Examples around the strong Viterbo conjecture

A strong version of a conjecture of Viterbo asserts that all normalized symplectic capacities agree on convex domains. We review known results showing that certain specific normalized symplectic capacities agree on convex domains. We also review why all normalized symplectic capacities agree on S 1...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fixed point theory and applications Vol. 24; no. 2
Main Authors: Gutt, Jean, Hutchings, Michael, Ramos, Vinicius G. B.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.06.2022
Springer Verlag
Series:Symplectic geometry - A Festschrift in honour of Claude Viterbo’s 60th birthday
Subjects:
ISSN:1661-7738, 1661-7746
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A strong version of a conjecture of Viterbo asserts that all normalized symplectic capacities agree on convex domains. We review known results showing that certain specific normalized symplectic capacities agree on convex domains. We also review why all normalized symplectic capacities agree on S 1 -invariant convex domains. We introduce a new class of examples called “monotone toric domains”, which are not necessarily convex, and which include all dynamically convex toric domains in four dimensions. We prove that for monotone toric domains in four dimensions, all normalized symplectic capacities agree. For monotone toric domains in arbitrary dimension, we prove that the Gromov width agrees with the first equivariant capacity. We also study a family of examples of non-monotone toric domains and determine when the conclusion of the strong Viterbo conjecture holds for these examples. Along the way, we compute the cylindrical capacity of a large class of “weakly convex toric domains” in four dimensions.
AbstractList A strong version of a conjecture of Viterbo asserts that all normalized symplectic capacities agree on convex domains. We review known results showing that certain specific normalized symplectic capacities agree on convex domains. We also review why all normalized symplectic capacities agree on S 1-invariant convex domains. We introduce a new class of examples called "monotone toric domains", which are not necessarily convex, and which include all dynamically convex toric domains in four dimensions. We prove that for monotone toric domains in four dimensions, all normalized symplectic capacities agree. For monotone toric domains in arbitrary dimension, we prove that the Gromov width agrees with the first equivariant capacity. We also study a family of examples of non-monotone toric domains and determine when the conclusion of the strong Viterbo conjecture holds for these examples. Along the way we compute the cylindrical capacity of a large class of "weakly convex toric domains" in four dimensions.
A strong version of a conjecture of Viterbo asserts that all normalized symplectic capacities agree on convex domains. We review known results showing that certain specific normalized symplectic capacities agree on convex domains. We also review why all normalized symplectic capacities agree on S 1 -invariant convex domains. We introduce a new class of examples called “monotone toric domains”, which are not necessarily convex, and which include all dynamically convex toric domains in four dimensions. We prove that for monotone toric domains in four dimensions, all normalized symplectic capacities agree. For monotone toric domains in arbitrary dimension, we prove that the Gromov width agrees with the first equivariant capacity. We also study a family of examples of non-monotone toric domains and determine when the conclusion of the strong Viterbo conjecture holds for these examples. Along the way, we compute the cylindrical capacity of a large class of “weakly convex toric domains” in four dimensions.
ArticleNumber 41
Author Gutt, Jean
Ramos, Vinicius G. B.
Hutchings, Michael
Author_xml – sequence: 1
  givenname: Jean
  surname: Gutt
  fullname: Gutt, Jean
  email: jean.gutt@univ-jfc.fr
  organization: Université Toulouse III - Paul Sabatier, Institut National Universitaire Champollion
– sequence: 2
  givenname: Michael
  surname: Hutchings
  fullname: Hutchings, Michael
  organization: University of California
– sequence: 3
  givenname: Vinicius G. B.
  surname: Ramos
  fullname: Ramos, Vinicius G. B.
  organization: Instituto de Matemática Pura e Aplicada
BackLink https://hal.science/hal-04085700$$DView record in HAL
BookMark eNp9kD1PwzAQhi0EEm3hDzBlZTCcY8cfY1UVilSJBVgtx3XaVKld2S6Cf09KgIGh051O73Ov9IzRuQ_eIXRD4I4AiPtEiJAMQ1liAMUU5mdoRDgnWAjGz_92Ki_ROKUtAIeSiBHC8w-z23cuFSaGg18VeeOKlGPw6-KtzS7WobDBb53Nh-iu0EVjuuSuf-YEvT7MX2YLvHx-fJpNl9hSrjIuK1urplSGOCOV5dVKMU4Fdxy4qyVlxDBVA6WcStlUYKEqq8YoUQspLHA6QbfD343p9D62OxM_dTCtXkyX-ngDBrISAO-kz8oha2NIKbpG2zab3Aafo2k7TUAfFelBke4V6W9F-lhT_kN_u05CdIBSH_ZrF_U2HKLvdZyivgB5DHkF
CitedBy_id crossref_primary_10_1093_imrn_rnac284
crossref_primary_10_1093_imrn_rnaf179
crossref_primary_10_1142_S0129167X23500210
crossref_primary_10_1007_s40316_024_00235_6
crossref_primary_10_1007_s11784_025_01223_1
crossref_primary_10_1007_s00208_025_03212_8
crossref_primary_10_1215_00127094_2024_0066
crossref_primary_10_1112_jlms_12831
crossref_primary_10_1007_s00039_024_00689_4
crossref_primary_10_1073_pnas_2203090119
Cites_doi 10.1090/bull/1587
10.1090/S0894-0347-00-00328-3
10.2140/agt.2018.18.3537
10.2140/gt.2016.20.1085
10.2140/gt.2013.17.2813
10.1007/s11856-021-2172-7
10.4310/jdg/1214457236
10.1112/S0010437X18007558
10.4310/jdg/1320067647
10.2307/120994
10.1112/jtopol/jtu008
10.1215/00127094-0000011X
10.1007/s000390050106
10.1007/BF02570756
10.1007/BF01388806
10.1007/BF01215653
10.4310/jdg/1559786421
10.1215/00127094-2794999
10.1093/imrn/rns216
10.1016/B978-0-12-574249-8.50023-7
10.1142/S0129167X18500714
10.1007/BF01389030
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s11784-022-00949-6
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1661-7746
ExternalDocumentID oai:HAL:hal-04085700v1
10_1007_s11784_022_00949_6
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c369t-25cb9f29a1ea89c65d946376e606eb8341a49b0336388f50c0525fa97b787c063
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784976800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-7738
IngestDate Sat Oct 25 06:39:16 EDT 2025
Sat Nov 29 01:47:57 EST 2025
Tue Nov 18 22:31:15 EST 2025
Fri Feb 21 02:45:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 53D35
Viterbo’s conjecture
Symplectic capacities
53D42
toric domains
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-25cb9f29a1ea89c65d946376e606eb8341a49b0336388f50c0525fa97b787c063
OpenAccessLink https://hal.science/hal-04085700
ParticipantIDs hal_primary_oai_HAL_hal_04085700v1
crossref_citationtrail_10_1007_s11784_022_00949_6
crossref_primary_10_1007_s11784_022_00949_6
springer_journals_10_1007_s11784_022_00949_6
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Symplectic geometry - A Festschrift in honour of Claude Viterbo’s 60th birthday
PublicationTitle Journal of fixed point theory and applications
PublicationTitleAbbrev J. Fixed Point Theory Appl
PublicationYear 2022
Publisher Springer International Publishing
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer Verlag
References Viterbo (CR31) 1999; 9
Cieliebak, Hofer, Latschev, Schlenk (CR6) 2007; 54
Hutchings (CR18) 2016; 20
CR19
Ekeland, Hofer (CR9) 1990; 203
CR16
CR15
Viterbo (CR32) 2000; 13
CR13
CR10
Mahler (CR22) 1939; 68
Traynor (CR29) 1995; 42
CR2
Ramos (CR23) 2017; 166
CR3
Cristofaro-Gardiner (CR7) 2019; 112
Ekeland, Hofer (CR8) 1989; 200
Gromov (CR11) 1985; 82
CR28
Artstein-Avidan, Karasev, Ostrover (CR4) 2014; 163
CR26
CR24
Schlenk (CR25) 2017; 55
Siegel (CR27) 2021; 245
Hutchings (CR17) 2011; 88
CR20
Choi, Cristofaro-Gardiner, Frenkel, Hutchings, Ramos (CR5) 2014; 7
Gutt, Hutchings (CR12) 2018; 18
Viterbo (CR30) 1989; 177–178
Hofer, Wysocki, Zehnder (CR14) 1998; 148
Latschev, McDuff, Schlenk (CR21) 2013; 17
Abbondandolo, Bramham, Hryniewicz, Salamão (CR1) 2018; 154
S Artstein-Avidan (949_CR4) 2014; 163
F Schlenk (949_CR25) 2017; 55
K Siegel (949_CR27) 2021; 245
I Ekeland (949_CR8) 1989; 200
I Ekeland (949_CR9) 1990; 203
J Gutt (949_CR12) 2018; 18
949_CR20
D Cristofaro-Gardiner (949_CR7) 2019; 112
949_CR26
949_CR28
K Mahler (949_CR22) 1939; 68
H Hofer (949_CR14) 1998; 148
949_CR24
K Choi (949_CR5) 2014; 7
K Cieliebak (949_CR6) 2007; 54
A Abbondandolo (949_CR1) 2018; 154
C Viterbo (949_CR30) 1989; 177–178
C Viterbo (949_CR32) 2000; 13
L Traynor (949_CR29) 1995; 42
C Viterbo (949_CR31) 1999; 9
949_CR10
M Gromov (949_CR11) 1985; 82
949_CR2
949_CR3
J Latschev (949_CR21) 2013; 17
M Hutchings (949_CR18) 2016; 20
949_CR16
949_CR15
VGB Ramos (949_CR23) 2017; 166
949_CR13
M Hutchings (949_CR17) 2011; 88
949_CR19
References_xml – volume: 55
  start-page: 139
  year: 2017
  end-page: 182
  ident: CR25
  article-title: Symplectic embedding problems, old and new
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/bull/1587
– ident: CR2
– ident: CR16
– ident: CR10
– volume: 13
  start-page: 411
  year: 2000
  end-page: 431
  ident: CR32
  article-title: Metric and isoperimetric problems in symplectic geometry
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-00-00328-3
– volume: 18
  start-page: 3537
  year: 2018
  end-page: 3600
  ident: CR12
  article-title: Symplectic capacities from positive -equivariant symplectic homology, Algebr
  publication-title: Geom. Topol.
  doi: 10.2140/agt.2018.18.3537
– volume: 20
  start-page: 1085
  year: 2016
  end-page: 1126
  ident: CR18
  article-title: Beyond ECH capacities
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2016.20.1085
– volume: 17
  start-page: 2813
  year: 2013
  end-page: 1853
  ident: CR21
  article-title: The Gromov width of 4-dimensional tori
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2013.17.2813
– volume: 245
  start-page: 27
  issue: 1
  year: 2021
  end-page: 38
  ident: CR27
  article-title: Higher symplectic capacities
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-021-2172-7
– volume: 42
  start-page: 411
  year: 1995
  end-page: 429
  ident: CR29
  article-title: Symplectic packing constructions
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214457236
– volume: 154
  start-page: 2643
  year: 2018
  end-page: 2680
  ident: CR1
  article-title: Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X18007558
– volume: 88
  start-page: 321
  year: 2011
  end-page: 366
  ident: CR17
  article-title: Quantitative embedded contact homology
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1320067647
– ident: CR19
– volume: 148
  start-page: 197
  year: 1998
  end-page: 289
  ident: CR14
  article-title: The dynamics on three-dimensional strictly convex energy surfaces
  publication-title: Ann. Math.
  doi: 10.2307/120994
– volume: 7
  start-page: 1054
  year: 2014
  end-page: 1076
  ident: CR5
  article-title: Symplectic embeddings into four-dimensional concave toric domains
  publication-title: J. Topol.
  doi: 10.1112/jtopol/jtu008
– volume: 166
  start-page: 1703
  year: 2017
  end-page: 1738
  ident: CR23
  article-title: Symplectic embeddings and the Lagrangian bidisk
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-0000011X
– ident: CR3
– ident: CR15
– volume: 9
  start-page: 985
  year: 1999
  end-page: 1033
  ident: CR31
  article-title: Functors and computations in Floer homology with applications I Geom
  publication-title: Funct. Anal.
  doi: 10.1007/s000390050106
– volume: 177–178
  start-page: 345
  year: 1989
  end-page: 362
  ident: CR30
  article-title: Capacités symplectiques et applications (d’après Ekeland-Hofer, Gromov), Séminaire Bourbaki, volume 1988/89
  publication-title: Astérisque No.
– volume: 203
  start-page: 553
  year: 1990
  end-page: 567
  ident: CR9
  article-title: Symplectic topology and Hamiltonian dynamics II
  publication-title: Math. Z.
  doi: 10.1007/BF02570756
– ident: CR13
– volume: 82
  start-page: 307
  year: 1985
  end-page: 347
  ident: CR11
  article-title: Pseudoholomorphic curves in symplectic manifolds
  publication-title: Invent. Math.
  doi: 10.1007/BF01388806
– volume: 200
  start-page: 355
  year: 1989
  end-page: 378
  ident: CR8
  article-title: Symplectic topology and Hamiltonian dynamics
  publication-title: Math. Z.
  doi: 10.1007/BF01215653
– volume: 112
  start-page: 199
  year: 2019
  end-page: 232
  ident: CR7
  article-title: Symplectic embeddings from concave toric domains into convex ones
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1559786421
– volume: 163
  start-page: 2003
  year: 2014
  end-page: 2022
  ident: CR4
  article-title: From symplectic measurements to the Mahler conjecture
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2794999
– volume: 54
  start-page: 1
  year: 2007
  end-page: 44
  ident: CR6
  article-title: Quantitative symplectic geometry, in dynamics, ergodic theory, and geometry
  publication-title: Math. Sci. Res. Inst. Publ. bf
– volume: 68
  start-page: 93
  year: 1939
  end-page: 102
  ident: CR22
  article-title: Ein Übertragungsprinzip für konvexe Körper
  publication-title: Cas. Mat. Fys.
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 88
  start-page: 321
  year: 2011
  ident: 949_CR17
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1320067647
– volume: 163
  start-page: 2003
  year: 2014
  ident: 949_CR4
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2794999
– ident: 949_CR3
  doi: 10.1093/imrn/rns216
– volume: 18
  start-page: 3537
  year: 2018
  ident: 949_CR12
  publication-title: Geom. Topol.
  doi: 10.2140/agt.2018.18.3537
– volume: 13
  start-page: 411
  year: 2000
  ident: 949_CR32
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-00-00328-3
– volume: 17
  start-page: 2813
  year: 2013
  ident: 949_CR21
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2013.17.2813
– volume: 68
  start-page: 93
  year: 1939
  ident: 949_CR22
  publication-title: Cas. Mat. Fys.
– volume: 7
  start-page: 1054
  year: 2014
  ident: 949_CR5
  publication-title: J. Topol.
  doi: 10.1112/jtopol/jtu008
– volume: 82
  start-page: 307
  year: 1985
  ident: 949_CR11
  publication-title: Invent. Math.
  doi: 10.1007/BF01388806
– volume: 200
  start-page: 355
  year: 1989
  ident: 949_CR8
  publication-title: Math. Z.
  doi: 10.1007/BF01215653
– ident: 949_CR19
– ident: 949_CR13
– ident: 949_CR16
  doi: 10.1016/B978-0-12-574249-8.50023-7
– ident: 949_CR28
– volume: 20
  start-page: 1085
  year: 2016
  ident: 949_CR18
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2016.20.1085
– volume: 112
  start-page: 199
  year: 2019
  ident: 949_CR7
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1559786421
– volume: 148
  start-page: 197
  year: 1998
  ident: 949_CR14
  publication-title: Ann. Math.
  doi: 10.2307/120994
– ident: 949_CR10
  doi: 10.1142/S0129167X18500714
– volume: 42
  start-page: 411
  year: 1995
  ident: 949_CR29
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214457236
– ident: 949_CR20
– ident: 949_CR24
– ident: 949_CR26
– volume: 54
  start-page: 1
  year: 2007
  ident: 949_CR6
  publication-title: Math. Sci. Res. Inst. Publ. bf
– volume: 55
  start-page: 139
  year: 2017
  ident: 949_CR25
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/bull/1587
– volume: 166
  start-page: 1703
  year: 2017
  ident: 949_CR23
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-0000011X
– volume: 245
  start-page: 27
  issue: 1
  year: 2021
  ident: 949_CR27
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-021-2172-7
– volume: 9
  start-page: 985
  year: 1999
  ident: 949_CR31
  publication-title: Funct. Anal.
  doi: 10.1007/s000390050106
– volume: 154
  start-page: 2643
  year: 2018
  ident: 949_CR1
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X18007558
– volume: 177–178
  start-page: 345
  year: 1989
  ident: 949_CR30
  publication-title: Astérisque No.
– ident: 949_CR15
  doi: 10.1007/BF01389030
– ident: 949_CR2
– volume: 203
  start-page: 553
  year: 1990
  ident: 949_CR9
  publication-title: Math. Z.
  doi: 10.1007/BF02570756
SSID ssj0060217
Score 2.407606
Snippet A strong version of a conjecture of Viterbo asserts that all normalized symplectic capacities agree on convex domains. We review known results showing that...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Symplectic geometry - A Festschrift in honour of Claude Viterbo’s 60th birthday
Title Examples around the strong Viterbo conjecture
URI https://link.springer.com/article/10.1007/s11784-022-00949-6
https://hal.science/hal-04085700
Volume 24
WOSCitedRecordID wos000784976800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1661-7746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060217
  issn: 1661-7738
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s9aAH32J9EcSbLjTZTbJ7LNLSgxbxUXoLu9uND6SVphZ_vjN5tCgi6DXZLGFm57Uz8w3A2ZCHzgVOMJEGiolgaJjhkWKh49wIoYPIyXzYRNzrycFA3ZRNYVlV7V6lJHNNvWh282MpGFWfUzmcYlENltHcSRrYcHvXr_RvRF42hVloedB35LJslfl5jy_mqPZExZDfMqK5oels_O8XN2G9dCy9VnEStmDJjbZh7XqOyprtAGt_aAIDzjw9oWlKHr7zMroLf_T61Ipsxh6Gxy9FWmEXHjrt-8suK8clMIvUnbIgtEYhxbXvtFQ2CodKRKg_HMYozkg0V1oo0-QcRU6mYdPSCLtUq9ig0Fp0VfagPhqP3D54caytTdG78mMjfMe1wCjHWZmqWLnINhvgV1RLbIklTiMtXpMFCjKRIkFSJDkpkqgB5_Nv3gokjV9XnyIz5gsJBLvbukroWVMUqPwzvwEXFR-SUvSyX_Y8-NvyQ1gNclbSlcsR1KeTd3cMK3Y2fc4mJ_mZ-wSw38x-
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64KagP3sV5LeKbBtomTZvHIRsTtyE6x95KkqVekE3WOfz5nnTthiIDfW3TUL7k3JJzvgNw0aeBMb5hhCW-IMzvK6IoFyQwlCrGpM9NlDWbCNvtqNcTd3lRWFpkuxdXkpmmnhe7eWHEiM0-t-lwgvASLDO0WJYx__6hW-hfbr1sG2ah5UHfkUZ5qczvc3wzR6Vnmwz540Y0MzT1zf_94hZs5I6lU53uhG1YMoMdWG_NWFnTXSC1T2nJgFNHjmw3JQffOak9C39yurYUWQ0dDI9fp9cKe_BYr3WuGyRvl0A0ojsmfqCVQMSlZ2QkNA_6gnHUHwZjFKMiNFeSCeVSiiIXJYGrbQu7RIpQodBqdFX2oTwYDswBOGEotU4QWi9UzDNUMoxyjI4SEQrDtVsBr0At1jmXuG1p8RbPWZAtFDFCEWdQxLwCl7Nv3qdMGgtHn-NizAZaEuxGtRnbZy6bsvJPvApcFesQ56KXLpjz8G_Dz2C10Wk14-ZN-_YI1vxsWe3xyzGUx6MPcwIrejJ-SUen2f77AlB-z2I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLZgIAQP3IhxVog3iNYjPfI4waYhxjQJmPZWJWnKIbRNa5n4-cQ9NkBoEuK1TdLKjmM7tj8DnEeOq5StKKGxzQi1I0GE4zHiKscRlHLbU0HWbMLvdIJ-n3W_VPFn2e5lSDKvaUCUpkFaG0VxbVb4ZvkBJZiJjqlxjHiLsEQxkR799fteeRZ7aHGjy6W1kLYjnaAom_l9jW-qafEZEyN_REczpdPc-P_vbsJ6YXAa9XyHbMGCGmzD2t0UrTXZAdL44AgSnBh8jF2WDP3OSPCO_MnoYYmyGBr6g695uGEXHpuNh6sWKdooEKmpnhLblYJpTnBL8YBJz40Y9fS5orTvokSg1RinTJiOo0UxiF1TYmu7mDNfaGGW2oTZg8pgOFD7YPg-lzLWVpflC2oph1Pt_SgZxMxnypNmFaySgqEsMMax1cVbOENHRlKEmhRhRorQq8LFdM4oR9iYO_pMM2Y6EMGxW_V2iM9MmqP1T6wqXJY8CQuRTOasefC34aew0r1uhu2bzu0hrNoZV_FW5ggq6fhdHcOynKQvyfgk24qfXzDYRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examples+around+the+strong+Viterbo+conjecture&rft.jtitle=Journal+of+fixed+point+theory+and+applications&rft.au=Gutt%2C+Jean&rft.au=Hutchings%2C+Michael&rft.au=Ramos%2C+Vinicius&rft.series=Symplectic+geometry+-+A+Festschrift+in+honour+of+Claude+Viterbo%E2%80%99s+60th+birthday&rft.date=2022-06-01&rft.pub=Springer+Verlag&rft.issn=1661-7738&rft.eissn=1661-7746&rft.volume=24&rft.issue=2&rft_id=info:doi/10.1007%2Fs11784-022-00949-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04085700v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-7738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-7738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-7738&client=summon