An Empirical Parameterization to Separate Coarse and Fine Mode Aerosol Optical Depth Over Land

Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic aerosols on climate and air quality. However, few high‐quality global FMF products from MODIS exist. To address this gap, this study derives a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters Jg. 52; H. 6
Hauptverfasser: Li, Xiaohan, Ginoux, Paul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington John Wiley & Sons, Inc 28.03.2025
Wiley
Schlagworte:
ISSN:0094-8276, 1944-8007
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic aerosols on climate and air quality. However, few high‐quality global FMF products from MODIS exist. To address this gap, this study derives a new formulation of FMF as a function of the Ångström exponent (AE) based on over 20 years of AERONET measurements. Our results reveal a consistent FMF‐AE relationship across continental regions, supporting the feasibility of globally estimating FMF through a simple empirical function based on AE. Validation with independent NOAA GML data sets shows predicted FMF errors mostly within 0.1. Finally, applying this parameterization to MODIS Aqua and Terra data significantly improved satellite‐derived FMF agreement with AERONET compared to previous derivations. This parameterization provides a simple, valuable tool for accurately deriving FMF over land from MODIS and understanding its impact on climate and air quality. Plain Language Summary Aerosols are liquid and solid particles suspended in the atmosphere, with sizes ranging from a few nanometers to tens of micrometers. These particles, produced by natural sources or human activities, play a significant role in air quality and climate. Estimating aerosol size distributions is important for understanding their climate and environmental impacts. However this remains challenging on regional and global scales due to the difficulties in retrieving this information from satellite observations. To address this, we created a parameterization that predicts the fraction of fine particles based on the measured spectral variation of light extinction by aerosols, known as the Ångström exponent (AE). By analyzing 20 years of ground‐based sunphotometer data, we found a reliable pattern between AE and fine particle fraction. We then tested this method with in situ nephelometer data, and confirmed its accuracy. Finally, we applied our formula to satellite data, achieving better agreement with ground‐based observations compared to previous parameterization efforts. Our formula can help scientists understand air pollution and its climate effects more accurately using satellite and ground‐based data independently of location. Key Points A parameterization linking the fine‐mode fraction of aerosol optical depth to the Angstrom exponent was developed using AERONET data Validation of this parameterization with independent in situ nephelometer measurements demonstrates strong predictive capability Applying this parameterization to MODIS satellite data improves the predictive accuracy for fine‐ and coarse‐mode aerosol optical depth
AbstractList Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic aerosols on climate and air quality. However, few high‐quality global FMF products from MODIS exist. To address this gap, this study derives a new formulation of FMF as a function of the Ångström exponent (AE) based on over 20 years of AERONET measurements. Our results reveal a consistent FMF‐AE relationship across continental regions, supporting the feasibility of globally estimating FMF through a simple empirical function based on AE. Validation with independent NOAA GML data sets shows predicted FMF errors mostly within 0.1. Finally, applying this parameterization to MODIS Aqua and Terra data significantly improved satellite‐derived FMF agreement with AERONET compared to previous derivations. This parameterization provides a simple, valuable tool for accurately deriving FMF over land from MODIS and understanding its impact on climate and air quality. Plain Language Summary Aerosols are liquid and solid particles suspended in the atmosphere, with sizes ranging from a few nanometers to tens of micrometers. These particles, produced by natural sources or human activities, play a significant role in air quality and climate. Estimating aerosol size distributions is important for understanding their climate and environmental impacts. However this remains challenging on regional and global scales due to the difficulties in retrieving this information from satellite observations. To address this, we created a parameterization that predicts the fraction of fine particles based on the measured spectral variation of light extinction by aerosols, known as the Ångström exponent (AE). By analyzing 20 years of ground‐based sunphotometer data, we found a reliable pattern between AE and fine particle fraction. We then tested this method with in situ nephelometer data, and confirmed its accuracy. Finally, we applied our formula to satellite data, achieving better agreement with ground‐based observations compared to previous parameterization efforts. Our formula can help scientists understand air pollution and its climate effects more accurately using satellite and ground‐based data independently of location. Key Points A parameterization linking the fine‐mode fraction of aerosol optical depth to the Angstrom exponent was developed using AERONET data Validation of this parameterization with independent in situ nephelometer measurements demonstrates strong predictive capability Applying this parameterization to MODIS satellite data improves the predictive accuracy for fine‐ and coarse‐mode aerosol optical depth
Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic aerosols on climate and air quality. However, few high‐quality global FMF products from MODIS exist. To address this gap, this study derives a new formulation of FMF as a function of the Ångström exponent (AE) based on over 20 years of AERONET measurements. Our results reveal a consistent FMF‐AE relationship across continental regions, supporting the feasibility of globally estimating FMF through a simple empirical function based on AE. Validation with independent NOAA GML data sets shows predicted FMF errors mostly within 0.1. Finally, applying this parameterization to MODIS Aqua and Terra data significantly improved satellite‐derived FMF agreement with AERONET compared to previous derivations. This parameterization provides a simple, valuable tool for accurately deriving FMF over land from MODIS and understanding its impact on climate and air quality.
Abstract Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic aerosols on climate and air quality. However, few high‐quality global FMF products from MODIS exist. To address this gap, this study derives a new formulation of FMF as a function of the Ångström exponent (AE) based on over 20 years of AERONET measurements. Our results reveal a consistent FMF‐AE relationship across continental regions, supporting the feasibility of globally estimating FMF through a simple empirical function based on AE. Validation with independent NOAA GML data sets shows predicted FMF errors mostly within 0.1. Finally, applying this parameterization to MODIS Aqua and Terra data significantly improved satellite‐derived FMF agreement with AERONET compared to previous derivations. This parameterization provides a simple, valuable tool for accurately deriving FMF over land from MODIS and understanding its impact on climate and air quality.
Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic aerosols on climate and air quality. However, few high‐quality global FMF products from MODIS exist. To address this gap, this study derives a new formulation of FMF as a function of the Ångström exponent (AE) based on over 20 years of AERONET measurements. Our results reveal a consistent FMF‐AE relationship across continental regions, supporting the feasibility of globally estimating FMF through a simple empirical function based on AE. Validation with independent NOAA GML data sets shows predicted FMF errors mostly within 0.1. Finally, applying this parameterization to MODIS Aqua and Terra data significantly improved satellite‐derived FMF agreement with AERONET compared to previous derivations. This parameterization provides a simple, valuable tool for accurately deriving FMF over land from MODIS and understanding its impact on climate and air quality. Aerosols are liquid and solid particles suspended in the atmosphere, with sizes ranging from a few nanometers to tens of micrometers. These particles, produced by natural sources or human activities, play a significant role in air quality and climate. Estimating aerosol size distributions is important for understanding their climate and environmental impacts. However this remains challenging on regional and global scales due to the difficulties in retrieving this information from satellite observations. To address this, we created a parameterization that predicts the fraction of fine particles based on the measured spectral variation of light extinction by aerosols, known as the Ångström exponent (AE). By analyzing 20 years of ground‐based sunphotometer data, we found a reliable pattern between AE and fine particle fraction. We then tested this method with in situ nephelometer data, and confirmed its accuracy. Finally, we applied our formula to satellite data, achieving better agreement with ground‐based observations compared to previous parameterization efforts. Our formula can help scientists understand air pollution and its climate effects more accurately using satellite and ground‐based data independently of location. A parameterization linking the fine‐mode fraction of aerosol optical depth to the Angstrom exponent was developed using AERONET data Validation of this parameterization with independent in situ nephelometer measurements demonstrates strong predictive capability Applying this parameterization to MODIS satellite data improves the predictive accuracy for fine‐ and coarse‐mode aerosol optical depth
Author Li, Xiaohan
Ginoux, Paul
Author_xml – sequence: 1
  givenname: Xiaohan
  orcidid: 0000-0003-2370-576X
  surname: Li
  fullname: Li, Xiaohan
  email: xiaohanl@princeton.edu
  organization: Princeton University
– sequence: 2
  givenname: Paul
  orcidid: 0000-0003-3642-2988
  surname: Ginoux
  fullname: Ginoux, Paul
  organization: NOAA Geophysical Fluid Dynamics Laboratory
BookMark eNp9kU1v1EAMhkeoSGwLN37ASFxZsOcjyRxXS7tUClrUwpWRd-JAVtlMmKStyq9n2kWop55svXr02LJPxckQBxbiLcIHBOU-KlBmUyMa7coXYoHOmGUFUJ6IBYDLvSqLV-J0mvYAoEHjQvxYDfL8MHapC9TLr5TowDOn7g_NXRzkHOU1jzmdWa4jpYklDY286AaWX2LDcsUpTrGX23F-NHzicf4lt7ecZJ3J1-JlS_3Eb_7VM_H94vzb-vOy3m4u16t6GXTh7LJCRmVaYqO4CQZdyWzYhLAzdqdIQ2ks7VyDRYmlsgFapEaztRiyoEB9Ji6P3ibS3o-pO1C695E6_xjE9NNTyhv27JUCLluygYBNFWylsG10qzRpMg6q7Hp3dI0p_r7hafb7eJOGvL7XWKErAAuTqfdHKuQDTInb_1MR_MM3_NNvZFwd8buu5_tnWb-5qktAa_Vf5oqK_Q
Cites_doi 10.1029/2023jd040082
10.1002/jgrd.50600
10.1364/ao.46.003332
10.5067/MODIS/MYD04_L2.061
10.1364/ao.40.002368
10.1029/1999JD900833
10.1016/j.envpol.2021.116707
10.5067/MODIS/MOD04_L2.061
10.5194/amt‐5‐1761‐2012
10.5194/acp‐17‐12097‐2017
10.1021/acs.est.3c08253
10.1109/IGARSS39084.2020.9323741
10.1038/s41561‐022‐01046‐6
10.5194/amt‐14‐2575‐2021
10.5194/acp‐8‐481‐2008
10.5194/acp‐16‐13431‐2016
10.1016/j.atmosres.2011.08.017
10.1016/j.envint.2021.106392
10.1029/2010jd014002
10.1016/s0034‐4257(98)00031‐5
10.1029/2018jd029598
10.1002/jgrd.50712
10.5194/amt‐13‐3375‐2020
10.1029/2024jd041041
10.5194/acp‐10‐10399‐2010
10.1016/j.atmosres.2020.105217
10.1029/2002jd002975
10.5194/amt‐16‐1103‐2023
10.1029/2012rg000388
10.1016/j.jqsrt.2010.03.005
10.1029/1999JD900923
10.1016/j.rse.2020.111913
10.5194/amt‐8‐3117‐2015
10.1029/2019gl083703
10.5194/amt‐6‐2989‐2013
10.1175/jcli‐d‐21‐0889.1
10.1109/tgrs.2006.879540
10.5194/amt‐12‐169‐2019
10.1080/02786829808965551
10.5194/acp‐24‐9155‐2024
10.5194/acp‐18‐4201‐2018
10.1016/j.atmosenv.2020.117785
10.1021/acsearthspacechem.4c00179
10.1002/2013jd020342
10.5194/acp‐20‐55‐2020
10.1029/2005jd005978
10.5194/acp‐21‐357‐2021
10.1002/2017jd027412
10.1175/bams‐d‐17‐0175.1
10.1016/j.atmosenv.2023.119798
10.1029/2011jd016839
10.1029/2001jd900014
ContentType Journal Article
Copyright 2025. The Author(s).
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. The Author(s).
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL114397
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_220e7fa5ca0e48c5821fd3f23a3a4908
10_1029_2024GL114397
GRL70155
Genre article
GrantInformation_xml – fundername: National Oceanic and Atmospheric Administration
  funderid: NA23OAR4320198
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
AFPKN
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3695-81e124fae42edc4197ee4e4ccb45b2a30745ab9d1671725c0f1ad3e551cc36613
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001450145600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Fri Oct 03 12:42:02 EDT 2025
Mon Nov 10 03:08:04 EST 2025
Sat Nov 29 07:59:14 EST 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3695-81e124fae42edc4197ee4e4ccb45b2a30745ab9d1671725c0f1ad3e551cc36613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3642-2988
0000-0003-2370-576X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL114397
PQID 3181960164
PQPubID 54723
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_220e7fa5ca0e48c5821fd3f23a3a4908
proquest_journals_3181960164
crossref_primary_10_1029_2024GL114397
wiley_primary_10_1029_2024GL114397_GRL70155
PublicationCentury 2000
PublicationDate 28 March 2025
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 28 March 2025
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 10
2019; 2019
2021; 21
2020; 20
2020; 241
2019; 12
2021; 248
2018; 123
2020; 247
2019; 124
2008; 8
2020; 13
2023; 305
2015b
2013; 6
2001; 40
2001; 106
2024; 8
2010; 115
2013; 118
2010; 111
2022; 35
2021; 276
2024; 24
1998; 29
2005; 110
2024; 129
2023; 16
2021; 149
2024; 58
1999; 104
2015; 8
2016; 16
2019; 100
1998; 66
2012; 50
2021; 14
2018; 18
2011; 102
2003; 108
2023
2015a
2021
2017; 17
2020
2006; 44
2019; 46
2022; 15
2012; 117
2012; 5
2007; 46
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Di Tomaso E. (e_1_2_7_8_1) 2021
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
Li X. (e_1_2_7_34_1) 2019
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 14
  start-page: 2575
  issue: 3
  year: 2021
  end-page: 2614
  article-title: Synergy processing of diverse ground‐based remote sensing and in situ data using the grasp algorithm: Applications to radiometer, lidar and radiosonde observations
  publication-title: Atmospheric Measurement Techniques
– volume: 17
  start-page: 12097
  issue: 19
  year: 2017
  end-page: 12120
  article-title: Classifying aerosol type using in situ surface spectral aerosol optical properties
  publication-title: Atmospheric Chemistry and Physics
– volume: 21
  start-page: 357
  issue: 1
  year: 2021
  end-page: 392
  article-title: Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in siberian wildfire plumes
  publication-title: Atmospheric Chemistry and Physics
– volume: 13
  start-page: 3375
  issue: 6
  year: 2020
  end-page: 3411
  article-title: The AERONET version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to version 2
  publication-title: Atmospheric Measurement Techniques
– volume: 276
  year: 2021
  article-title: New global aerosol fine‐mode fraction data over land derived from MODIS satellite retrievals
  publication-title: Environmental Pollution
– volume: 44
  start-page: 3180
  issue: 11
  year: 2006
  end-page: 3195
  article-title: Deep blue retrievals of Asian aerosol properties during ACE‐Asia
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 111
  start-page: 1931
  issue: 12–13
  year: 2010
  end-page: 1946
  article-title: Benchmark results in vector atmospheric radiative transfer
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 8
  start-page: 481
  issue: 3
  year: 2008
  end-page: 489
  article-title: Some considerations about Ångström exponent distributions
  publication-title: Atmospheric Chemistry and Physics
– volume: 115
  issue: D19
  year: 2010
  article-title: Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures
  publication-title: Journal of Geophysical Research
– volume: 110
  issue: D18
  year: 2005
  article-title: Testing the MODIS satellite retrieval of aerosol fine‐mode fraction
  publication-title: Journal of Geophysical Research
– volume: 18
  start-page: 4201
  issue: 6
  year: 2018
  end-page: 4215
  article-title: Climatic factors contributing to long‐term variations in surface fine dust concentration in the United States
  publication-title: Atmospheric Chemistry and Physics
– volume: 118
  start-page: 9296
  issue: 16
  year: 2013
  end-page: 9315
  article-title: Enhanced deep blue aerosol retrieval algorithm: The second generation
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 149
  year: 2021
  article-title: Understanding global changes in fine‐mode aerosols during 2008–2017 using statistical methods and deep learning approach
  publication-title: Environment International
– volume: 46
  start-page: 3332
  issue: 16
  year: 2007
  end-page: 3344
  article-title: Retrieval of aerosol properties over land surfaces: Capabilities of multiple‐viewing‐angle intensity and polarization measurements
  publication-title: Applied Optics
– volume: 118
  start-page: 12
  issue: 22
  year: 2013
  end-page: 661
  article-title: Evidence of a weakly absorbing intermediate mode of aerosols in AERONET data from Saharan and Sahelian sites
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 108
  issue: D17
  year: 2003
  article-title: Spectral discrimination of coarse and fine mode optical depth
  publication-title: Journal of Geophysical Research
– volume: 58
  start-page: 1109
  issue: 2
  year: 2024
  end-page: 1118
  article-title: Hygroscopic growth of adsorbed water films on smectite clay particles
  publication-title: Environmental Science & Technology
– volume: 10
  start-page: 10399
  issue: 21
  year: 2010
  end-page: 10420
  article-title: Global evaluation of the collection 5 MODIS dark‐target aerosol products over land
  publication-title: Atmospheric Chemistry and Physics
– volume: 6
  start-page: 2989
  issue: 11
  year: 2013
  end-page: 3034
  article-title: The collection 6 MODIS aerosol products over land and ocean
  publication-title: Atmospheric Measurement Techniques
– volume: 102
  start-page: 365
  issue: 4
  year: 2011
  end-page: 393
  article-title: Climatology of aerosol radiative properties in the free troposphere
  publication-title: Atmospheric Research
– volume: 2019
  start-page: A53M
  year: 2019
  end-page: 2939
– start-page: 241
  year: 2021
  end-page: 247
– volume: 117
  issue: D7
  year: 2012
  article-title: Fog‐and cloud‐induced aerosol modification observed by the Aerosol Robotic Network (AERONET)
  publication-title: Journal of Geophysical Research
– volume: 247
  year: 2020
  article-title: Retrievals of fine mode light‐absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia
  publication-title: Remote Sensing of Environment
– volume: 123
  start-page: 380
  issue: 1
  year: 2018
  end-page: 400
  article-title: Satellite ocean aerosol retrieval (SOAR) algorithm extension to S‐NPP VIIRS as part of the “Deep Blue” aerosol project
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 20
  start-page: 55
  issue: 1
  year: 2020
  end-page: 81
  article-title: Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the geophysical fluid dynamics laboratory land–atmosphere model (GFDL AM4. 0/LM4. 0)
  publication-title: Atmospheric Chemistry and Physics
– volume: 12
  start-page: 169
  issue: 1
  year: 2019
  end-page: 209
  article-title: Advancements in the aerosol robotic network (AERONET) version 3 database–automated near‐real‐time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements
  publication-title: Atmospheric Measurement Techniques
– volume: 104
  start-page: 27473
  issue: D22
  year: 1999
  end-page: 27489
  article-title: Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil
  publication-title: Journal of Geophysical Research
– volume: 29
  start-page: 57
  issue: 1
  year: 1998
  end-page: 69
  article-title: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer
  publication-title: Aerosol Science and Technology
– start-page: 6262
  year: 2020
  end-page: 6265
– volume: 66
  start-page: 1
  issue: 1
  year: 1998
  end-page: 16
  article-title: Aeronet—A federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sensing of Environment
– volume: 106
  start-page: 12067
  issue: D11
  year: 2001
  end-page: 12097
  article-title: An emerging ground‐based aerosol climatology: Aerosol optical depth from AERONET
  publication-title: Journal of Geophysical Research
– volume: 104
  start-page: 31333
  issue: D24
  year: 1999
  end-page: 31349
  article-title: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols
  publication-title: Journal of Geophysical Research
– volume: 35
  start-page: 8133
  issue: 24
  year: 2022
  end-page: 8152
  article-title: Compound heat wave, drought, and dust events in California
  publication-title: Journal of Climate
– volume: 305
  year: 2023
  article-title: The extreme forest fires in California/Oregon in 2020: Aerosol optical and physical properties and comparisons of aged versus fresh smoke
  publication-title: Atmospheric Environment
– volume: 46
  start-page: 9163
  issue: 15
  year: 2019
  end-page: 9173
  article-title: Seasonal prediction potential for springtime dustiness in the United States
  publication-title: Geophysical Research Letters
– volume: 241
  year: 2020
  article-title: Classification of aerosols over Saudi Arabia from 2004–2016
  publication-title: Atmospheric Environment
– volume: 50
  issue: 3
  year: 2012
  article-title: Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products
  publication-title: Reviews of Geophysics
– volume: 15
  start-page: 878
  issue: 11
  year: 2022
  end-page: 884
  article-title: Enhanced dust emission following large wildfires due to vegetation disturbance
  publication-title: Nature Geoscience
– volume: 118
  start-page: 7864
  issue: 14
  year: 2013
  end-page: 7872
  article-title: Validation and uncertainty estimates for MODIS collection 6 “Deep Blue” aerosol data
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 8
  start-page: 2198
  issue: 11
  year: 2024
  end-page: 2208
  article-title: Wavelength‐and ph‐dependent optical properties of aqueous aerosol particles containing 4‐nitrocatechol
  publication-title: ACS Earth and Space Chemistry
– year: 2015a
– volume: 40
  start-page: 2368
  issue: 15
  year: 2001
  end-page: 2375
  article-title: Modified Ångström exponent for the characterization of submicrometer aerosols
  publication-title: Applied Optics
– volume: 129
  issue: 15
  year: 2024
  article-title: Retrieval of aerosol and surface properties at high spatial resolution: Hybrid approach and demonstration using sentinel‐5p/TROPOMI and PRISMA
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 5
  start-page: 1761
  issue: 7
  year: 2012
  end-page: 1778
  article-title: Global and regional evaluation of over‐land spectral aerosol optical depth retrievals from SeaWiFS
  publication-title: Atmospheric Measurement Techniques
– volume: 124
  start-page: 4658
  issue: 8
  year: 2019
  end-page: 4688
  article-title: Validation, stability, and consistency of MODIS collection 6.1 and VIIRS version 1 deep blue aerosol data over land
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 248
  year: 2021
  article-title: Investigation of the relationship between the fine mode fraction and Ångström exponent: Cases in Korea
  publication-title: Atmospheric Research
– year: 2023
– volume: 8
  start-page: 3117
  issue: 8
  year: 2015
  end-page: 3133
  article-title: High temporal resolution estimates of columnar aerosol microphysical parameters from spectrum of aerosol optical depth by linear estimation: Application to long‐term AERONET and star‐photometry measurements
  publication-title: Atmospheric Measurement Techniques
– volume: 24
  start-page: 9155
  issue: 16
  year: 2024
  end-page: 9176
  article-title: Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust‐emitting sediments from the Mojave desert, California, USA
  publication-title: Atmospheric Chemistry and Physics
– volume: 16
  start-page: 13431
  issue: 21
  year: 2016
  end-page: 13448
  article-title: The impact of the pacific decadal oscillation on springtime dust activity in Syria
  publication-title: Atmospheric Chemistry and Physics
– year: 2015b
– volume: 100
  start-page: 123
  issue: 1
  year: 2019
  end-page: 135
  article-title: Overview of the NOAA/ESRL federated aerosol network
  publication-title: Bulletin of the American Meteorological Society
– volume: 129
  issue: 6
  year: 2024
  article-title: Viirs version 2 deep blue aerosol products
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 16
  start-page: 1103
  issue: 4
  year: 2023
  end-page: 1120
  article-title: Relationship between the sub‐micron fraction (SMF) and fine‐mode fraction (FMF) in the context of aeronet retrievals
  publication-title: Atmospheric Measurement Techniques
– ident: e_1_2_7_28_1
  doi: 10.1029/2023jd040082
– ident: e_1_2_7_48_1
  doi: 10.1002/jgrd.50600
– ident: e_1_2_7_18_1
  doi: 10.1364/ao.46.003332
– ident: e_1_2_7_30_1
  doi: 10.5067/MODIS/MYD04_L2.061
– ident: e_1_2_7_38_1
  doi: 10.1364/ao.40.002368
– ident: e_1_2_7_46_1
  doi: 10.1029/1999JD900833
– ident: e_1_2_7_54_1
  doi: 10.1016/j.envpol.2021.116707
– ident: e_1_2_7_29_1
  doi: 10.5067/MODIS/MOD04_L2.061
– ident: e_1_2_7_49_1
  doi: 10.5194/amt‐5‐1761‐2012
– ident: e_1_2_7_51_1
  doi: 10.5194/acp‐17‐12097‐2017
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.est.3c08253
– start-page: A53M
  volume-title: AGU Fall Meeting Abstracts
  year: 2019
  ident: e_1_2_7_34_1
– ident: e_1_2_7_17_1
  doi: 10.1109/IGARSS39084.2020.9323741
– ident: e_1_2_7_56_1
  doi: 10.1038/s41561‐022‐01046‐6
– ident: e_1_2_7_36_1
  doi: 10.5194/amt‐14‐2575‐2021
– ident: e_1_2_7_53_1
  doi: 10.5194/acp‐8‐481‐2008
– ident: e_1_2_7_41_1
  doi: 10.5194/acp‐16‐13431‐2016
– ident: e_1_2_7_5_1
  doi: 10.1016/j.atmosres.2011.08.017
– ident: e_1_2_7_55_1
  doi: 10.1016/j.envint.2021.106392
– ident: e_1_2_7_10_1
  doi: 10.1029/2010jd014002
– ident: e_1_2_7_19_1
  doi: 10.1016/s0034‐4257(98)00031‐5
– ident: e_1_2_7_50_1
  doi: 10.1029/2018jd029598
– ident: e_1_2_7_21_1
  doi: 10.1002/jgrd.50712
– ident: e_1_2_7_52_1
  doi: 10.5194/amt‐13‐3375‐2020
– ident: e_1_2_7_7_1
  doi: 10.1029/2024jd041041
– start-page: 241
  volume-title: International technical meeting on air pollution modelling and its application
  year: 2021
  ident: e_1_2_7_8_1
– ident: e_1_2_7_32_1
  doi: 10.5194/acp‐10‐10399‐2010
– ident: e_1_2_7_27_1
  doi: 10.1016/j.atmosres.2020.105217
– ident: e_1_2_7_37_1
  doi: 10.1029/2002jd002975
– ident: e_1_2_7_39_1
  doi: 10.5194/amt‐16‐1103‐2023
– ident: e_1_2_7_15_1
  doi: 10.1029/2012rg000388
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jqsrt.2010.03.005
– ident: e_1_2_7_9_1
  doi: 10.1029/1999JD900923
– ident: e_1_2_7_33_1
  doi: 10.1016/j.rse.2020.111913
– ident: e_1_2_7_40_1
  doi: 10.5194/amt‐8‐3117‐2015
– ident: e_1_2_7_44_1
  doi: 10.1029/2019gl083703
– ident: e_1_2_7_31_1
  doi: 10.5194/amt‐6‐2989‐2013
– ident: e_1_2_7_45_1
  doi: 10.1175/jcli‐d‐21‐0889.1
– ident: e_1_2_7_22_1
  doi: 10.1109/tgrs.2006.879540
– ident: e_1_2_7_14_1
  doi: 10.5194/amt‐12‐169‐2019
– ident: e_1_2_7_3_1
  doi: 10.1080/02786829808965551
– ident: e_1_2_7_16_1
  doi: 10.5194/acp‐24‐9155‐2024
– ident: e_1_2_7_42_1
  doi: 10.5194/acp‐18‐4201‐2018
– ident: e_1_2_7_2_1
  doi: 10.1016/j.atmosenv.2020.117785
– ident: e_1_2_7_24_1
  doi: 10.1021/acsearthspacechem.4c00179
– ident: e_1_2_7_13_1
  doi: 10.1002/2013jd020342
– ident: e_1_2_7_43_1
  doi: 10.5194/acp‐20‐55‐2020
– ident: e_1_2_7_4_1
  doi: 10.1029/2005jd005978
– ident: e_1_2_7_26_1
  doi: 10.5194/acp‐21‐357‐2021
– ident: e_1_2_7_47_1
  doi: 10.1002/2017jd027412
– ident: e_1_2_7_6_1
  doi: 10.1175/bams‐d‐17‐0175.1
– ident: e_1_2_7_12_1
  doi: 10.1016/j.atmosenv.2023.119798
– ident: e_1_2_7_11_1
  doi: 10.1029/2011jd016839
– ident: e_1_2_7_20_1
  doi: 10.1029/2001jd900014
– ident: e_1_2_7_23_1
SSID ssj0003031
Score 2.4897978
Snippet Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus anthropogenic...
Abstract Retrieving the fine‐mode fraction (FMF) of aerosol optical depth from satellite data is crucial for understanding the impact of natural versus...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms AERONET
aerosol
Aerosol optical depth
Aerosols
Air pollution
Air quality
Anthropogenic factors
AOD
Climate
Climate effects
Environmental impact
FMF
Human influences
Information retrieval
MODIS
Nephelometers
Optical analysis
Optical thickness
Outdoor air quality
Parameterization
Satellite data
Satellite observation
Satellites
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64vctCTFNskbZPjurrrYVHxAZ4saTJFQduyuwr-eydpV-pFL95KCSXMJDPf10y-IeQoBwWxhigoDHMExUKQIyoPEmFMnmqBEMSLuI7Tqyv5-KhuOq2-XE1YIw_cGO6UsRDSQsdGhyCkcfc6C8sLxjXX7tDKRd8wVXMy1cZgDMxNrzwlAsnSpC15D5lybF-MxkgDuBN66iQjr9n_A2h24arPN8M1stoCRdpvJrhOFqDcIMsj34j3E5986aaZbpKnfkkv3uoXr_VBb7SrtnICzM39Sjqr6B14gW-ggwppLFBdWjpEdEldIzTaB5xb9Uqva_9bm55DPXum17jE6RhHbpGH4cX94DJouyYEhicqDmQEmLMLDYKBNSJSKYAAZ3oR50zjnhaxzpWNEmRyLDZhEWnLAZGTwQ9gdt8mi2VVwg6hwjIlc2FFwhTSRishzqW0heQG0KG8R47n5svqRhwj84faTGVdM_fImbPt9xgnae1foKOz1tHZX47ukf25Z7J2n00zjEgYQpxMWI-ceG_9OpFsdDtOHUrc_Y8Z7ZEV5roBhzxgcp8szibvcECWzMfsZTo59AvyC6-l3nI
  priority: 102
  providerName: Directory of Open Access Journals
Title An Empirical Parameterization to Separate Coarse and Fine Mode Aerosol Optical Depth Over Land
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL114397
https://www.proquest.com/docview/3181960164
https://doaj.org/article/220e7fa5ca0e48c5821fd3f23a3a4908
Volume 52
WOSCitedRecordID wos001450145600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCb62IBetnYPNFsX6NCdBmOxLNvSMWub7GC0QbcCPc2QJXorsNpBkhbovx8pu0F6GTDsZhiyIIsi9ZESPwIcV2gwtRhHtZPsoHiMKkLlUaacq3KrCIIEEtciPz_X19dm1gfcOBem44dYB9xYM4K9ZgW31bInG2COTPLa1bQgOE876jbscl4VOV-7p5eTq2Jti8lAdzXzjIq0zLP-6jv18Hnz-yebUuDufwI4N2Fr2HcmL_93xPvwokecYtwtkQPYwuYVPJ-Gir4P9BTugLrla_gxbsTZ7fwmkIaImeVrW8zk3CVqilUrvmFgCkdx0pI_jMI2XkxoWIIrqokx0s-1v8XFPMTHxSnOV7_EBemKKKjlG7ianH0_-Rr15Rcil2QmjXSMtPnXFpVE71RsckSFLEOVVtKScVCprYyPM3IJZepGdWx9ggTBHHVAMOEt7DRtg4cglJdGV8qrTBryP73GtNLa1zpxSCsjGcDHx_kv5x3LRhlOx6UpN2dtAF9YOOs2zI0dXrSLn2WvaqWUI8xrmzo7QqUdZwLXPqllYhPLx5wDOHoUbdkr7LIk00a2iPnGBvApCPGvAymnl0XOcPPdP7V-D3uS6wePkkjqI9hZLe7wAzxz96ub5WII21LNhiEqMOwX8h9r5-1w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BAMELP4coDPADPKGIxnES-7GMtUOEroIh7QnLsS8wCZKqLUj899w5WdW9ICHeosiOHJ_v7jv7_B3AixoN5g7TpPGSA5SASU2oPCmU93XpFEGQSOJalfO5Pjszi6HOKd-F6fkhthturBnRXrOC84b0wDbAJJkUtqtZRXieXOpVuKbIMXFOn1SLrSkm-9yXzDMq0bIshsx36v96t_clnxSp-y_hzV3UGt3O9M5_D_gu3B4Qp5j0S-QeXMH2PtyYxYq-v-kp5oD69QP4MmnF0Y_leSQNEQvHaVvM5Nxf1BSbTnzCyBSO4rCjeBiFa4OY0rgEV1QTE6S_676Lk2XcHxdvcbn5Jk5IV0RFLffh8_To9PA4GcovJD4rTJ7oFMn5Nw6VxOBVakpEhSxDldfSkXFQuatNSAsKCWXux03qQoYEwTx9gKTxEPbarsVHIFSQRtcqqEIaij-DxrzWOjQ680grIxvBywsB2GXPsmHj6bg0dnfWRvCGpbNtw9zY8UW3-moHVbNSjrFsXO7dGJX2fBO4CVkjM5c5PuYcwcGFbO2gsGtLpo1sEfONjeBVlOJfB2JnH6uS4ebjf2r9HG4en36obPVu_v4J3JJcS3icJVIfwN5m9ROfwnX_a3O-Xj2L6_gPHcHt-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpC29pK-UbpKmOrSnYrqWZVs6bh67KTWbpQ_IqUKWxkkgsc3uttB_n5HsLJtLoPRmjGRkjWbmG0nzDcCHEhWmBuOostwHKA6jklB5lAlry9wIgiCBxLXIp1N5fq5mfZ1TnwvT8UOsNty8ZgR77RUcW1f1bAOeJJPCdjEpCM-TS30EWyLNg2ZyMVuZYrLPXck8JSLJ86y_-U79P6_3vueTAnX_Pby5jlqD2xk__-8Bv4DtHnGyUbdEXsIG1q_gySRU9P1LT-EOqF28hl-jmp3ctFeBNITNjL-25Zmcu0RNtmzYdwxM4ciOGoqHkZnasTGNi_mKamyE9HfNNTtrw_44O8Z2ecnOSFdYQS134Of45MfRadSXX4hskqk0kjGS868MCo7OiljliAK9DEVackPGQaSmVC7OKCTkqR1WsXEJEgSz9AGCCW9gs25qfAtMOK5kKZzIuKL400lMSyldJROLtDKSAXy8E4BuO5YNHU7HudLrszaAQy-dVRvPjR1eNPML3aua5nyIeWVSa4YopPWZwJVLKp6YxPhjzgHs38lW9wq70GTayBZ5vrEBfApSfHAgevKtyD3c3P2n1u_h6ex4rIsv06978Iz7UsLDJOJyHzaX89_4Dh7bP8urxfwgLONbwCntdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Parameterization+to+Separate+Coarse+and+Fine+Mode+Aerosol+Optical+Depth+Over+Land&rft.jtitle=Geophysical+research+letters&rft.au=Li%2C+Xiaohan&rft.au=Ginoux%2C+Paul&rft.date=2025-03-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL114397&rft.externalDBID=10.1029%252F2024GL114397&rft.externalDocID=GRL70155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon