Short-term time series algebraic forecasting with internal smoothing

A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction. The concept of the H-rank of a sequence is exploited for the detection of a base algebraic fragment of the time series. Evolutionary algorithms are exploited for the identification of the se...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 127; pp. 161 - 171
Main Authors: Palivonaite, Rita, Ragulskis, Minvydas
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.03.2014
Elsevier
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction. The concept of the H-rank of a sequence is exploited for the detection of a base algebraic fragment of the time series. Evolutionary algorithms are exploited for the identification of the set of corrections which are used to perturb the original time series. The proposed forecasting method is constructed to find a near-optimal balance between the variability of algebraic predictors and the smoothness of averaging methods. Numerical experiments with an artificially generated and real-world time series are used to illustrate the potential of the proposed method. •A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction.•The concept of the H-rank of a sequence is exploited for the detection of a base algebraic fragment of the time series.•The proposed forecasting method is constructed to find a near-optimal balance between the variability of algebraic predictors and the smoothness of averaging methods.
AbstractList A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction. The concept of the H-rank of a sequence is exploited for the detection of a base algebraic fragment of the time series. Evolutionary algorithms are exploited for the identification of the set of corrections which are used to perturb the original time series. The proposed forecasting method is constructed to find a near-optimal balance between the variability of algebraic predictors and the smoothness of averaging methods. Numerical experiments with an artificially generated and real-world time series are used to illustrate the potential of the proposed method. •A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction.•The concept of the H-rank of a sequence is exploited for the detection of a base algebraic fragment of the time series.•The proposed forecasting method is constructed to find a near-optimal balance between the variability of algebraic predictors and the smoothness of averaging methods.
A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction. The concept of the H-rank of a sequence is exploited for the detection of a base algebraic fragment of the time series. Evolutionary algorithms are exploited for the identification of the set of corrections which are used to perturb the original time series. The proposed forecasting method is constructed to find a near-optimal balance between the variability of algebraic predictors and the smoothness of averaging methods. Numerical experiments with an artificially generated and real-world time series are used to illustrate the potential of the proposed method.
Author Ragulskis, Minvydas
Palivonaite, Rita
Author_xml – sequence: 1
  givenname: Rita
  surname: Palivonaite
  fullname: Palivonaite, Rita
  email: rita.palivonaite@ktu.lt
  organization: Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-325, Kaunas LT-51368, Lithuania
– sequence: 2
  givenname: Minvydas
  orcidid: 0000-0002-3348-9717
  surname: Ragulskis
  fullname: Ragulskis, Minvydas
  email: minvydas.ragulskis@ktu.lt
  organization: Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-222, Kaunas LT-51368, Lithuania
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28284323$$DView record in Pascal Francis
BookMark eNqFkEtLxDAURoMoOD7-gYtuBDetN0mbaVwI4hsGXOg-pOmtk6FNNMko_nsjIy5c6OrC5ZxvcfbItvMOCTmiUFGg4nRVOVwbP1UMKK-grYA1W2RG2zkrW9aKbTIDyZqSccp2yV6MKwA6p0zOyNXj0odUJgxTkeyERcRgMRZ6fMYuaGuKwQc0Oibrnot3m5aFdZl2eizi5H1a5v8B2Rn0GPHw--6Tx5vrp8u7cvFwe395sSgNFzKVDGsBAmgvhGllz-quN1Q3cpBd18y55pILDboD1kmpa0A2SJy3AgzUlPJ9crJZfQn-dY0xqclGg-OoHfp1VLQBwWtZU5bR429UR6PHIWhnbFQvwU46fCiWo9Sc8czVG84EH2PA4QehoL7SqpXapFVfaRW0KqfN2tkvzdikk_Uu5WTjf_L5RsZc6s1iUNFYdAZ7m0Mn1Xv798AndC-ZJg
CitedBy_id crossref_primary_10_1007_s00521_020_05076_2
crossref_primary_10_3390_pr9101697
crossref_primary_10_1007_s40314_016_0309_9
crossref_primary_10_1016_j_neucom_2014_09_028
crossref_primary_10_1016_j_neucom_2016_11_101
crossref_primary_10_1016_j_neucom_2015_07_018
crossref_primary_10_1016_j_asoc_2015_09_054
crossref_primary_10_1111_mice_13349
crossref_primary_10_1155_2014_727948
crossref_primary_10_1016_j_asoc_2018_01_002
crossref_primary_10_1007_s00500_025_10424_2
crossref_primary_10_1016_j_neucom_2016_01_062
Cites_doi 10.1109/TPAS.1971.293123
10.1002/for.918
10.1016/j.epsr.2006.09.022
10.1016/j.neucom.2011.02.017
10.1016/j.epsr.2007.12.001
10.1016/j.neucom.2009.07.005
10.1016/j.asoc.2009.10.004
10.1007/BF01386381
10.1016/j.jup.2007.10.002
10.1016/S0020-0190(02)00447-7
10.1137/S0036144595295284
10.1016/j.ijforecast.2006.03.005
10.1017/S0962492900002932
10.1016/j.asoc.2006.03.004
10.1093/bioinformatics/bti1022
10.1007/BFb0040810
10.1109/TNN.2006.885113
10.1016/j.dss.2009.07.014
10.1109/TPWRS.2008.2008606
10.1016/S0952-1976(97)00069-9
10.1016/j.neucom.2010.02.014
10.1007/s11771-008-0479-8
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2013.08.025
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
Mathematics
EISSN 1872-8286
EndPage 171
ExternalDocumentID 28284323
10_1016_j_neucom_2013_08_025
S0925231213009028
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-2e460601d66c89d24bdc1a59f9bb573a3936a0ab02b99a40e2f9e7860c04113
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329603100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sun Sep 28 02:32:43 EDT 2025
Wed Apr 02 07:17:44 EDT 2025
Tue Nov 18 22:35:27 EST 2025
Sat Nov 29 04:38:52 EST 2025
Tue Jun 18 08:52:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hankel matrix
Time series forecasting
Algebraic sequence
Evolutionary algorithms
Short term
Averaging method
Smoothing methods
Evolutionary algorithm
Variability
Time series
Real time
Forecasting
Sequential analysis
Smoothing
Algebraic method
Occupation time
Potential method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-2e460601d66c89d24bdc1a59f9bb573a3936a0ab02b99a40e2f9e7860c04113
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-3348-9717
PQID 1506349412
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1506349412
pascalfrancis_primary_28284323
crossref_primary_10_1016_j_neucom_2013_08_025
crossref_citationtrail_10_1016_j_neucom_2013_08_025
elsevier_sciencedirect_doi_10_1016_j_neucom_2013_08_025
PublicationCentury 2000
PublicationDate 2014-03-15
PublicationDateYYYYMMDD 2014-03-15
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dongxiao Niu, Desheng Dash (bib12) 2010; 10
Vahidinasab, Jadid, Kazemi (bib4) 2008; 78
Kennedy, Eberhart, Shi (bib23) 2001
Zhiwei Shi, Han (bib30) 2007; 18
bib14
Catalao, Mariano, Mendes, Ferreira (bib29) 2007; 77
Bashir, El-Hawary (bib9) 2009; 24
Wilkinson (bib18) 1959; 1
Taylor (bib24) 2004; 23
Satpathy, Liew (bib2) 1998; 11
Xue, Shi (bib7) 2008; 8
Trelea (bib21) 2003; 85
Niu, Liu, Xing (bib11) 2009; 15
2005
Ernst, Nau, Bar-Joseph (bib32) 2005; 21
Christiaanse (bib1) 1971; 90
M. Clerc, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, Washington, DC, IEEE Service Center, Piscataway, NJ (1999) 1951-1957.
Ragulskis, Lukoseviciute, Navickas, Palivonaite (bib13) 2011; 74
Trefethen (bib15) 1997; 39
E.S. Gardner, Jr., Exponential Smoothing: The State of the Art—Part II
Lukoseviciute, Ragulskis (bib31) 2010; 73
bib25
Trefethen (bib16) 1999; 8
Box, Jenkins, Reinsel (bib27) 1994
Lee, Ko (bib8) 2009; 73
.
Tyrtyshnikov, Brief (bib17) 1997
Y.H. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in: Proceedings of Seventh Annual Conference on Evolutionary Programming, San Diego, CA, Springer-Verlag, New York, NY (1998) 591-600.
R. J., Hyndman, Time Series Data Library
Liu, Niu, Xing (bib3) 2007; 31
Casolari, Colajanni (bib10) 2009; 48
R.C. Eberhart, J. Kennedy, Particle swarm optimization: developments, applications and resources, in: Proceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea, IEEE Service Center, Piscataway, NJ (2000) 81-86.
Kim, Sin (bib6) 2007; 7
Arciniegas, Rueda (bib5) 2008; 16
Satpathy (10.1016/j.neucom.2013.08.025_bib2) 1998; 11
Tyrtyshnikov (10.1016/j.neucom.2013.08.025_bib17) 1997
10.1016/j.neucom.2013.08.025_bib28
Catalao (10.1016/j.neucom.2013.08.025_bib29) 2007; 77
10.1016/j.neucom.2013.08.025_bib26
Xue (10.1016/j.neucom.2013.08.025_bib7) 2008; 8
Trefethen (10.1016/j.neucom.2013.08.025_bib15) 1997; 39
Liu (10.1016/j.neucom.2013.08.025_bib3) 2007; 31
Trelea (10.1016/j.neucom.2013.08.025_bib21) 2003; 85
Christiaanse (10.1016/j.neucom.2013.08.025_bib1) 1971; 90
Arciniegas (10.1016/j.neucom.2013.08.025_bib5) 2008; 16
Bashir (10.1016/j.neucom.2013.08.025_bib9) 2009; 24
10.1016/j.neucom.2013.08.025_bib22
10.1016/j.neucom.2013.08.025_bib20
Lukoseviciute (10.1016/j.neucom.2013.08.025_bib31) 2010; 73
Trefethen (10.1016/j.neucom.2013.08.025_bib16) 1999; 8
10.1016/j.neucom.2013.08.025_bib19
Kim (10.1016/j.neucom.2013.08.025_bib6) 2007; 7
Kennedy (10.1016/j.neucom.2013.08.025_bib23) 2001
Lee (10.1016/j.neucom.2013.08.025_bib8) 2009; 73
Niu (10.1016/j.neucom.2013.08.025_bib11) 2009; 15
Wilkinson (10.1016/j.neucom.2013.08.025_bib18) 1959; 1
Taylor (10.1016/j.neucom.2013.08.025_bib24) 2004; 23
Ernst (10.1016/j.neucom.2013.08.025_bib32) 2005; 21
Box (10.1016/j.neucom.2013.08.025_bib27) 1994
Dongxiao Niu (10.1016/j.neucom.2013.08.025_bib12) 2010; 10
Zhiwei Shi (10.1016/j.neucom.2013.08.025_bib30) 2007; 18
Ragulskis (10.1016/j.neucom.2013.08.025_bib13) 2011; 74
Vahidinasab (10.1016/j.neucom.2013.08.025_bib4) 2008; 78
Casolari (10.1016/j.neucom.2013.08.025_bib10) 2009; 48
References_xml – reference: , 2005
– volume: 8
  start-page: 68
  year: 2008
  end-page: 72
  ident: bib7
  article-title: Short-time traffic flow prediction based on chaos time series theory
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– volume: 21
  start-page: i159
  year: 2005
  end-page: i168
  ident: bib32
  article-title: Clustering short time series gene expression data
  publication-title: Bioinformatics
– volume: 78
  start-page: 1332
  year: 2008
  end-page: 1342
  ident: bib4
  article-title: Day-ahead price forecasting in restructured power systems using artificial neural networks
  publication-title: Electr. Power Syst. Res.
– volume: 8
  start-page: 247
  year: 1999
  end-page: 295
  ident: bib16
  article-title: Computation of pseudospectra
  publication-title: Acta Numerica
– volume: 73
  start-page: 2077
  year: 2010
  end-page: 2088
  ident: bib31
  article-title: Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
  publication-title: Neurocomputing
– reference: R. J., Hyndman, Time Series Data Library,
– year: 2001
  ident: bib23
  article-title: Swarm Intelligence
– reference: Y.H. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in: Proceedings of Seventh Annual Conference on Evolutionary Programming, San Diego, CA, Springer-Verlag, New York, NY (1998) 591-600.
– volume: 24
  start-page: 20
  year: 2009
  end-page: 27
  ident: bib9
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
– volume: 85
  start-page: 317
  year: 2003
  end-page: 325
  ident: bib21
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
– volume: 11
  start-page: 307
  year: 1998
  end-page: 316
  ident: bib2
  article-title: A real-time short-term peak and average load forecasting system using a self-organising fuzzy neural network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 39
  start-page: 383
  year: 1997
  end-page: 406
  ident: bib15
  article-title: Pseudospectra of linear operators
  publication-title: SIAM Rev.
– ident: bib14
– volume: 1
  start-page: 150
  year: 1959
  end-page: 166
  ident: bib18
  article-title: The evaluation of the zeros of ill-conditioned polynomials Part I
  publication-title: Numerische Mathematik
– volume: 31
  start-page: 31
  year: 2007
  end-page: 34
  ident: bib3
  article-title: Day-ahead price forecast with genetic-algorithm-optimized support vector machines based on GARCH error calibration
  publication-title: Autom. Electr. Power Syst.
– volume: 74
  start-page: 1735
  year: 2011
  end-page: 1747
  ident: bib13
  article-title: Short-term time series forecasting based on the identification of skeleton algebraic sequences
  publication-title: Neurocomputing
– volume: 18
  start-page: 359
  year: 2007
  end-page: 372
  ident: bib30
  article-title: Support vector echo-state machine for chaotic time series prediction
  publication-title: IEEE Trans. Neural Networks
– volume: 73
  start-page: 449
  year: 2009
  end-page: 460
  ident: bib8
  article-title: Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
  publication-title: Neurocomputing
– reference: .
– volume: 7
  start-page: 569
  year: 2007
  end-page: 576
  ident: bib6
  article-title: A hybrid approach based on neural networks and genetic algorithms is used for detecting temporal patterns in stock markets
  publication-title: Appl. Soft Comp.
– reference: R.C. Eberhart, J. Kennedy, Particle swarm optimization: developments, applications and resources, in: Proceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea, IEEE Service Center, Piscataway, NJ (2000) 81-86.
– reference: M. Clerc, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, Washington, DC, IEEE Service Center, Piscataway, NJ (1999) 1951-1957.
– volume: 77
  start-page: 1297
  year: 2007
  end-page: 1304
  ident: bib29
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electr. Power Syst. Res.
– ident: bib25
– volume: 48
  start-page: 212
  year: 2009
  end-page: 223
  ident: bib10
  article-title: Short-term prediction models for server management in Internet-based contexts
  publication-title: Decis. Support Syst.
– volume: 23
  start-page: 385
  year: 2004
  end-page: 394
  ident: bib24
  article-title: Smooth transition exponential smoothing
  publication-title: J. Forecasting
– volume: 10
  start-page: 868
  year: 2010
  end-page: 875
  ident: bib12
  article-title: A soft computing system for a day-ahead electricity price forecasting
  publication-title: Appl. Soft Comput.
– reference: E.S. Gardner, Jr., Exponential Smoothing: The State of the Art—Part II,
– volume: 90
  start-page: 900
  year: 1971
  end-page: 911
  ident: bib1
  article-title: Short term load forecasting using general exponential smoothing
  publication-title: IEEE Trans. Power Apparatus Syst.
– year: 1997
  ident: bib17
  article-title: Introduction to Numerical Analysis
– volume: 15
  start-page: 316
  year: 2009
  end-page: 320
  ident: bib11
  article-title: Electricity price forecasting using generalized regression neural network based on principal component analysis
  publication-title: J. Central South Univ. Technol.
– volume: 16
  start-page: 39
  year: 2008
  end-page: 48
  ident: bib5
  article-title: Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system
  publication-title: Util. Policy
– year: 1994
  ident: bib27
  article-title: Time Series Analysis: Forecasting and Control
– volume: 90
  start-page: 900
  year: 1971
  ident: 10.1016/j.neucom.2013.08.025_bib1
  article-title: Short term load forecasting using general exponential smoothing
  publication-title: IEEE Trans. Power Apparatus Syst.
  doi: 10.1109/TPAS.1971.293123
– year: 2001
  ident: 10.1016/j.neucom.2013.08.025_bib23
– volume: 23
  start-page: 385
  year: 2004
  ident: 10.1016/j.neucom.2013.08.025_bib24
  article-title: Smooth transition exponential smoothing
  publication-title: J. Forecasting
  doi: 10.1002/for.918
– volume: 77
  start-page: 1297
  year: 2007
  ident: 10.1016/j.neucom.2013.08.025_bib29
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2006.09.022
– volume: 74
  start-page: 1735
  issue: 10
  year: 2011
  ident: 10.1016/j.neucom.2013.08.025_bib13
  article-title: Short-term time series forecasting based on the identification of skeleton algebraic sequences
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.02.017
– volume: 78
  start-page: 1332
  issue: 8
  year: 2008
  ident: 10.1016/j.neucom.2013.08.025_bib4
  article-title: Day-ahead price forecasting in restructured power systems using artificial neural networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2007.12.001
– volume: 8
  start-page: 68
  issue: 5
  year: 2008
  ident: 10.1016/j.neucom.2013.08.025_bib7
  article-title: Short-time traffic flow prediction based on chaos time series theory
  publication-title: J. Transp. Syst. Eng. Inf. Technol.
– volume: 73
  start-page: 449
  issue: 1–3
  year: 2009
  ident: 10.1016/j.neucom.2013.08.025_bib8
  article-title: Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.07.005
– volume: 10
  start-page: 868
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2013.08.025_bib12
  article-title: A soft computing system for a day-ahead electricity price forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.10.004
– volume: 1
  start-page: 150
  year: 1959
  ident: 10.1016/j.neucom.2013.08.025_bib18
  article-title: The evaluation of the zeros of ill-conditioned polynomials Part I
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386381
– ident: 10.1016/j.neucom.2013.08.025_bib19
– volume: 16
  start-page: 39
  year: 2008
  ident: 10.1016/j.neucom.2013.08.025_bib5
  article-title: Forecasting short-term power prices in the Ontario Electricity Market (OEM) with a fuzzy logic based inference system
  publication-title: Util. Policy
  doi: 10.1016/j.jup.2007.10.002
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  ident: 10.1016/j.neucom.2013.08.025_bib21
  article-title: The particle swarm optimization algorithm: convergence analysis and parameter selection
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 39
  start-page: 383
  year: 1997
  ident: 10.1016/j.neucom.2013.08.025_bib15
  article-title: Pseudospectra of linear operators
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144595295284
– year: 1994
  ident: 10.1016/j.neucom.2013.08.025_bib27
– ident: 10.1016/j.neucom.2013.08.025_bib28
– ident: 10.1016/j.neucom.2013.08.025_bib26
  doi: 10.1016/j.ijforecast.2006.03.005
– volume: 8
  start-page: 247
  year: 1999
  ident: 10.1016/j.neucom.2013.08.025_bib16
  article-title: Computation of pseudospectra
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002932
– volume: 7
  start-page: 569
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2013.08.025_bib6
  article-title: A hybrid approach based on neural networks and genetic algorithms is used for detecting temporal patterns in stock markets
  publication-title: Appl. Soft Comp.
  doi: 10.1016/j.asoc.2006.03.004
– volume: 21
  start-page: i159
  issue: Suppl. 1
  year: 2005
  ident: 10.1016/j.neucom.2013.08.025_bib32
  article-title: Clustering short time series gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1022
– ident: 10.1016/j.neucom.2013.08.025_bib20
– ident: 10.1016/j.neucom.2013.08.025_bib22
  doi: 10.1007/BFb0040810
– volume: 18
  start-page: 359
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2013.08.025_bib30
  article-title: Support vector echo-state machine for chaotic time series prediction
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2006.885113
– volume: 48
  start-page: 212
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2013.08.025_bib10
  article-title: Short-term prediction models for server management in Internet-based contexts
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2009.07.014
– year: 1997
  ident: 10.1016/j.neucom.2013.08.025_bib17
– volume: 24
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2013.08.025_bib9
  article-title: Applying wavelets to short-term load forecasting using PSO-based neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2008606
– volume: 11
  start-page: 307
  issue: 2
  year: 1998
  ident: 10.1016/j.neucom.2013.08.025_bib2
  article-title: A real-time short-term peak and average load forecasting system using a self-organising fuzzy neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(97)00069-9
– volume: 73
  start-page: 2077
  year: 2010
  ident: 10.1016/j.neucom.2013.08.025_bib31
  article-title: Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.014
– volume: 31
  start-page: 31
  issue: 11
  year: 2007
  ident: 10.1016/j.neucom.2013.08.025_bib3
  article-title: Day-ahead price forecast with genetic-algorithm-optimized support vector machines based on GARCH error calibration
  publication-title: Autom. Electr. Power Syst.
– volume: 15
  start-page: 316
  issue: s2
  year: 2009
  ident: 10.1016/j.neucom.2013.08.025_bib11
  article-title: Electricity price forecasting using generalized regression neural network based on principal component analysis
  publication-title: J. Central South Univ. Technol.
  doi: 10.1007/s11771-008-0479-8
SSID ssj0017129
Score 2.181448
Snippet A new algebraic forecasting method with internal smoothing is proposed for short-term time series prediction. The concept of the H-rank of a sequence is...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161
SubjectTerms Algebra
Algebraic sequence
Evolutionary algorithms
Exact sciences and technology
Hankel matrix
Inference from stochastic processes; time series analysis
Mathematics
Probability and statistics
Sciences and techniques of general use
Statistics
Time series forecasting
Title Short-term time series algebraic forecasting with internal smoothing
URI https://dx.doi.org/10.1016/j.neucom.2013.08.025
https://www.proquest.com/docview/1506349412
Volume 127
WOSCitedRecordID wos000329603100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEJcUeUyxQkxEtllNjOxY8VdAI0yrQVqW-WkziQ0qVlSavx7zkndjKqCm088GJVUVJH_k6Oj499vo-Q10XCEyyxpgEPUipkImii84xGRWoKmLDTKLFiE_Fkksxm8tjJKtatnEBcVcnFhVz9V6jhGoCNpbP_AHf_p3ABfgPo0ALs0F4L-NPvEFFT9LitcPwQOzX1EPU8YGVcZniw0GS6bvo0bGmzgothfbYE4LrJbN4RO61hkmvFH1xaYXSG7Ao5mlKfRjiGeH4DUb2T2zspm97fn-hv60X9w5IZfC6rza9cb2UbAoHHrWy9ZZc2ZCGFmHDbg9ryfucDA8uu7qbTwCqs7HhqmzSYv63MGo_tQF-85VK1ZdDbxNiTL-rw69GRmo5n0zernxQ1w3Bv3Qmo3CT7LA4luOX90cfx7FO_ixQHzHItunfuSifb8327Hf8tNLmz0jV8MIVVOtmZtNtIZHqf3HVLCG9koX9AbpjqIbnXyXN4zls_Iu8vLcFDS_CsJXi9JXh_WIKHluB1luD1lvCYnB6Op-8-UCeaQTMeyYYyIyLk2MmjKEtkzkSaZ4EOZSHTNIy55pJH2tepz1IptfANK6SJk8jPfBEE_AnZq5aVeUo8HheJFIWfx3EmUo2RXcFSDW3IBKxyBoR3o6UyxyePsiYL1R0cnCs7xgrHWKHaKQsHhPZPrSyfyhX3xx0QysWENtZTYEhXPHmwhVvfHSYZBGd8QF51QCrwqbhRpiuzXNcKWTeRtilgz65xz3Ny-_JLeUH2mvO1eUluZZumrM8PnE3-BjA1mx8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+time+series+algebraic+forecasting+with+internal+smoothing&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Palivonaite%2C+Rita&rft.au=Ragulskis%2C+Minvydas&rft.date=2014-03-15&rft.issn=0925-2312&rft.volume=127&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1016%2Fj.neucom.2013.08.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon