, and the adaptation laws are guaranteed to be ultimately bounded using an e-modification approach. Additionally, the approximation capacity of radial basis function neural network (RBFNN) systems is employed to estimate the entire system dynamics, unlike only estimation disturbance or a few system parameters. The performance of the proposed control strategy is further evaluated against other reported studies in the literature in terms of several performance indicators. Quantitative results demonstrate that the proposed controller achieves RMSE values of 0.13 Ω for IFC, 0.25 Ω for IPB, and 2.5 V for VDC, significantly outperforming the ATSMC and ORAT2F methods which recorded higher RMSEs of 0.41 Ω, 0.65 Ω, and 3.51 V, respectively. The results reveal that the proposed controller outperforms the benchmarking control strategies regarding the tracking performance for the fuel-cell and ultra-capacitor ideal currents. •A novel robust controller for energy management of hybrid electric vehicles.•IAR-RBFNN used for output voltage regulation of DC Bus of Fuel Cell HEVs.•Improved efficiency of DC-bus voltage of hybrid FC+UC energy system.•Adaptive estimation of the unknown model and external disturbances.
AbstractList This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation strategy (Indirect Adaptive Robust RBF Neural Network IAR-RBFNN) estimates state and unknown functions. The IAR-RBFNN for the NHESS is resilient and robust, subject to bounded but unknown disturbances that can affect the fuel-cell and ultra-capacitor currents and the output voltage of a DC bus. The proposed controller switches between the two power converters to track the ideal current levels and help regulate the DC-bus voltage to higher levels to improve efficiency. To overcome the effect of the disturbances, the proposed controller contains a robustifying term, and the adaptation laws are guaranteed to be ultimately bounded using an e-modification approach. Additionally, the approximation capacity of radial basis function neural network (RBFNN) systems is employed to estimate the entire system dynamics, unlike only estimation disturbance or a few system parameters. The performance of the proposed control strategy is further evaluated against other reported studies in the literature in terms of several performance indicators. Quantitative results demonstrate that the proposed controller achieves RMSE values of 0.13 Ω for IFC, 0.25 Ω for IPB, and 2.5 V for VDC, significantly outperforming the ATSMC and ORAT2F methods which recorded higher RMSEs of 0.41 Ω, 0.65 Ω, and 3.51 V, respectively. The results reveal that the proposed controller outperforms the benchmarking control strategies regarding the tracking performance for the fuel-cell and ultra-capacitor ideal currents. •A novel robust controller for energy management of hybrid electric vehicles.•IAR-RBFNN used for output voltage regulation of DC Bus of Fuel Cell HEVs.•Improved efficiency of DC-bus voltage of hybrid FC+UC energy system.•Adaptive estimation of the unknown model and external disturbances.
This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles. The NHESS consists of a fuel cell as a primary source and an ultra-capacitor as an additional energy source. A neural network approximation strategy (Indirect Adaptive Robust RBF Neural Network IAR-RBFNN) estimates state and unknown functions. The IAR-RBFNN for the NHESS is resilient and robust, subject to bounded but unknown disturbances that can affect the fuel-cell and ultra-capacitor currents and the output voltage of a DC bus. The proposed controller switches between the two power converters to track the ideal current levels and help regulate the DC-bus voltage to higher levels to improve efficiency. To overcome the effect of the disturbances, the proposed controller contains a robustifying term, and the adaptation laws are guaranteed to be ultimately bounded using an e-modification approach. Additionally, the approximation capacity of radial basis function neural network (RBFNN) systems is employed to estimate the entire system dynamics, unlike only estimation disturbance or a few system parameters. The performance of the proposed control strategy is further evaluated against other reported studies in the literature in terms of several performance indicators. Quantitative results demonstrate that the proposed controller achieves RMSE values of 0.13 Ω for IFC, 0.25 Ω for IPB, and 2.5 V for VDC, significantly outperforming the ATSMC and ORAT2F methods which recorded higher RMSEs of 0.41 Ω, 0.65 Ω, and 3.51 V, respectively. The results reveal that the proposed controller outperforms the benchmarking control strategies regarding the tracking performance for the fuel-cell and ultra-capacitor ideal currents.
ArticleNumber 110603
Author Taghavifar, Hadi
Taghavifar, Hamid
Author_xml – sequence: 1
  givenname: Hamid
  surname: Taghavifar
  fullname: Taghavifar, Hamid
  organization: Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
– sequence: 2
  givenname: Hadi
  surname: Taghavifar
  fullname: Taghavifar, Hadi
  email: hadi.taghavifar@uit.no
  organization: Department of Technology and Safety (ITS), UiT-The Arctic University of Norway, Tromso, Norway
BookMark eNp9kE1r3DAQhnVIoUmaf9CD_oC3kvVh61IoIW0DgV6asxhL410ZW1ok7Zb99_XWIceeBl7mfZh57shNTBEJ-czZjjOuv0y7MOERy65lrdpxzjQTN-SWcdk2THP1kdyVMjHGOiPbW3J6igeIDj3FiHl_oQtE2OOCsdI0Un-CuSl1TejhMuTwvlZqyte0XErFpdA_oR4o0JjOOFPwcKzhjDSn4VQqdSnWnNZ83qe8Li6fyIcR5oIPb_OevH5_-v34s3n59eP58dtL44Q2tVFOchh9qxVH1Q-tH0bRe8OUaSWaflQD67kehXat9OMgpJMIHXBt-r4DycU9ed64PsFkjzkskC82QbD_gpT3FnINbkaLwgjOOyW09FL2YDoPgxCDkShUb8TKkhvL5VRKxvGdx5m9qreT3dTbq3q7qV9rX7carn-eA2ZbXMCr8ZDR1fWQ8H_AX3pRk_w
Cites_doi 10.1002/er.5808
10.1016/j.apenergy.2018.07.087
10.1016/j.jpowsour.2022.231696
10.1016/j.rser.2015.07.132
10.1109/JAS.2021.1004380
10.1109/TSTE.2014.2336896
10.1016/j.ijepes.2012.06.026
10.1016/j.eswa.2022.116714
10.1016/j.est.2023.108646
10.1109/TVT.2007.896970
10.1016/j.est.2021.102468
10.1186/s41601-022-00261-y
10.1016/j.ijhydene.2015.12.046
10.1016/j.ijhydene.2022.02.236
10.1109/JSYST.2020.3020275
10.1016/j.ijhydene.2020.11.243
10.1080/15325008.2023.2261467
10.1016/j.renene.2021.06.038
10.1016/j.est.2021.103165
10.1016/j.est.2021.102280
10.1109/TIE.2009.2025283
10.1049/iet-gtd.2018.5019
10.1016/j.energy.2018.08.112
10.1109/TCSI.2023.3264536
10.1109/TIA.2024.3413052
10.1109/MIE.2019.2913015
10.1109/TIE.2017.2767544
10.1016/j.paerosci.2020.100620
10.3390/app12083880
10.1109/ACCESS.2019.2912511
10.1016/j.energy.2019.116142
10.1002/er.8709
10.1016/j.est.2022.105045
10.1002/er.8671
10.1002/er.4166
10.1109/MIE.2020.3016914
10.1016/j.est.2021.103079
10.1016/j.est.2021.103201
10.1016/j.fuel.2023.129019
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ijepes.2025.110603
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_e3931175364d448a97dab33b94e35893
10_1016_j_ijepes_2025_110603
S0142061525001541
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c369t-5c41afd2651e58b2dbf38d905924e98f5b0816f36c24dfb34c4ea7a169887a413
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001452263800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Fri Oct 03 12:44:39 EDT 2025
Sat Nov 29 07:59:33 EST 2025
Sat Apr 26 15:42:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear hybrid energy storage (NHES)
Hybrid electric vehicles (HEVs)
Renewable energy
Adaptive control
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-5c41afd2651e58b2dbf38d905924e98f5b0816f36c24dfb34c4ea7a169887a413
OpenAccessLink https://doaj.org/article/e3931175364d448a97dab33b94e35893
ParticipantIDs doaj_primary_oai_doaj_org_article_e3931175364d448a97dab33b94e35893
crossref_primary_10_1016_j_ijepes_2025_110603
elsevier_sciencedirect_doi_10_1016_j_ijepes_2025_110603
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sulaiman, Hannan, Mohamed, Ker, Majlan, Daud (b8) 2018; 228
Elhaki, Shojaei, Mehrmohammadi (b44) 2022; 197
Ahmed, Afzal, Ahmad, Hasan (b39) 2021; 43
Lu, Corzine, Ferdowsi (b17) 2007; 56
Guo, Yang, Zhang, Wang, Wang (b10) 2022; 7
Trinh, Truong, Ahn (b29) 2022; 12
Ghavidel, Mousavi-G (b30) 2022; 47
Miret (b40) 2013
Rahman, Zehra, Ahmad, Armghan (b31) 2021; 37
Zhang, Maleki, Rosen, Liu (b3) 2018; 163
Wang, Sun, Li, Yang, Chen (b22) 2019; 189
Pradhan, Senapati, Malla, Nayak, Gjengedal (b33) 2020; 15
Rezaei, Abdollahi, Abdollahi, Filizadeh (b9) 2022; 53
Rahman, Zehra, Ahmad, Armghan (b37) 2021; 37
Guo, Yu, Zhu, Zhao, Wang, Wang (b12) 2022
Xu, Liu, Yan, Yan (b24) 2017; 65
Hu, Liu, Qi, Barth (b6) 2019; 13
Senapati, Pradhan, Samantaray, Nayak (b32) 2019; 13
Sulaiman, Hannan, Mohamed, Majlan, Daud (b4) 2015; 52
Senapati, Al Zaabi, Al Hosani, Al Jaafari, Pradhan, Muduli (b35) 2024
Leon, Dominguez, Wu, Alcaide, Reyes, Liu (b26) 2020; 15
Jacome, Dépature, Boulon, Solano (b21) 2021; 35
Kasimalla, Velisala (b1) 2018; 42
Arslan, Ahmad, Azeem, Liaquat (b23) 2021; 43
Elhaki, Shojaei, Mehrmohammadi (b42) 2022; 197
Pisal, Vidyarthi (b27) 2022; 542
Rajabzadeh, Bathaee, Golkar (b38) 2016; 41
Saravanan, Sobhana, Lakshmanan, Arulkumar (b2) 2023; 72
Li, Chen, Li, Liu, Huang (b20) 2012; 43
Senapati, Al Jaafaari, Al Hosani, Muduli (b34) 2023
Kollimalla, Mishra, Narasamma (b19) 2014; 5
Camara, Gualous, Gustin, Berthon, Dakyo (b18) 2009; 57
Wang, Wang, Song, Liang (b45) 2023; 70
Taghavifar, Taghavifar (b43) 2021; 46
Khan, Ahmad, Abideen (b16) 2019; 7
Mayingi, Puati Zau, Chowdhury, Ngoma (b13) 2023
Chmielewski, Piórkowski, Gumiński, Bogdziński, Możaryn (b15) 2018
Wu, Liu, Vazquez, Mazumder (b25) 2021; 9
Benmouna, Becherif, Boulon, Dépature, Ramadan (b28) 2021; 178
e Huma, Azeem, Ahmad, Armghan, Ahmed, Adil (b41) 2021; 42
Wang, Wu, Wang (b46) 2023; 352
Ding, Prasad, Lie (b5) 2021; 45
Mesbahi, Rizoug, Bartholomeüs, Sadoun, Khenfri, Le Moigne (b7) 2017; 2
Wang, Zhao, Li, Wang, Huang, You (b36) 2020; 116
Sun, Yang, Wang, Wang (b11) 2022
Rezaei, Abdollahi, Abdollahi, Filizadeh (b14) 2022; 53
Ghavidel (10.1016/j.ijepes.2025.110603_b30) 2022; 47
Benmouna (10.1016/j.ijepes.2025.110603_b28) 2021; 178
Rahman (10.1016/j.ijepes.2025.110603_b31) 2021; 37
Mesbahi (10.1016/j.ijepes.2025.110603_b7) 2017; 2
Elhaki (10.1016/j.ijepes.2025.110603_b44) 2022; 197
Chmielewski (10.1016/j.ijepes.2025.110603_b15) 2018
Li (10.1016/j.ijepes.2025.110603_b20) 2012; 43
Khan (10.1016/j.ijepes.2025.110603_b16) 2019; 7
Lu (10.1016/j.ijepes.2025.110603_b17) 2007; 56
Senapati (10.1016/j.ijepes.2025.110603_b35) 2024
Kasimalla (10.1016/j.ijepes.2025.110603_b1) 2018; 42
Rezaei (10.1016/j.ijepes.2025.110603_b9) 2022; 53
Xu (10.1016/j.ijepes.2025.110603_b24) 2017; 65
Ding (10.1016/j.ijepes.2025.110603_b5) 2021; 45
Mayingi (10.1016/j.ijepes.2025.110603_b13) 2023
Senapati (10.1016/j.ijepes.2025.110603_b32) 2019; 13
e Huma (10.1016/j.ijepes.2025.110603_b41) 2021; 42
Sulaiman (10.1016/j.ijepes.2025.110603_b8) 2018; 228
Wang (10.1016/j.ijepes.2025.110603_b22) 2019; 189
Pisal (10.1016/j.ijepes.2025.110603_b27) 2022; 542
Taghavifar (10.1016/j.ijepes.2025.110603_b43) 2021; 46
Pradhan (10.1016/j.ijepes.2025.110603_b33) 2020; 15
Guo (10.1016/j.ijepes.2025.110603_b10) 2022; 7
Hu (10.1016/j.ijepes.2025.110603_b6) 2019; 13
Camara (10.1016/j.ijepes.2025.110603_b18) 2009; 57
Miret (10.1016/j.ijepes.2025.110603_b40) 2013
Wang (10.1016/j.ijepes.2025.110603_b36) 2020; 116
Elhaki (10.1016/j.ijepes.2025.110603_b42) 2022; 197
Arslan (10.1016/j.ijepes.2025.110603_b23) 2021; 43
Wang (10.1016/j.ijepes.2025.110603_b45) 2023; 70
Sulaiman (10.1016/j.ijepes.2025.110603_b4) 2015; 52
Guo (10.1016/j.ijepes.2025.110603_b12) 2022
Rajabzadeh (10.1016/j.ijepes.2025.110603_b38) 2016; 41
Rahman (10.1016/j.ijepes.2025.110603_b37) 2021; 37
Ahmed (10.1016/j.ijepes.2025.110603_b39) 2021; 43
Zhang (10.1016/j.ijepes.2025.110603_b3) 2018; 163
Wang (10.1016/j.ijepes.2025.110603_b46) 2023; 352
Rezaei (10.1016/j.ijepes.2025.110603_b14) 2022; 53
Leon (10.1016/j.ijepes.2025.110603_b26) 2020; 15
Kollimalla (10.1016/j.ijepes.2025.110603_b19) 2014; 5
Trinh (10.1016/j.ijepes.2025.110603_b29) 2022; 12
Sun (10.1016/j.ijepes.2025.110603_b11) 2022
Senapati (10.1016/j.ijepes.2025.110603_b34) 2023
Wu (10.1016/j.ijepes.2025.110603_b25) 2021; 9
Saravanan (10.1016/j.ijepes.2025.110603_b2) 2023; 72
Jacome (10.1016/j.ijepes.2025.110603_b21) 2021; 35
References_xml – volume: 13
  start-page: 16
  year: 2019
  end-page: 25
  ident: b6
  article-title: Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: Recent advances and prospects
  publication-title: IEEE Ind Electron Mag
– volume: 43
  year: 2021
  ident: b39
  article-title: Conditioned-based robust nonlinear control of plug-in hybrid electric vehicle with saturated control actions
  publication-title: J Energy Storage
– volume: 7
  start-page: 1
  year: 2022
  end-page: 17
  ident: b10
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Prot Control Mod Power Syst
– volume: 45
  start-page: 1627
  year: 2021
  end-page: 1644
  ident: b5
  article-title: Design of a hybrid energy management system using designed rule-based control strategy and genetic algorithm for the series-parallel plug-in hybrid electric vehicle
  publication-title: Int J Energy Res
– volume: 53
  year: 2022
  ident: b9
  article-title: Energy managment strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends
  publication-title: J Energy Storage
– volume: 197
  year: 2022
  ident: b44
  article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles
  publication-title: Expert Syst Appl
– volume: 42
  start-page: 4263
  year: 2018
  end-page: 4283
  ident: b1
  article-title: A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric vehicles
  publication-title: Int J Energy Res
– volume: 5
  start-page: 1137
  year: 2014
  end-page: 1144
  ident: b19
  article-title: Design and analysis of novel control strategy for battery and supercapacitor storage system
  publication-title: IEEE Trans Sustain Energy
– volume: 37
  year: 2021
  ident: b31
  article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy
  publication-title: J Energy Storage
– volume: 70
  start-page: 3005
  year: 2023
  end-page: 3016
  ident: b45
  article-title: Finite-time adaptive neural network observer-based output voltage-tracking control for DC–DC boost converters
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– volume: 53
  year: 2022
  ident: b14
  article-title: Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends
  publication-title: J Energy Storage
– volume: 12
  start-page: 3880
  year: 2022
  ident: b29
  article-title: Development of fuzzy-adaptive control based energy management strategy for PEM fuel cell hybrid tramway system
  publication-title: Appl Sci
– volume: 116
  year: 2020
  ident: b36
  article-title: Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles
  publication-title: Prog Aerosp Sci
– volume: 57
  start-page: 587
  year: 2009
  end-page: 597
  ident: b18
  article-title: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy
  publication-title: IEEE Trans Ind Electron
– volume: 41
  start-page: 3185
  year: 2016
  end-page: 3198
  ident: b38
  article-title: Dynamic modeling and nonlinear control of fuel cell vehicles with different hybrid power sources
  publication-title: Int J Hydrog Energy
– volume: 72
  year: 2023
  ident: b2
  article-title: Fuel cell electric vehicles equipped with energy storage system for energy management: A hybrid JS-RSA approach
  publication-title: J Energy Storage
– volume: 15
  start-page: 3585
  year: 2020
  end-page: 3596
  ident: b33
  article-title: Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT
  publication-title: IEEE Syst J
– volume: 542
  year: 2022
  ident: b27
  article-title: An optimal control for power management in super capacitors/battery of electric vehicles using Deep Neural Network
  publication-title: J Power Sources
– volume: 13
  start-page: 838
  year: 2019
  end-page: 849
  ident: b32
  article-title: Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration
  publication-title: IET Gener Transm Distrib
– volume: 46
  start-page: 7442
  year: 2021
  end-page: 7453
  ident: b43
  article-title: Adaptive robust control-based energy management of hybrid PV-Battery systems with improved transient performance
  publication-title: Int J Hydrog Energy
– start-page: 1
  year: 2023
  end-page: 6
  ident: b34
  article-title: Flexible control approach for DC microgrid oriented electric vehicle charging station
  publication-title: 2023 IEEE IAS global conference on renewable energy and hydrogen technologies
– volume: 197
  year: 2022
  ident: b42
  article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles
  publication-title: Expert Syst Appl
– volume: 9
  start-page: 392
  year: 2021
  end-page: 406
  ident: b25
  article-title: Sliding mode control in power converters and drives: A review
  publication-title: IEEE/ CAA J Autom Sin
– volume: 42
  year: 2021
  ident: b41
  article-title: Robust integral backstepping controller for energy management in plugin hybrid electric vehicles
  publication-title: J Energy Storage
– year: 2022
  ident: b11
  article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model
  publication-title: Int J Energy Res
– volume: 15
  start-page: 74
  year: 2020
  end-page: 88
  ident: b26
  article-title: Hybrid energy storage systems: Concepts, advantages, and applications
  publication-title: IEEE Ind Electron Mag
– volume: 189
  year: 2019
  ident: b22
  article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems
  publication-title: Energy
– volume: 35
  year: 2021
  ident: b21
  article-title: A benchmark of different starting modes of a passive Fuel Cell/Ultracapacitor hybrid source for an electric vehicle application
  publication-title: J Energy Storage
– volume: 43
  start-page: 514
  year: 2012
  end-page: 525
  ident: b20
  article-title: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic
  publication-title: Int J Electr Power Energy Syst
– volume: 47
  start-page: 14983
  year: 2022
  end-page: 15000
  ident: b30
  article-title: Observer-based type-2 fuzzy approach for robust control and energy management strategy of hybrid energy storage systems
  publication-title: Int J Hydrog Energy
– volume: 7
  start-page: 65693
  year: 2019
  end-page: 65702
  ident: b16
  article-title: Output voltage regulation of FC-UC based hybrid electric vehicle using integral backstepping control
  publication-title: IEEE Access
– volume: 52
  start-page: 802
  year: 2015
  end-page: 814
  ident: b4
  article-title: A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges
  publication-title: Renew Sustain Energy Rev
– volume: 2
  start-page: 99
  year: 2017
  end-page: 110
  ident: b7
  article-title: Optimal energy management for a li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach
  publication-title: IEEE Trans Intell Veh
– volume: 56
  start-page: 1506
  year: 2007
  end-page: 1515
  ident: b17
  article-title: A unique ultracapacitor direct integration scheme in multilevel motor drives for large vehicle propulsion
  publication-title: IEEE Trans Veh Technol
– volume: 178
  start-page: 1291
  year: 2021
  end-page: 1302
  ident: b28
  article-title: Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control
  publication-title: Renew Energy
– volume: 352
  year: 2023
  ident: b46
  article-title: Modeling and control for PEMFC hydrogen management subsystem based on neural network compensation and prescribed tracking accuracy
  publication-title: Fuel
– year: 2013
  ident: b40
  article-title: Storage wars: Batteries vs. supercapacitors
– start-page: 1
  year: 2023
  end-page: 22
  ident: b13
  article-title: Design of an improved hybrid lithium-ion-ultracapacitor energy storage system for transport vehicles
  publication-title: Electr Power Components Syst
– volume: 228
  start-page: 2061
  year: 2018
  end-page: 2079
  ident: b8
  article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations
  publication-title: Appl Energy
– year: 2022
  ident: b12
  article-title: A state-of-health estimation method considering capacity recovery of lithium batteries
  publication-title: Int J Energy Res
– volume: 43
  year: 2021
  ident: b23
  article-title: Dual-stage adaptive control of hybrid energy storage system for electric vehicle application
  publication-title: J Energy Storage
– start-page: 254
  year: 2018
  end-page: 264
  ident: b15
  article-title: Model-based research on ultracapacitors
  publication-title: Conference on automation
– volume: 65
  start-page: 6625
  year: 2017
  end-page: 6634
  ident: b24
  article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage
  publication-title: IEEE Trans Ind Electron
– volume: 37
  year: 2021
  ident: b37
  article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy
  publication-title: J Energy Storage
– volume: 163
  start-page: 191
  year: 2018
  end-page: 207
  ident: b3
  article-title: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage
  publication-title: Energy
– year: 2024
  ident: b35
  article-title: Advancing electric vehicle charging ecosystems with intelligent control of DC microgrid stability
  publication-title: IEEE Trans Ind Appl
– volume: 45
  start-page: 1627
  issue: 2
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b5
  article-title: Design of a hybrid energy management system using designed rule-based control strategy and genetic algorithm for the series-parallel plug-in hybrid electric vehicle
  publication-title: Int J Energy Res
  doi: 10.1002/er.5808
– volume: 228
  start-page: 2061
  year: 2018
  ident: 10.1016/j.ijepes.2025.110603_b8
  article-title: Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.087
– volume: 542
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b27
  article-title: An optimal control for power management in super capacitors/battery of electric vehicles using Deep Neural Network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2022.231696
– volume: 52
  start-page: 802
  year: 2015
  ident: 10.1016/j.ijepes.2025.110603_b4
  article-title: A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.132
– volume: 9
  start-page: 392
  issue: 3
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b25
  article-title: Sliding mode control in power converters and drives: A review
  publication-title: IEEE/ CAA J Autom Sin
  doi: 10.1109/JAS.2021.1004380
– volume: 5
  start-page: 1137
  issue: 4
  year: 2014
  ident: 10.1016/j.ijepes.2025.110603_b19
  article-title: Design and analysis of novel control strategy for battery and supercapacitor storage system
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2014.2336896
– volume: 43
  start-page: 514
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2025.110603_b20
  article-title: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.06.026
– volume: 197
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b44
  article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116714
– volume: 72
  year: 2023
  ident: 10.1016/j.ijepes.2025.110603_b2
  article-title: Fuel cell electric vehicles equipped with energy storage system for energy management: A hybrid JS-RSA approach
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108646
– volume: 56
  start-page: 1506
  issue: 4
  year: 2007
  ident: 10.1016/j.ijepes.2025.110603_b17
  article-title: A unique ultracapacitor direct integration scheme in multilevel motor drives for large vehicle propulsion
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2007.896970
– volume: 37
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b37
  article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102468
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijepes.2025.110603_b34
  article-title: Flexible control approach for DC microgrid oriented electric vehicle charging station
– volume: 7
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b10
  article-title: Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
  publication-title: Prot Control Mod Power Syst
  doi: 10.1186/s41601-022-00261-y
– volume: 41
  start-page: 3185
  issue: 4
  year: 2016
  ident: 10.1016/j.ijepes.2025.110603_b38
  article-title: Dynamic modeling and nonlinear control of fuel cell vehicles with different hybrid power sources
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2015.12.046
– volume: 47
  start-page: 14983
  issue: 33
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b30
  article-title: Observer-based type-2 fuzzy approach for robust control and energy management strategy of hybrid energy storage systems
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.02.236
– volume: 15
  start-page: 3585
  issue: 3
  year: 2020
  ident: 10.1016/j.ijepes.2025.110603_b33
  article-title: Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2020.3020275
– volume: 46
  start-page: 7442
  issue: 10
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b43
  article-title: Adaptive robust control-based energy management of hybrid PV-Battery systems with improved transient performance
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2020.11.243
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijepes.2025.110603_b13
  article-title: Design of an improved hybrid lithium-ion-ultracapacitor energy storage system for transport vehicles
  publication-title: Electr Power Components Syst
  doi: 10.1080/15325008.2023.2261467
– volume: 178
  start-page: 1291
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b28
  article-title: Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.06.038
– volume: 43
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b23
  article-title: Dual-stage adaptive control of hybrid energy storage system for electric vehicle application
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103165
– volume: 2
  start-page: 99
  issue: 2
  year: 2017
  ident: 10.1016/j.ijepes.2025.110603_b7
  article-title: Optimal energy management for a li-ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating Nelder–Mead simplex approach
  publication-title: IEEE Trans Intell Veh
– volume: 35
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b21
  article-title: A benchmark of different starting modes of a passive Fuel Cell/Ultracapacitor hybrid source for an electric vehicle application
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102280
– volume: 37
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b31
  article-title: Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102468
– volume: 57
  start-page: 587
  issue: 2
  year: 2009
  ident: 10.1016/j.ijepes.2025.110603_b18
  article-title: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2009.2025283
– volume: 197
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b42
  article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116714
– volume: 13
  start-page: 838
  issue: 6
  year: 2019
  ident: 10.1016/j.ijepes.2025.110603_b32
  article-title: Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2018.5019
– volume: 163
  start-page: 191
  year: 2018
  ident: 10.1016/j.ijepes.2025.110603_b3
  article-title: Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.112
– volume: 70
  start-page: 3005
  issue: 7
  year: 2023
  ident: 10.1016/j.ijepes.2025.110603_b45
  article-title: Finite-time adaptive neural network observer-based output voltage-tracking control for DC–DC boost converters
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2023.3264536
– start-page: 254
  year: 2018
  ident: 10.1016/j.ijepes.2025.110603_b15
  article-title: Model-based research on ultracapacitors
– year: 2024
  ident: 10.1016/j.ijepes.2025.110603_b35
  article-title: Advancing electric vehicle charging ecosystems with intelligent control of DC microgrid stability
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2024.3413052
– year: 2013
  ident: 10.1016/j.ijepes.2025.110603_b40
– volume: 13
  start-page: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2025.110603_b6
  article-title: Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: Recent advances and prospects
  publication-title: IEEE Ind Electron Mag
  doi: 10.1109/MIE.2019.2913015
– volume: 65
  start-page: 6625
  issue: 8
  year: 2017
  ident: 10.1016/j.ijepes.2025.110603_b24
  article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2767544
– volume: 116
  year: 2020
  ident: 10.1016/j.ijepes.2025.110603_b36
  article-title: Current technologies and challenges of applying fuel cell hybrid propulsion systems in unmanned aerial vehicles
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2020.100620
– volume: 12
  start-page: 3880
  issue: 8
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b29
  article-title: Development of fuzzy-adaptive control based energy management strategy for PEM fuel cell hybrid tramway system
  publication-title: Appl Sci
  doi: 10.3390/app12083880
– volume: 7
  start-page: 65693
  year: 2019
  ident: 10.1016/j.ijepes.2025.110603_b16
  article-title: Output voltage regulation of FC-UC based hybrid electric vehicle using integral backstepping control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912511
– volume: 189
  year: 2019
  ident: 10.1016/j.ijepes.2025.110603_b22
  article-title: A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116142
– year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b11
  article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model
  publication-title: Int J Energy Res
  doi: 10.1002/er.8709
– volume: 53
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b14
  article-title: Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105045
– year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b12
  article-title: A state-of-health estimation method considering capacity recovery of lithium batteries
  publication-title: Int J Energy Res
  doi: 10.1002/er.8671
– volume: 42
  start-page: 4263
  issue: 14
  year: 2018
  ident: 10.1016/j.ijepes.2025.110603_b1
  article-title: A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric vehicles
  publication-title: Int J Energy Res
  doi: 10.1002/er.4166
– volume: 15
  start-page: 74
  issue: 1
  year: 2020
  ident: 10.1016/j.ijepes.2025.110603_b26
  article-title: Hybrid energy storage systems: Concepts, advantages, and applications
  publication-title: IEEE Ind Electron Mag
  doi: 10.1109/MIE.2020.3016914
– volume: 42
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b41
  article-title: Robust integral backstepping controller for energy management in plugin hybrid electric vehicles
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103079
– volume: 43
  year: 2021
  ident: 10.1016/j.ijepes.2025.110603_b39
  article-title: Conditioned-based robust nonlinear control of plug-in hybrid electric vehicle with saturated control actions
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103201
– volume: 53
  year: 2022
  ident: 10.1016/j.ijepes.2025.110603_b9
  article-title: Energy managment strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105045
– volume: 352
  year: 2023
  ident: 10.1016/j.ijepes.2025.110603_b46
  article-title: Modeling and control for PEMFC hydrogen management subsystem based on neural network compensation and prescribed tracking accuracy
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129019
SSID ssj0007942
Score 2.4305124
Snippet This paper presents an indirect adaptive robust control algorithm for a nonlinear hybrid energy storage system (NHESS) that can be used in electric vehicles....
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 110603
SubjectTerms Adaptive control
Hybrid electric vehicles (HEVs)
Nonlinear hybrid energy storage (NHES)
Renewable energy
Title Enhanced energy management of dual-stage hybrid energy storage systems with a novel adaptive robust control algorithm
URI https://dx.doi.org/10.1016/j.ijepes.2025.110603
https://doaj.org/article/e3931175364d448a97dab33b94e35893
Volume 167
WOSCitedRecordID wos001452263800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0142-0615
  databaseCode: DOA
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHvQgPnF9kYPX4DZJ0-aosqIi4kFlbyVpJrqi7bIPwX9vpmllT3rxGoakTId5JN98Q8hp3wq8XFNMmUQwWRrOdM4Fc5lXMgdfyubF9Pkuu7_Ph0P9sDDqCzFhkR44Ku4MhBYNnaSSLpQSRmfOWCGsliDSEGzR-_Yz3RVTrQ8OVsYjeJHj7IK0a5prkF2jNxgDUnXzFFHwqhuY1Qalhrt_ITYtxJurTbLRJor0PH7gFlmCapusL9AH7pD5oHptHvApNB189OMHy0JrT7HLioXk7wXo6xc2ZnViCIjE1cjiPKV4F0sNrepPeKfGmTG6QDqp7Xw6oy2WnZr3l3oSBD92ydPV4PHymrVjFFgplJ6xtJSJ8Y6rNIE0t9xZL3KnQ17FJejcpxaHb3ihSi6dt0KWEkxmEqWDAzIhyO2R5aquYJ9Qjw39tm9Ah8IwAR9CW57K0kqX94E70SOs02MxjmwZRQcjeyui3gvUexH13iMXqOwfWeS6bhaCBRStBRR_WUCPZN2vKtq0IaYDYavRr8cf_Mfxh2QNt4zwsSOyPJvM4Zislp-z0XRyQlbObwbD25PGPL8Bcyfm9Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+energy+management+of+dual-stage+hybrid+energy+storage+systems+with+a+novel+adaptive+robust+control+algorithm&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Taghavifar%2C+Hamid&rft.au=Taghavifar%2C+Hadi&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=167&rft_id=info:doi/10.1016%2Fj.ijepes.2025.110603&rft.externalDocID=S0142061525001541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon