Computer‐aided design of ionic liquids as solvents for extractive desulfurization

Although ionic liquids (ILs) have been widely explored as solvents for extractive desulfurization (EDS) of fuel oils, systematic studying of the optimal design of ILs for this process is still scarce. The UNIFAC‐IL model is extended first to describe the EDS system based on exhaustive experimental d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AIChE journal Ročník 64; číslo 3; s. 1013 - 1025
Hlavní autori: Song, Zhen, Zhang, Chenyue, Qi, Zhiwen, Zhou, Teng, Sundmacher, Kai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York American Institute of Chemical Engineers 01.03.2018
Predmet:
ISSN:0001-1541, 1547-5905
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although ionic liquids (ILs) have been widely explored as solvents for extractive desulfurization (EDS) of fuel oils, systematic studying of the optimal design of ILs for this process is still scarce. The UNIFAC‐IL model is extended first to describe the EDS system based on exhaustive experimental data. Then, based on the obtained UNIFAC‐IL model and group contribution models for predicting the melting point and viscosity of ILs, a mixed‐integer nonlinear programming (MINLP) problem is formulated for the purpose of computer‐aided ionic liquid design (CAILD). The MINLP problem is solved to optimize the liquid‐liquid extraction performance of ILs in a given multicomponent model EDS system, under consideration of constraints regarding the IL structure, thermodynamic and physical properties. The top five IL candidates preidentified from CAILD are further evaluated by means of process simulation using ASPEN Plus. Thereby, [C5MPy][C(CN)3] is identified as the most suitable solvent for EDS. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1013–1025, 2018
AbstractList Although ionic liquids (ILs) have been widely explored as solvents for extractive desulfurization (EDS) of fuel oils, systematic studying of the optimal design of ILs for this process is still scarce. The UNIFAC-IL model is extended first to describe the EDS system based on exhaustive experimental data. Then, based on the obtained UNIFAC-IL model and group contribution models for predicting the melting point and viscosity of ILs, a mixed-integer nonlinear programming (MINLP) problem is formulated for the purpose of computer-aided ionic liquid design (CAILD). The MINLP problem is solved to optimize the liquid-liquid extraction performance of ILs in a given multicomponent model EDS system, under consideration of constraints regarding the IL structure, thermodynamic and physical properties. The top five IL candidates preidentified from CAILD are further evaluated by means of process simulation using ASPEN Plus. Thereby, [C5MPy][C(CN)3] is identified as the most suitable solvent for EDS. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1013-1025, 2018
Although ionic liquids (ILs) have been widely explored as solvents for extractive desulfurization (EDS) of fuel oils, systematic studying of the optimal design of ILs for this process is still scarce. The UNIFAC‐IL model is extended first to describe the EDS system based on exhaustive experimental data. Then, based on the obtained UNIFAC‐IL model and group contribution models for predicting the melting point and viscosity of ILs, a mixed‐integer nonlinear programming (MINLP) problem is formulated for the purpose of computer‐aided ionic liquid design (CAILD). The MINLP problem is solved to optimize the liquid‐liquid extraction performance of ILs in a given multicomponent model EDS system, under consideration of constraints regarding the IL structure, thermodynamic and physical properties. The top five IL candidates preidentified from CAILD are further evaluated by means of process simulation using ASPEN Plus. Thereby, [C 5 MPy][C(CN) 3 ] is identified as the most suitable solvent for EDS. © 2017 American Institute of Chemical Engineers AIChE J , 64: 1013–1025, 2018
Author Zhou, Teng
Song, Zhen
Sundmacher, Kai
Qi, Zhiwen
Zhang, Chenyue
Author_xml – sequence: 1
  givenname: Zhen
  surname: Song
  fullname: Song, Zhen
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1
– sequence: 2
  givenname: Chenyue
  surname: Zhang
  fullname: Zhang, Chenyue
  organization: Otto‐von‐Guericke University Magdeburg, Universitätsplatz 2
– sequence: 3
  givenname: Zhiwen
  surname: Qi
  fullname: Qi, Zhiwen
  email: zwqi@ecust.edu.cn
  organization: East China University of Science and Technology
– sequence: 4
  givenname: Teng
  orcidid: 0000-0003-1941-5348
  surname: Zhou
  fullname: Zhou, Teng
  email: zhout@mpi-magdeburg.mpg.de
  organization: Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1
– sequence: 5
  givenname: Kai
  surname: Sundmacher
  fullname: Sundmacher, Kai
  organization: Otto‐von‐Guericke University Magdeburg, Universitätsplatz 2
BookMark eNp1kLtOAzEQRS0UJJJAwR9YoqLYxPZ6Hy6jFY9IkSiA2jJ-IEebdWLvBkLFJ_CNfAlONhWCajSje2bu3BEYNK7RAFxiNMEIkamwcoIzxugJGOKMFknGUDYAQ4QQTuIAn4FRCMvYkaIkQ_BYudW6a7X__vwSVmkFlQ72tYHOQOsaK2FtN51VAYoAg6u3umkDNM5D_d56IVu71Xukq03n7YdoI3QOTo2og7441jF4vr15qu6TxcPdvJotEpnmjCaEKWoQEooYUUia6ZJliGlVIIaEZCZnShBlSppjJHKDGUYkoxKnUr2UQph0DK76vWvvNp0OLV-6zjfxJCfx35yWKcVRNe1V0rsQvDZc2vbgM_q3NceI75PjMTl-SC4S17-Itbcr4Xd_ao_b32ytd_8L-Wxe9cQPmtqBQQ
CitedBy_id crossref_primary_10_1016_j_jtice_2024_105773
crossref_primary_10_1016_j_jece_2022_108997
crossref_primary_10_1016_j_jece_2022_108874
crossref_primary_10_1002_aic_17629
crossref_primary_10_1016_j_fuproc_2022_107480
crossref_primary_10_1016_j_ces_2021_117002
crossref_primary_10_1016_j_compchemeng_2023_108335
crossref_primary_10_1016_j_cjche_2024_03_021
crossref_primary_10_1016_j_compchemeng_2022_107925
crossref_primary_10_1016_j_fluid_2022_113623
crossref_primary_10_1002_aic_17340
crossref_primary_10_1002_aic_17066
crossref_primary_10_1007_s10311_020_01135_1
crossref_primary_10_1016_j_ces_2023_119097
crossref_primary_10_3390_su16177497
crossref_primary_10_1016_j_molliq_2023_122531
crossref_primary_10_1016_j_cep_2020_107822
crossref_primary_10_1016_j_compchemeng_2025_109138
crossref_primary_10_1016_j_mochem_2025_100009
crossref_primary_10_1002_aic_17575
crossref_primary_10_1002_aic_18301
crossref_primary_10_1016_j_coche_2019_10_007
crossref_primary_10_1016_j_cep_2021_108777
crossref_primary_10_1002_aic_17171
crossref_primary_10_1016_j_cherd_2024_02_019
crossref_primary_10_1016_j_ces_2023_118709
crossref_primary_10_3390_pr9010065
crossref_primary_10_1007_s11705_020_1959_0
crossref_primary_10_1016_j_cej_2020_125319
crossref_primary_10_3390_pr10010165
crossref_primary_10_1016_j_gee_2021_01_016
crossref_primary_10_3390_pr8121678
crossref_primary_10_1016_j_compchemeng_2019_106556
crossref_primary_10_1007_s11051_020_04961_0
crossref_primary_10_1002_cite_202100002
crossref_primary_10_1016_j_coche_2021_100732
crossref_primary_10_1016_j_molliq_2021_117322
crossref_primary_10_1002_aic_18412
crossref_primary_10_1016_j_ces_2023_118678
crossref_primary_10_1016_j_cej_2019_123399
crossref_primary_10_1134_S1070428020050243
crossref_primary_10_1016_j_jct_2023_107201
crossref_primary_10_1016_j_gee_2020_10_022
crossref_primary_10_1016_j_gee_2020_12_019
crossref_primary_10_1016_j_compchemeng_2025_109241
crossref_primary_10_1007_s11164_019_03833_0
crossref_primary_10_1016_j_ces_2023_119471
crossref_primary_10_1007_s11705_022_2242_3
crossref_primary_10_1016_j_scp_2022_100743
crossref_primary_10_1016_j_gee_2020_12_017
crossref_primary_10_1002_aic_16625
crossref_primary_10_1016_j_ces_2024_120118
crossref_primary_10_1016_j_fuel_2023_130006
crossref_primary_10_1016_j_cjche_2022_05_005
crossref_primary_10_1002_cite_202200172
crossref_primary_10_1007_s11705_021_2044_z
crossref_primary_10_1016_j_jhazmat_2020_122183
crossref_primary_10_1016_j_ces_2019_04_005
crossref_primary_10_1016_j_ces_2021_116904
crossref_primary_10_1016_j_seppur_2020_117053
crossref_primary_10_1007_s10853_018_2720_7
crossref_primary_10_1016_j_dche_2022_100018
crossref_primary_10_1016_j_molliq_2023_121370
crossref_primary_10_1016_j_fuel_2021_121159
crossref_primary_10_1016_j_enconman_2022_115617
crossref_primary_10_1016_j_envres_2020_109951
crossref_primary_10_1016_j_fluid_2024_114086
crossref_primary_10_1016_j_fuel_2019_116221
crossref_primary_10_1016_j_molliq_2024_126276
crossref_primary_10_1016_j_molliq_2021_115926
crossref_primary_10_1016_j_ces_2020_116076
crossref_primary_10_1016_j_joei_2023_101313
crossref_primary_10_1016_j_seppur_2023_125476
crossref_primary_10_1002_aic_18236
crossref_primary_10_1002_ceat_202100582
crossref_primary_10_1016_j_cattod_2019_03_052
crossref_primary_10_1016_j_compchemeng_2020_106764
crossref_primary_10_1016_j_scs_2021_103050
crossref_primary_10_1016_j_seppur_2021_119007
crossref_primary_10_1016_j_molliq_2023_122211
crossref_primary_10_1002_jctb_7270
crossref_primary_10_1002_btpr_3183
crossref_primary_10_1016_j_seppur_2024_129665
crossref_primary_10_1016_j_coche_2019_11_006
crossref_primary_10_1016_j_cattod_2021_12_006
crossref_primary_10_1016_j_coche_2019_11_005
crossref_primary_10_1002_aic_17499
crossref_primary_10_1016_j_ces_2021_117317
crossref_primary_10_1016_j_mcat_2019_02_011
crossref_primary_10_1016_j_seppur_2022_120853
crossref_primary_10_1016_j_ces_2025_121281
crossref_primary_10_1016_j_ces_2024_120395
crossref_primary_10_1016_j_cej_2020_127419
crossref_primary_10_1016_j_ces_2018_08_002
crossref_primary_10_1016_j_cherd_2020_12_020
crossref_primary_10_1016_j_susmat_2020_e00185
crossref_primary_10_1021_acs_iecr_4c02483
crossref_primary_10_1002_aic_18737
crossref_primary_10_1002_aic_18858
crossref_primary_10_1016_j_compchemeng_2023_108153
crossref_primary_10_1016_j_compchemeng_2025_108997
crossref_primary_10_1016_j_fuel_2022_124930
crossref_primary_10_1016_j_seppur_2022_122827
crossref_primary_10_1002_aic_18574
crossref_primary_10_1002_aic_16794
crossref_primary_10_1002_aic_70014
crossref_primary_10_1016_j_cherd_2019_09_018
crossref_primary_10_1016_j_ijrefrig_2023_09_025
crossref_primary_10_1016_j_cherd_2022_11_021
crossref_primary_10_1016_j_molliq_2018_10_069
crossref_primary_10_1002_aic_18729
crossref_primary_10_1016_j_gee_2018_12_001
crossref_primary_10_1016_j_cej_2025_160732
crossref_primary_10_1016_j_cej_2021_129168
crossref_primary_10_1016_j_ces_2023_118749
crossref_primary_10_1016_j_ces_2021_116888
crossref_primary_10_1016_j_gee_2019_03_002
crossref_primary_10_1002_aic_16821
crossref_primary_10_1016_j_ces_2021_117219
crossref_primary_10_1039_D0ME00067A
Cites_doi 10.1016/j.fluid.2007.10.010
10.1021/ie801496e
10.1002/aic.11337
10.1016/j.ces.2015.02.023
10.1021/je4001894
10.1039/b108411a
10.1016/j.jct.2013.08.030
10.1016/j.ces.2015.12.015
10.1016/j.fluid.2010.12.006
10.1016/j.ces.2014.08.017
10.1016/j.fluid.2011.10.017
10.1021/ie2025322
10.1002/aic.690210607
10.1002/aic.690450415
10.1021/acs.chemrev.6b00550
10.1016/0378-3812(83)80104-6
10.1002/aic.14294
10.1021/ie049328h
10.1016/j.jct.2015.10.018
10.1016/j.seppur.2017.06.054
10.1002/aic.13910
10.1021/ie070445x
10.1021/ie301159v
10.1016/j.fluid.2014.03.006
10.1007/s10098-016-1111-5
10.1016/j.fluid.2011.09.018
10.1021/je300692s
10.1002/aic.15009
10.1016/j.jct.2013.05.048
10.1021/ie301506n
10.1016/j.ces.2016.05.025
10.1021/ie101791t
10.1002/aic.690471102
10.1021/je025626e
10.1016/j.jct.2013.01.033
10.1021/ie070465z
10.1016/j.fluid.2011.05.002
10.1002/aic.690370905
10.1016/j.jct.2009.06.011
10.1016/j.molliq.2015.05.030
10.1002/aic.14228
10.1016/j.fluid.2015.12.009
10.1016/j.cej.2011.12.072
10.1016/j.cherd.2014.10.001
10.1021/ie201726r
10.1016/j.ces.2005.08.031
10.1021/acs.iecr.5b04152
10.1002/aic.12281
10.1002/aic.690480220
10.1016/j.compchemeng.2015.04.013
10.1063/1.4864182
10.1039/c1gc15196g
10.1016/0378-3812(86)85016-6
10.1016/j.jct.2015.07.042
10.1016/j.fluid.2012.12.025
10.1016/j.jct.2012.08.031
10.1021/cr300497a
10.1021/ie202134z
10.1016/j.ces.2016.05.038
10.1016/j.seppur.2012.02.026
10.1016/j.fluid.2016.06.016
10.1016/j.cherd.2016.10.014
10.1016/j.jct.2005.04.010
10.1016/j.fluid.2016.02.028
10.1039/B610207G
10.1021/jp804107y
10.1016/0378-3812(93)87127-M
10.1002/aic.14782
10.1016/j.fluid.2009.06.012
10.1002/aic.14606
10.1021/ie020506l
10.1016/j.fluid.2005.05.017
10.1007/s10098-015-0938-5
10.1016/j.fluid.2008.11.019
10.1021/ie401456q
10.1016/j.fluid.2007.06.025
10.1016/S0378-3812(02)00073-0
10.1016/j.fluid.2010.04.001
10.1021/ie901341k
10.1021/acssuschemeng.7b00024
10.1021/ie303357s
10.1002/aic.12185
10.1016/j.compchemeng.2012.02.021
10.1021/jp511621j
ContentType Journal Article
Copyright 2017 American Institute of Chemical Engineers
2018 American Institute of Chemical Engineers
Copyright_xml – notice: 2017 American Institute of Chemical Engineers
– notice: 2018 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.15994
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 1025
ExternalDocumentID 10_1002_aic_15994
AIC15994
Genre article
GrantInformation_xml – fundername: PetroChina Innovation Foundation, and 111 Project
  funderid: B08021
– fundername: the China Scholarship Council
  funderid: 201506740031
– fundername: the Major State Basic Research Development Program of China
  funderid: 2012CB720502
– fundername: the Natural Science Foundation of China
  funderid: NSFC U1462123
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABJIA
ADMLS
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c3694-29d4f00ad2fa7c45e89509ed7090ac9f69da2df84610a6f1910254c13cdb8aaf3
IEDL.DBID DRFUL
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424894000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Fri Jul 25 19:48:52 EDT 2025
Sat Nov 29 07:19:25 EST 2025
Tue Nov 18 21:58:36 EST 2025
Wed Jan 22 16:43:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3694-29d4f00ad2fa7c45e89509ed7090ac9f69da2df84610a6f1910254c13cdb8aaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1941-5348
OpenAccessLink https://research.tue.nl/nl/publications/af182a7b-fbd9-4309-8862-5fa4ddc123b1
PQID 2000648341
PQPubID 7879
PageCount 13
ParticipantIDs proquest_journals_2000648341
crossref_citationtrail_10_1002_aic_15994
crossref_primary_10_1002_aic_15994
wiley_primary_10_1002_aic_15994_AIC15994
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationYear 2018
Publisher American Institute of Chemical Engineers
Publisher_xml – name: American Institute of Chemical Engineers
References 2010; 56
2017; 5
2009; 41
2013; 65
2002; 12
2013; 61
2016; 145
1999; 45
2009; 278
2014; 68
2016; 425
2011; 57
2011; 13
2014; 371
2012; 57
2001; 47
2008; 263
2014; 60
2017; 159
1983; 13
2009; 48
2012; 97
2017; 117
2012; 51
2002; 48
2013; 59
2013; 58
2007; 259
2006; 61
2015; 81
2013; 57
2013; 52
2007; 9
2003; 48
2016; 116
2009; 284
2015; 91
2005; 37
2008; 112
2003; 42
2012; 183
2015; 17
1991; 37
1993; 82
2005; 234
2015; 94
2015; 121
1998
2015; 209
2016; 94
2013; 341
2015; 129
2007; 53
2016; 18
2001; 23
2014; 114
2005; 44
2016; 55
2011; 303
2010; 49
2011; 307
2016; 417
2015; 61
2002; 201
2011; 50
1986; 29
2010; 295
2015; 119
2014; 140
1975; 21
2016; 411
2012; 313
2012; 314
2007; 46
2012; 42
e_1_2_7_5_1
e_1_2_7_3_1
Arce A (e_1_2_7_73_1) 2007; 9
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Seader JD (e_1_2_7_79_1) 1998
Domańska U (e_1_2_7_62_1) 2008; 112
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
Song Z (e_1_2_7_30_1) 2017; 5
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
Domańska U (e_1_2_7_63_1) 2009; 41
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
Achenie LE (e_1_2_7_34_1) 2002
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Lampe M (e_1_2_7_56_1) 2015; 81
References_xml – volume: 259
  start-page: 173
  issue: 2
  year: 2007
  end-page: 179
  article-title: Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C NTf at T = 298.15 K
  publication-title: Fluid Phase Equilibr.
– volume: 114
  start-page: 1289
  issue: 2
  year: 2014
  end-page: 1326
  article-title: Gas solubility in ionic liquids
  publication-title: Chem Rev.
– volume: 82
  start-page: 47
  year: 1993
  end-page: 54
  article-title: Computer aided molecular design: a novel method for optimal solvent selection
  publication-title: Fluid Phase Equilibr.
– volume: 201
  start-page: 1
  issue: 1
  year: 2002
  end-page: 18
  article-title: Computer aided solvent design for extractive fermentation
  publication-title: Fluid Phase Equilibr.
– volume: 81
  start-page: 70
  year: 2015
  end-page: 79
  article-title: Product design ‐ molecules, devices, functional products, and formulated products
  publication-title: Comput Chem Eng.
– volume: 60
  start-page: 4222
  issue: 12
  year: 2014
  end-page: 4231
  article-title: UNIFAC model for ionic liquid‐CO(H ) systems: an experimental and modeling study on gas solubility
  publication-title: AIChE J.
– volume: 18
  start-page: 1177
  issue: 4
  year: 2016
  end-page: 1188
  article-title: Designing ionic liquid solvents for carbon capture using property‐based visual approach
  publication-title: Clean Technol Environ Policy.
– volume: 411
  start-page: 53
  year: 2016
  end-page: 58
  article-title: Extraction of benzene from heptane with pyridinium based ionic liquid at (298.15, 308.15 and 318.15) K
  publication-title: Fluid Phase Equilibr.
– volume: 50
  start-page: 5153
  issue: 9
  year: 2011
  end-page: 5168
  article-title: Optimal molecular design of ionic liquids for high‐purity bioethanol production
  publication-title: Ind Eng Chem Res.
– volume: 42
  start-page: 183
  issue: 1
  year: 2003
  end-page: 188
  article-title: Vapor‐liquid equilibria by UNIFAC group contribution. 6. Revision and extension
  publication-title: Ind Eng Chem Res.
– volume: 53
  start-page: 3108
  issue: 12
  year: 2007
  end-page: 3115
  article-title: Gasoline desulfurization using extraction with [C mim][BF ] ionic liquid
  publication-title: AIChE J.
– volume: 263
  start-page: 176
  issue: 2
  year: 2008
  end-page: 181
  article-title: Phase behaviour of 1‐methyl‐3‐octylimidazolium bis[trifluoromethylsulfonyl]imide with thiophene and aliphatic hydrocarbons: the influence of n‐alkane chain length
  publication-title: Fluid Phase Equilibr.
– volume: 303
  start-page: 111
  issue: 2
  year: 2011
  end-page: 114
  article-title: Liquid‐liquid equilibrium in ternary ionic liquid systems by UNIFAC: new volume, surface area and interaction parameters. Part II
  publication-title: Fluid Phase Equilibr.
– volume: 313
  start-page: 1
  year: 2012
  end-page: 6
  article-title: A group contribution method to predict the melting point of ionic liquids
  publication-title: Fluid Phase Equilibr.
– article-title: Computer‐aided design and process evaluation of ionic liquids for n‐hexane‐methylcyclopentane extractive distillation
  publication-title: Sep Purif Technol.
– year: 1998
– volume: 97
  start-page: 195
  year: 2012
  end-page: 204
  article-title: Introducing process simulation in ionic liquids design/selection for separation processes based on operational and economic criteria through the example of their regeneration
  publication-title: Sep Purif Technol.
– volume: 234
  start-page: 64
  issue: 1–2
  year: 2005
  end-page: 76
  article-title: Volume, surface and UNIQUAC interaction parameters for imidazolium based ionic liquids via polarizable continuum model
  publication-title: Fluid Phase Equilibr.
– volume: 61
  start-page: 126
  year: 2013
  end-page: 131
  article-title: Separation of thiophene from heptane with ionic liquids
  publication-title: J Chem Thermodyn.
– volume: 119
  start-page: 543
  issue: 2
  year: 2015
  end-page: 551
  article-title: Thermodynamic study of binary mixtures of 1‐butyl‐1‐methylpyrrolidinium dicyanamide ionic liquid with molecular solvents: new experimental data and modeling with PC‐SAFT equation of state
  publication-title: J Phys Chem B.
– volume: 91
  start-page: 194
  year: 2015
  end-page: 203
  article-title: Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium‐based ionic liquids
  publication-title: J Chem Thermodyn.
– volume: 371
  start-page: 82
  year: 2014
  end-page: 92
  article-title: Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids
  publication-title: Fluid Phase Equilibr.
– volume: 13
  start-page: 331
  year: 1983
  end-page: 340
  article-title: Molecular design of solvents for liquid extraction based on UNIFAC
  publication-title: Fluid Phase Equilibr.
– volume: 278
  start-page: 1
  issue: 1–2
  year: 2009
  end-page: 8
  article-title: Thiophene separation with ionic liquids for desulphurization: a quantum chemical approach
  publication-title: Fluid Phase Equilibr.
– volume: 5
  start-page: 382
  issue: 4
  year: 2017
  end-page: 3389
  article-title: Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process
  publication-title: ACS Sustain Chem Eng.
– volume: 140
  start-page: 064505
  issue: 6
  year: 2014
  article-title: Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations
  publication-title: J Chem Phys.
– volume: 13
  start-page: 1907
  issue: 7
  year: 2011
  end-page: 1913
  article-title: Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids
  publication-title: Green Chem.
– volume: 46
  start-page: 7275
  issue: 22
  year: 2007
  end-page: 7288
  article-title: Refinement of COSMO‐SAC and the applications
  publication-title: Ind Eng Chem Res.
– volume: 37
  start-page: 603
  issue: 6
  year: 2005
  end-page: 619
  article-title: Systems with ionic liquids: measurement of VLE and data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC (Do) and COSMO‐RS (Ol)
  publication-title: J Chem Thermodyn.
– volume: 55
  start-page: 788
  issue: 3
  year: 2016
  end-page: 797
  article-title: Overview of activity coefficient of thiophene at infinite dilution in ionic liquids and their modeling using COSMO‐RS
  publication-title: Ind Eng Chem Res.
– volume: 65
  start-page: 168
  year: 2013
  end-page: 173
  article-title: Solvent extraction of aromatic sulfur compounds from n‐heptane using the 1‐ethyl‐3‐methylimidazolium tricyanomethanide ionic liquid
  publication-title: J Chem Thermodyn.
– volume: 59
  start-page: 1348
  issue: 4
  year: 2013
  end-page: 1359
  article-title: A new fragment contribution ‐ corresponding states method for physicochemical properties prediction of ionic liquids
  publication-title: AIChE J.
– volume: 9
  start-page: 70
  year: 2007
  end-page: 74
  article-title: Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1‐ethyl‐3‐methylimidazolium bis{(trifluoromethyl)sulfonyl} amide
  publication-title: Green Chem.
– volume: 48
  start-page: 369
  issue: 2
  year: 2002
  end-page: 385
  article-title: Fast solvent screening via quantum chemistry: COSMO‐RS approach
  publication-title: AIChE J.
– volume: 42
  start-page: 248
  year: 2012
  end-page: 262
  article-title: Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes
  publication-title: Comput Chem Eng.
– volume: 51
  start-page: 11518
  issue: 35
  year: 2012
  end-page: 11529
  article-title: COSMO‐RS‐based ionic‐liquid selection for extractive distillation processes
  publication-title: Ind Eng Chem Res.
– volume: 56
  start-page: 2983
  issue: 11
  year: 2010
  end-page: 2996
  article-title: Molecular dynamics simulation of desulfurization by ionic liquids
  publication-title: AIChE J.
– volume: 17
  start-page: 1301
  issue: 5
  year: 2015
  end-page: 1312
  article-title: Ionic liquid design for enhanced carbon dioxide capture by computer‐aided molecular design approach
  publication-title: Clean Technol Environ Policy.
– volume: 159
  start-page: 93
  year: 2017
  end-page: 105
  article-title: A COSMO‐based approach to computer‐aided mixture design
  publication-title: Chem Eng Sci.
– volume: 284
  start-page: 99
  issue: 2
  year: 2009
  end-page: 105
  article-title: Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC
  publication-title: Fluid Phase Equilibr.
– volume: 94
  start-page: 632
  year: 2015
  end-page: 647
  article-title: Conceptual design of unit operations to separate aromatic hydrocarbons from naphtha using ionic liquids. COSMO‐based process simulations with multi‐component “real” mixture feed
  publication-title: Chem Eng Res Des.
– volume: 51
  start-page: 3483
  issue: 8
  year: 2012
  end-page: 3507
  article-title: Overview of the liquid‐liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons, and their modeling by COSMO‐RS
  publication-title: Ind Eng Chem Res.
– volume: 159
  start-page: 84
  year: 2017
  end-page: 92
  article-title: COSMO‐CAMD: a framework for optimization‐based computer‐aided molecular design using COSMO‐RS
  publication-title: Chem Eng Sci.
– volume: 116
  start-page: 2
  year: 2016
  end-page: 26
  article-title: Computer‐aided molecular design: an introduction and review of tools, applications, and solution techniques
  publication-title: Chem Eng Res Des.
– volume: 94
  start-page: 16
  year: 2016
  end-page: 23
  article-title: Liquid + liquid) equilibrium of ternary and quaternary systems containing heptane, cyclohexane, toluene and the ionic liquid [EMim][N(CN) ]. Experimental data and correlation
  publication-title: J Chem Thermodyn.
– volume: 41
  start-page: 1350
  issue: 12
  year: 2009
  end-page: 1355
  article-title: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4‐methyl‐N‐butyl‐pyridinium bis(trifluoromethylsulfonyl)imide
  publication-title: J Chem Thermodyn.
– volume: 129
  start-page: 69
  year: 2015
  end-page: 77
  article-title: Screening of ionic liquids for solvent‐sensitive extraction ‐ with deep desulfurization as an example
  publication-title: Chem Eng Sci.
– volume: 51
  start-page: 591
  issue: 1
  year: 2012
  end-page: 604
  article-title: A new group contribution method for prediction of density of pure ionic liquids over a wide range of temperature and pressure
  publication-title: Ind Eng Chem Res.
– volume: 314
  start-page: 107
  year: 2012
  end-page: 112
  article-title: Hexyl dimethylpyridinium ionic liquids for desulfurization of fuels. Effect of the position of the alkyl side chains
  publication-title: Fluid Phase Equilibr.
– volume: 52
  start-page: 18401
  issue: 51
  year: 2013
  end-page: 18412
  article-title: An equation of state based on PC‐SAFT for physical solvents composed of polyethylene glycol dimethylethers
  publication-title: Ind Eng Chem Res.
– volume: 307
  start-page: 30
  issue: 1
  year: 2011
  end-page: 38
  article-title: Physical properties of 3‐methyl‐N‐butylpyridinium tricyanomethanide and ternary LLE data with an aromatic and an aliphatic hydrocarbon at T = (303.2 and 328.2) K and p = 0.1 MPa
  publication-title: Fluid Phase Equilibr.
– volume: 61
  start-page: 2016
  issue: 6
  year: 2015
  end-page: 2027
  article-title: Design and screening of ionic liquids for C H /C H separation by COSMO‐RS and experiments
  publication-title: AIChE J.
– volume: 61
  start-page: 1247
  issue: 4
  year: 2006
  end-page: 1260
  article-title: A computer‐aided molecular design framework for crystallization solvent design
  publication-title: Chem Eng Sci.
– volume: 45
  start-page: 817
  issue: 4
  year: 1999
  end-page: 843
  article-title: Optimal design of solvent blends for environmental impact minimization
  publication-title: AIChE J.
– volume: 425
  start-page: 244
  year: 2016
  end-page: 251
  article-title: Effect of cation alkyl chain length on liquid‐liquid equilibria of {ionic liquids + thiophene + heptane}: COSMO‐RS prediction and experimental verification
  publication-title: Fluid Phase Equilibr.
– volume: 49
  start-page: 8705
  issue: 18
  year: 2010
  end-page: 8725
  article-title: COSMO‐RS‐based screening of ionic liquids as green solvents in denitrification studies
  publication-title: Ind Eng Chem Res.
– volume: 81
  start-page: 278
  year: 2015
  end-page: 287
  article-title: Computer‐aided molecular design in the continuous‐molecular targeting framework using group‐contribution PC‐SAFT.
  publication-title: Chem Eng.
– volume: 209
  start-page: 161
  year: 2015
  end-page: 168
  article-title: A group contribution method to estimate the viscosity of ionic liquids at different temperatures
  publication-title: J Mol Liq.
– volume: 121
  start-page: 157
  year: 2015
  end-page: 168
  article-title: Screening of ionic liquids for CO capture using the COSMO‐SAC model
  publication-title: Chem Eng Sci.
– volume: 112
  start-page: 11100
  issue: 35
  year: 2008
  end-page: 11105
  article-title: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1‐butyl‐3‐methylimidazolium trifluoromethanesulfonate
  publication-title: J Phys Chem B.
– volume: 48
  start-page: 475
  issue: 3
  year: 2003
  end-page: 479
  article-title: Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO‐RS
  publication-title: J Chem Eng Data.
– volume: 21
  start-page: 1086
  issue: 6
  year: 1975
  end-page: 1099
  article-title: Group‐contribution estimation of activity coefficients in nonideal liquid mixtures
  publication-title: AIChE J.
– volume: 61
  start-page: 4470
  issue: 12
  year: 2015
  end-page: 4480
  article-title: Process intensification on the separation of benzene and thiophene by extractive distillation
  publication-title: AIChE J.
– volume: 47
  start-page: 2384
  issue: 11
  year: 2001
  end-page: 2389
  article-title: Ionic liquids: innovative fluids for chemical processing
  publication-title: AIChE J.
– volume: 52
  start-page: 2714
  issue: 7
  year: 2013
  end-page: 2720
  article-title: Liquid‐liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids
  publication-title: Ind Eng Chem Res.
– volume: 417
  start-page: 137
  year: 2016
  end-page: 143
  article-title: Application of the ionic liquid tributylmethylammonium bis(trifluoromethylsulfonyl)imide as solvent for the extraction of benzene from octane and decane at T = 298.15 K and atmospheric pressure
  publication-title: Fluid Phase Equilibr.
– volume: 12
  year: 2002
– volume: 48
  start-page: 2697
  issue: 5
  year: 2009
  end-page: 2704
  article-title: UNIFAC model for ionic liquids
  publication-title: Ind Eng Chem Res.
– volume: 59
  start-page: 4627
  issue: 12
  year: 2013
  end-page: 4640
  article-title: Computer‐aided design of tailor‐made ionic liquids
  publication-title: AIChE J.
– volume: 44
  start-page: 4785
  issue: 13
  year: 2005
  end-page: 4797
  article-title: A new decomposition‐based computer‐aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures
  publication-title: Ind Eng Chem Res.
– volume: 51
  start-page: 12135
  issue: 37
  year: 2012
  end-page: 12144
  article-title: Extension of the UNIFAC model for ionic liquids
  publication-title: Ind Eng Chem Res.
– volume: 51
  start-page: 5866
  issue: 17
  year: 2012
  end-page: 5880
  article-title: Simultaneous optimal design of an extractive column and ionic liquid for the separation of bioethanol‐water mixtures
  publication-title: Ind Eng Chem Res.
– volume: 117
  start-page: 6984
  issue: 10
  year: 2017
  end-page: 7052
  article-title: Ionic‐liquid‐mediated extraction and separation processes for bioactive compounds: past, present, and future trends
  publication-title: Chem Rev.
– volume: 295
  start-page: 93
  issue: 1
  year: 2010
  end-page: 97
  article-title: Liquid‐liquid equilibrium in ternary ionic liquid systems by UNIFAC: new volume, surface area and interaction parameters. Part I
  publication-title: Fluid Phase Equilibr.
– volume: 57
  start-page: 3510
  issue: 12
  year: 2012
  end-page: 3518
  article-title: Activity coefficients at infinite dilution for organic compounds dissolved in 1‐alkyl‐1‐methylpyrrolidinium bis (trifluoromethylsulfonyl)imide ionic liquids having six‐, eight‐, and ten‐carbon alkyl chains
  publication-title: J Chem Eng Data.
– volume: 46
  start-page: 6041
  issue: 18
  year: 2007
  end-page: 6048
  article-title: Density and molar volume predictions using COSMO‐RS for ionic liquids. An approach to solvent design
  publication-title: Ind Eng Chem Res.
– volume: 68
  start-page: 53
  year: 2014
  end-page: 59
  article-title: Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1‐butyl‐1‐methylmorpholinium tricyanomethanide
  publication-title: J Chem Thermodyn.
– volume: 145
  start-page: 126
  year: 2016
  end-page: 132
  article-title: A systematic screening methodology towards exploration of ionic liquids for CO capture processes
  publication-title: Chem Eng Sci.
– volume: 37
  start-page: 1318
  issue: 9
  year: 1991
  end-page: 1332
  article-title: A group contribution approach to computer‐aided molecular design
  publication-title: AIChE J.
– volume: 57
  start-page: 248
  year: 2013
  end-page: 255
  article-title: Desulfurization of fuel‐oils with [C mim][NTf ]: a comparative study
  publication-title: J Chem Thermodyn.
– volume: 183
  start-page: 261
  year: 2012
  end-page: 270
  article-title: Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1‐butyl‐1‐methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([BMPYR][FAP])
  publication-title: Chem Eng J.
– volume: 23
  start-page: 2494
  year: 2001
  end-page: 2495
  article-title: Deep desulfurization of diesel fuel by extraction with ionic liquids
  publication-title: Chem Commun.
– volume: 29
  start-page: 125
  year: 1986
  end-page: 132
  article-title: A strategy for the design and selection of solvents for separation processes
  publication-title: Fluid Phase Equilibr.
– volume: 60
  start-page: 716
  issue: 2
  year: 2014
  end-page: 729
  article-title: UNIFAC model for ionic liquid‐CO systems
  publication-title: AIChE J.
– volume: 57
  start-page: 749
  issue: 3
  year: 2011
  end-page: 764
  article-title: Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquid
  publication-title: AIChE J.
– volume: 341
  start-page: 35
  year: 2013
  end-page: 41
  article-title: Ternary (liquid‐liquid) equilibria of nitrate based ionic liquid + alkane + benzene at 298.15 K: experiments and correlation
  publication-title: Fluid Phase Equilibr.
– volume: 58
  start-page: 2210
  issue: 8
  year: 2013
  end-page: 2218
  article-title: Activity coefficients at infinite dilution for organic solutes dissolved in three 1‐alkyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids bearing short linear alkyl side chains of three to five carbons
  publication-title: J Chem Eng Data.
– volume-title: Separation Process Principles
  year: 1998
  ident: e_1_2_7_79_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.fluid.2007.10.010
– ident: e_1_2_7_40_1
  doi: 10.1021/ie801496e
– ident: e_1_2_7_5_1
  doi: 10.1002/aic.11337
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ces.2015.02.023
– ident: e_1_2_7_66_1
  doi: 10.1021/je4001894
– ident: e_1_2_7_4_1
  doi: 10.1039/b108411a
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jct.2013.08.030
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ces.2015.12.015
– ident: e_1_2_7_45_1
  doi: 10.1016/j.fluid.2010.12.006
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ces.2014.08.017
– volume: 81
  start-page: 278
  year: 2015
  ident: e_1_2_7_56_1
  article-title: Computer‐aided molecular design in the continuous‐molecular targeting framework using group‐contribution PC‐SAFT. Comput
  publication-title: Chem Eng.
– ident: e_1_2_7_8_1
  doi: 10.1016/j.fluid.2011.10.017
– ident: e_1_2_7_20_1
  doi: 10.1021/ie2025322
– ident: e_1_2_7_38_1
  doi: 10.1002/aic.690210607
– ident: e_1_2_7_81_1
  doi: 10.1002/aic.690450415
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.6b00550
– ident: e_1_2_7_31_1
  doi: 10.1016/0378-3812(83)80104-6
– ident: e_1_2_7_42_1
  doi: 10.1002/aic.14294
– ident: e_1_2_7_84_1
  doi: 10.1021/ie049328h
– ident: e_1_2_7_74_1
  doi: 10.1016/j.jct.2015.10.018
– ident: e_1_2_7_86_1
  doi: 10.1016/j.seppur.2017.06.054
– ident: e_1_2_7_88_1
  doi: 10.1002/aic.13910
– ident: e_1_2_7_60_1
  doi: 10.1021/ie070445x
– ident: e_1_2_7_41_1
  doi: 10.1021/ie301159v
– ident: e_1_2_7_48_1
  doi: 10.1016/j.fluid.2014.03.006
– ident: e_1_2_7_52_1
  doi: 10.1007/s10098-016-1111-5
– ident: e_1_2_7_54_1
  doi: 10.1016/j.fluid.2011.09.018
– ident: e_1_2_7_64_1
  doi: 10.1021/je300692s
– ident: e_1_2_7_87_1
  doi: 10.1002/aic.15009
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jct.2013.05.048
– ident: e_1_2_7_23_1
  doi: 10.1021/ie301506n
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ces.2016.05.025
– ident: e_1_2_7_49_1
  doi: 10.1021/ie101791t
– ident: e_1_2_7_2_1
  doi: 10.1002/aic.690471102
– ident: e_1_2_7_19_1
  doi: 10.1021/je025626e
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jct.2013.01.033
– ident: e_1_2_7_18_1
  doi: 10.1021/ie070465z
– ident: e_1_2_7_70_1
  doi: 10.1016/j.fluid.2011.05.002
– ident: e_1_2_7_33_1
  doi: 10.1002/aic.690370905
– volume: 41
  start-page: 1350
  issue: 12
  year: 2009
  ident: e_1_2_7_63_1
  article-title: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4‐methyl‐N‐butyl‐pyridinium bis(trifluoromethylsulfonyl)imide
  publication-title: J Chem Thermodyn.
  doi: 10.1016/j.jct.2009.06.011
– volume-title: Computer Aided Molecular Design: Theory and Practice
  year: 2002
  ident: e_1_2_7_34_1
– ident: e_1_2_7_55_1
  doi: 10.1016/j.molliq.2015.05.030
– ident: e_1_2_7_53_1
  doi: 10.1002/aic.14228
– ident: e_1_2_7_72_1
  doi: 10.1016/j.fluid.2015.12.009
– ident: e_1_2_7_65_1
  doi: 10.1016/j.cej.2011.12.072
– ident: e_1_2_7_85_1
  doi: 10.1016/j.cherd.2014.10.001
– ident: e_1_2_7_50_1
  doi: 10.1021/ie201726r
– ident: e_1_2_7_83_1
  doi: 10.1016/j.ces.2005.08.031
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.iecr.5b04152
– ident: e_1_2_7_13_1
  doi: 10.1002/aic.12281
– ident: e_1_2_7_17_1
  doi: 10.1002/aic.690480220
– ident: e_1_2_7_36_1
  doi: 10.1016/j.compchemeng.2015.04.013
– ident: e_1_2_7_69_1
  doi: 10.1063/1.4864182
– ident: e_1_2_7_82_1
  doi: 10.1039/c1gc15196g
– ident: e_1_2_7_32_1
  doi: 10.1016/0378-3812(86)85016-6
– ident: e_1_2_7_68_1
  doi: 10.1016/j.jct.2015.07.042
– ident: e_1_2_7_75_1
  doi: 10.1016/j.fluid.2012.12.025
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jct.2012.08.031
– ident: e_1_2_7_12_1
  doi: 10.1021/cr300497a
– ident: e_1_2_7_59_1
  doi: 10.1021/ie202134z
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ces.2016.05.038
– ident: e_1_2_7_57_1
  doi: 10.1016/j.seppur.2012.02.026
– ident: e_1_2_7_11_1
  doi: 10.1016/j.fluid.2016.06.016
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cherd.2016.10.014
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jct.2005.04.010
– ident: e_1_2_7_71_1
  doi: 10.1016/j.fluid.2016.02.028
– volume: 9
  start-page: 70
  year: 2007
  ident: e_1_2_7_73_1
  article-title: Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1‐ethyl‐3‐methylimidazolium bis{(trifluoromethyl)sulfonyl} amide
  publication-title: Green Chem.
  doi: 10.1039/B610207G
– volume: 112
  start-page: 11100
  issue: 35
  year: 2008
  ident: e_1_2_7_62_1
  article-title: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1‐butyl‐3‐methylimidazolium trifluoromethanesulfonate
  publication-title: J Phys Chem B.
  doi: 10.1021/jp804107y
– ident: e_1_2_7_80_1
  doi: 10.1016/0378-3812(93)87127-M
– ident: e_1_2_7_26_1
  doi: 10.1002/aic.14782
– ident: e_1_2_7_39_1
  doi: 10.1016/j.fluid.2009.06.012
– ident: e_1_2_7_43_1
  doi: 10.1002/aic.14606
– ident: e_1_2_7_58_1
  doi: 10.1021/ie020506l
– ident: e_1_2_7_61_1
  doi: 10.1016/j.fluid.2005.05.017
– ident: e_1_2_7_51_1
  doi: 10.1007/s10098-015-0938-5
– ident: e_1_2_7_21_1
  doi: 10.1016/j.fluid.2008.11.019
– ident: e_1_2_7_16_1
  doi: 10.1021/ie401456q
– ident: e_1_2_7_76_1
  doi: 10.1016/j.fluid.2007.06.025
– ident: e_1_2_7_35_1
  doi: 10.1016/S0378-3812(02)00073-0
– ident: e_1_2_7_44_1
  doi: 10.1016/j.fluid.2010.04.001
– ident: e_1_2_7_22_1
  doi: 10.1021/ie901341k
– volume: 5
  start-page: 382
  issue: 4
  year: 2017
  ident: e_1_2_7_30_1
  article-title: Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process
  publication-title: ACS Sustain Chem Eng.
  doi: 10.1021/acssuschemeng.7b00024
– ident: e_1_2_7_77_1
  doi: 10.1021/ie303357s
– ident: e_1_2_7_14_1
  doi: 10.1002/aic.12185
– ident: e_1_2_7_46_1
  doi: 10.1016/j.compchemeng.2012.02.021
– ident: e_1_2_7_15_1
  doi: 10.1021/jp511621j
SSID ssj0012782
Score 2.603237
Snippet Although ionic liquids (ILs) have been widely explored as solvents for extractive desulfurization (EDS) of fuel oils, systematic studying of the optimal design...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1013
SubjectTerms CAD
Computer aided design
Computer simulation
Design
Desulfurization
Desulfurizing
extractive desulfurization
Fuel oils
ionic liquid design
Ionic liquids
Ions
Liquid-liquid extraction
Melting point
mixed‐integer nonlinear programming
Nonlinear programming
Optimization
Physical properties
process simulation
Solvents
UNIFAC‐IL
Viscosity
Title Computer‐aided design of ionic liquids as solvents for extractive desulfurization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15994
https://www.proquest.com/docview/2000648341
Volume 64
WOSCitedRecordID wos000424894000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eIlNNmmywVOpFgUpohZ6C5t9QKC02jQ9-xP8jf4SdzePVlAQvIVkJ1l2Z3a-nex8A3CBOY658JmOawjLE4RbccBdS7kGjxOf6Iem2EQwGJDRKHyswXWZC5PzQ1QBN20ZZr3WBk7jtL0kDaUJu1K-OPTWoIGV3nbq0Lh56g8fqp8IOCA5WbjaMSuk4JTEQjZuV8Lf3dESY64iVeNq-tv_6uQObBUIE3VzldiFmpjsweYK7-A-PJe1HD7fPzRFJEfcHORAU4l0fJahcfKWJTxFNEVKOfWZyBQpeIvUUm7SqhZCi2Rjmc2KRM4DGPZvX3p3VlFdwWKuH3oWDrknbZtyLGnAvI4goQIPggd2aFMWSj_kFHNJNCE79aXa1-nEeea4jMeEUukeQn0ynYgjQL503Y7D1f3A9qQQsRJTi4emihO6bm4TLstBjlhBPa4rYIyjnDQZR2qcIjNOTTivmr7mfBs_NWqVMxUVJpdGJudIh0Yd9TkzJ7-_IOre98zF8d-bnsCGAkskP3_Wgvp8lolTWGeLeZLOzgrd-wJtGt5v
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FdSDb_HtIh68xKbJNtmAl6KWirWID_AWNvuAQmm1aT37E_yN_hJnN48qKAjeQrKTLLszO99Odr4BOPakl0gVCBPXUA5VTDpJKH0HXQOVLGDmoS02EXa77Okpup2BsyIXJuOHKANuxjLsem0M3ASka1PWUN4Tp-iMIzoLVYpqhPpdvbhrPXbKvwheyDK2cNwyI1SoF8xCrlcrhb_7oynI_ApVra9pLf-vlyuwlGNM0syUYhVm1GANFr8wD67DfVHN4ePt3ZBESiLtUQ4y1MREaAXp914mPZkSnhJUT3MqMiUIcAku5jax6lUZkUlfT0Z5KucGPLYuH87bTl5fwRF-EFHHiyTVrsulp3koaEOxCOGDkqEbuVxEOogk96RmhpKdBxp3diZ1XtR9IRPGufY3oTIYDtQWkED7fqMu8X7oUq1UgmK4fBiyOGUq527DSTHKscjJx00NjH6c0SZ7MY5TbMdpG47Kps8Z48ZPjfaKqYpzo0tjm3VkgqN1_JydlN9fEDevzu3Fzt-bHsJ8--GmE3euute7sIDQiWWn0fagMh5N1D7MiddxLx0d5Ir4Cb_74l8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6IH32K16iIevMSmSZpswEtpDRZLKWqht7DdBwRKW5u2Z3-Cv9Ff4u7m0QoKgreQ7CbL7szOt5OZbwBuLGYNGXep8mtww-GYGUOP2YY0DQ7DLlYPdbEJr9vFg4HfK8B9lguT8EPkDjelGXq_VgrOp0xUV6yhJKJ30hj7zgaUHFVEpgil1nPQ7-R_ESwPJ2zh8sgsoUItYxYyrWre-bs9WoHMdaiqbU2w979R7sNuijFRIxGKAyjw8SHsrDEPHsFLVs3h8_1DkUQyxHQoB5oIpDy0FI2it0XEYkRiJMVTRUXGSAJcJDdznVi15KrLYiQWszSV8xj6wcNr89FI6ysY1HZ9x7B85gjTJMwSxKNOnWNfwgfOPNM3CfWF6zNiMYEVJTtxhTzZqdR5WrMpG2JChH0CxfFkzE8BucK26zUm73umIzgfym5y-1BkcVxVzi3DbTbLIU3Jx1UNjFGY0CZboZynUM9TGa7zptOEceOnRpVsqcJU6eJQZx0p52hNfk4vyu8vCBvtpr44-3vTK9jqtYKw0-4-ncO2RE44CUarQHE-W_AL2KTLeRTPLlM5_AJ3d-Ha
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+design+of+ionic+liquids+as+solvents+for+extractive+desulfurization&rft.jtitle=AIChE+journal&rft.au=Song%2C+Zhen&rft.au=Zhang%2C+Chenyue&rft.au=Qi%2C+Zhiwen&rft.au=Zhou%2C+Teng&rft.date=2018-03-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=3&rft.spage=1013&rft_id=info:doi/10.1002%2Faic.15994&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon