Classification and Applications of Randomized Functional Numerical Algorithms for the Solution of Second-Kind Fredholm Integral Equations
Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid a...
Uložené v:
| Vydané v: | Journal of mathematical sciences (New York, N.Y.) Ročník 254; číslo 5; s. 589 - 605 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2021
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 1072-3374, 1573-8795 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient. |
|---|---|
| AbstractList | Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient. Keywords and phrases: second-kind Fredholm integral equation, numerical solution, randomized algorithm, projection algorithm, grid algorithm, computational kernel. AMS Subject Classification: 65C40, 45B05, 65C05 Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient. |
| Audience | Academic |
| Author | Voytishek, A. V. |
| Author_xml | – sequence: 1 givenname: A. V. surname: Voytishek fullname: Voytishek, A. V. email: vav@osmf.sscc.ru organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk State University |
| BookMark | eNp9ks1q3DAQgE1JofnpC_Qk6KkHpfqJbPm4LNl2aWghm5yFLI29Cra0kWxI9w361lXi0LKwBB0kDd83YkZzVpz44KEoPlFySQmpviZKaiExYRQTwZnE-3fFKRUVx7KqxUk-k4phzqurD8VZSg8kS6Xkp8WfZa9Tcq0zenTBI-0tWux2_es9odCi2xwMg9uDRavJm-e47tHPaYCYsR4t-i5EN26HhNoQ0bgFtAn99JIv6xswwVv8w-XUqwh2G_oBrf0IXczy9eM0v3RRvG91n-Dj635e3K-u75bf8c2vb-vl4gYbXso9FromVGiwlDLZMiINqcGY0jAtRdOIWjJNa6A1vSpJ21hCDCMNaWylLeON5efF5znvLobHCdKoHsIUc0VJMUFkXYky9-0f1ekelPNtGKM2g0tGLSpOSsoZLzOFj1AdeMil5R9qXQ4f8JdH-LwsDM4cFb4cCJkZ4Wns9JSSWm9uD1k2syaGlCK0ahfdoONvRYl6nhI1T4nKU6JepkTts8RnKWXYdxD_d-MN6y_kEsG0 |
| Cites_doi | 10.1016/S0378-3758(99)00081-6 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s10958-021-05328-z |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1573-8795 |
| EndPage | 605 |
| ExternalDocumentID | A730613236 10_1007_s10958_021_05328_z |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c368z-5a9015aed1128f208c09ecc6c2a85bb5982a19e191460fbd00c20b0bd7ad23bd3 |
| IEDL.DBID | RSV |
| ISSN | 1072-3374 |
| IngestDate | Wed Sep 17 23:55:28 EDT 2025 Sat Nov 29 13:38:30 EST 2025 Sat Nov 29 11:15:04 EST 2025 Sat Nov 29 09:57:40 EST 2025 Wed Nov 26 09:42:51 EST 2025 Sat Nov 29 02:57:30 EST 2025 Fri Feb 21 02:48:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | numerical solution 65C40 grid algorithm computational kernel 45B05 randomized algorithm 65C05 projection algorithm second-kind Fredholm integral equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368z-5a9015aed1128f208c09ecc6c2a85bb5982a19e191460fbd00c20b0bd7ad23bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-021-05328-z.pdf |
| PQID | 2508975657 |
| PQPubID | 2043545 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2508975657 gale_infotracmisc_A730613236 gale_infotracgeneralonefile_A730613236 gale_infotracacademiconefile_A730613236 gale_incontextgauss_ISR_A730613236 crossref_primary_10_1007_s10958_021_05328_z springer_journals_10_1007_s10958_021_05328_z |
| PublicationCentury | 2000 |
| PublicationDate | 20210500 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | A Translation of Selected Russian- and Ukrainian-language Serial Publications in Mathematics |
| PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
| PublicationTitleAbbrev | J Math Sci |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | MikhailovGATrachevaNVUkhinovSARandomized projection method for estimating the angular distributions of polarized radiation based on numerical statistical modelingZh. Vychisl. Mat. Mat. Fiz.20165691560157035529161368.85005 BorovkovAAProbability Theory [in Russian]1986MoscowNauka0588.00024 KonovalovANIntroduction to Computational Methods of Linear Algebra [in Russian]1993NovosibirskNauka N. A. Berkovsky, Modernization of the semi-statistical method for the numerical solution of integral equations, Ph.D. Thesis, St. Petersburg (2006). M. D. Ramazanov, D. Ya. Rakhmatullin, L. Z. Valeeva, and E. L. Bannikova, “Solution of integral equations on multiprocessor computing systems,” Zh. Sib. Federal Univ. Tekh. Yekhnol., 2, No. 1, 69–87 (2009). BulgakovaTEVoytishekAVConditional optimization of the randomized iterative methodZh. Vychisl. Mat. Mat. Fiz.20094971148115725993861224.65083 G. A. Mikhailov and A. V. Voytishek, Numerical Statistical Modeling. Monte Carlo Methods [in Russian], Akademia, Moscow (2006). G. A. Mikhailov, Weight Monte Carlo Methods, Novosibirsk (2000). IvanovVMKulchitskyOYA method of numerical solution of integral equations on a random gridDiffer. Uravn.19902623333411050399 A. V. Voytishek, “Randomized Iterative Numerical Models and Algorithms,” LAP LAMBERT Academic Publishing (2017). MikhailovGAOptimization of Weight Monte Carlo Methods [in Russian]1987MoscowNauka S. V. Rogazinsky, “Statistical modeling based on the projection method for the nonlinear Boltzmann equation,” in: Proc. Conf. “Marchuk Readings–2017”, Omega-Print, Novosibirsk (2017), pp. 82. BakhvalovNSNumerical Methods [in Russian]1975MoscowNauka KantorovichLVAkilovGPFunctional Analysis [in Russian]1984MoscowNauka0555.46001 MarchukGIMethods of Computational Mathematics [in Russian]1980MoscowNauka VladimirovVSEquations of Mathematical Physics [in Russian]1981MoscowNauka A. S. Frolov and N. N. Chentsov, “Application of dependent tests in the Monte Carlo method for obtaining smooth curves,” in: Proc. Conf. on Probability theory and Mathematical Statistics, Vilnius (1962), pp. 425–437. MarchukGIAgoshkovVIIntroduction to Projection-Grid Methods [in Russian]1981MoscowNauka0642.65037 SabelfeldKKMonte Carlo methods in Boundary-Value Problems [in Russian]1989MoscowNauka ShkarupaEVVoytishekAVConvergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodesJ. Stat. Plan. Inform.200085199211175925010.1016/S0378-3758(99)00081-6 VoytishekAVFunctional Estimates of the Monte Carlo Method [in Russian]2007NovosibirskNovosibirsk State Univ 5328_CR21 TE Bulgakova (5328_CR4) 2009; 49 5328_CR12 5328_CR5 LV Kantorovich (5328_CR7) 1984 GI Marchuk (5328_CR10) 1981 GI Marchuk (5328_CR9) 1980 5328_CR14 5328_CR15 5328_CR2 5328_CR16 VS Vladimirov (5328_CR19) 1981 AV Voytishek (5328_CR20) 2007 EV Shkarupa (5328_CR18) 2000; 85 GA Mikhailov (5328_CR11) 1987 NS Bakhvalov (5328_CR1) 1975 AN Konovalov (5328_CR8) 1993 VM Ivanov (5328_CR6) 1990; 26 KK Sabelfeld (5328_CR17) 1989 AA Borovkov (5328_CR3) 1986 GA Mikhailov (5328_CR13) 2016; 56 |
| References_xml | – reference: S. V. Rogazinsky, “Statistical modeling based on the projection method for the nonlinear Boltzmann equation,” in: Proc. Conf. “Marchuk Readings–2017”, Omega-Print, Novosibirsk (2017), pp. 82. – reference: BakhvalovNSNumerical Methods [in Russian]1975MoscowNauka – reference: MarchukGIAgoshkovVIIntroduction to Projection-Grid Methods [in Russian]1981MoscowNauka0642.65037 – reference: BulgakovaTEVoytishekAVConditional optimization of the randomized iterative methodZh. Vychisl. Mat. Mat. Fiz.20094971148115725993861224.65083 – reference: G. A. Mikhailov and A. V. Voytishek, Numerical Statistical Modeling. Monte Carlo Methods [in Russian], Akademia, Moscow (2006). – reference: MikhailovGAOptimization of Weight Monte Carlo Methods [in Russian]1987MoscowNauka – reference: KantorovichLVAkilovGPFunctional Analysis [in Russian]1984MoscowNauka0555.46001 – reference: VladimirovVSEquations of Mathematical Physics [in Russian]1981MoscowNauka – reference: VoytishekAVFunctional Estimates of the Monte Carlo Method [in Russian]2007NovosibirskNovosibirsk State Univ – reference: A. V. Voytishek, “Randomized Iterative Numerical Models and Algorithms,” LAP LAMBERT Academic Publishing (2017). – reference: MarchukGIMethods of Computational Mathematics [in Russian]1980MoscowNauka – reference: ShkarupaEVVoytishekAVConvergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodesJ. Stat. Plan. Inform.200085199211175925010.1016/S0378-3758(99)00081-6 – reference: SabelfeldKKMonte Carlo methods in Boundary-Value Problems [in Russian]1989MoscowNauka – reference: M. D. Ramazanov, D. Ya. Rakhmatullin, L. Z. Valeeva, and E. L. Bannikova, “Solution of integral equations on multiprocessor computing systems,” Zh. Sib. Federal Univ. Tekh. Yekhnol., 2, No. 1, 69–87 (2009). – reference: BorovkovAAProbability Theory [in Russian]1986MoscowNauka0588.00024 – reference: MikhailovGATrachevaNVUkhinovSARandomized projection method for estimating the angular distributions of polarized radiation based on numerical statistical modelingZh. Vychisl. Mat. Mat. Fiz.20165691560157035529161368.85005 – reference: N. A. Berkovsky, Modernization of the semi-statistical method for the numerical solution of integral equations, Ph.D. Thesis, St. Petersburg (2006). – reference: G. A. Mikhailov, Weight Monte Carlo Methods, Novosibirsk (2000). – reference: A. S. Frolov and N. N. Chentsov, “Application of dependent tests in the Monte Carlo method for obtaining smooth curves,” in: Proc. Conf. on Probability theory and Mathematical Statistics, Vilnius (1962), pp. 425–437. – reference: KonovalovANIntroduction to Computational Methods of Linear Algebra [in Russian]1993NovosibirskNauka – reference: IvanovVMKulchitskyOYA method of numerical solution of integral equations on a random gridDiffer. Uravn.19902623333411050399 – volume-title: Introduction to Projection-Grid Methods [in Russian] year: 1981 ident: 5328_CR10 – volume-title: Probability Theory [in Russian] year: 1986 ident: 5328_CR3 – volume-title: Functional Estimates of the Monte Carlo Method [in Russian] year: 2007 ident: 5328_CR20 – volume-title: Optimization of Weight Monte Carlo Methods [in Russian] year: 1987 ident: 5328_CR11 – volume: 85 start-page: 199 year: 2000 ident: 5328_CR18 publication-title: J. Stat. Plan. Inform. doi: 10.1016/S0378-3758(99)00081-6 – ident: 5328_CR2 – volume: 26 start-page: 333 issue: 2 year: 1990 ident: 5328_CR6 publication-title: Differ. Uravn. – ident: 5328_CR5 – volume-title: Monte Carlo methods in Boundary-Value Problems [in Russian] year: 1989 ident: 5328_CR17 – ident: 5328_CR21 – ident: 5328_CR16 – ident: 5328_CR15 – volume-title: Functional Analysis [in Russian] year: 1984 ident: 5328_CR7 – volume: 49 start-page: 1148 issue: 7 year: 2009 ident: 5328_CR4 publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 56 start-page: 1560 issue: 9 year: 2016 ident: 5328_CR13 publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume-title: Methods of Computational Mathematics [in Russian] year: 1980 ident: 5328_CR9 – ident: 5328_CR14 – volume-title: Equations of Mathematical Physics [in Russian] year: 1981 ident: 5328_CR19 – volume-title: Numerical Methods [in Russian] year: 1975 ident: 5328_CR1 – volume-title: Introduction to Computational Methods of Linear Algebra [in Russian] year: 1993 ident: 5328_CR8 – ident: 5328_CR12 |
| SSID | ssj0007683 |
| Score | 2.2056246 |
| Snippet | Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 589 |
| SubjectTerms | Algorithms Fredholm equations Integral equations Kernels Mathematics Mathematics and Statistics Projection |
| Title | Classification and Applications of Randomized Functional Numerical Algorithms for the Solution of Second-Kind Fredholm Integral Equations |
| URI | https://link.springer.com/article/10.1007/s10958-021-05328-z https://www.proquest.com/docview/2508975657 |
| Volume | 254 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8795 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg8MAe-EYrG8hCCB7Akmu3sf1YoVVMggq1gPZm-Sul0pZsSctD_wP-653jZFtgPICUp_hsOfb57uK7-x1CrwOjuR36EaEhuhmtcsRknBMRhB86mylnGhDXT2I2k8fH6kubFFZ30e6dS7KR1NeS3dRYkhhSEKsZSLK9je6AupPxOM4X3y_lLxjQKaxeMMK5GLWpMjeP0VNHvwvlP7yjjdKZPvi_6T5E91sjE08SVzxCt0LxGO1-vkRorZ-gX001zBgn1GwNNoXHk2vObFzmeA4vy9PVNng8BfWXbg3xbJOcPDD-ybKsVusfpzUG0xfD6Li7ZYvdF_Ff28f6xNC_Cj7ev-KjBE9xgg_PE8h4_RR9mx5-_fCRtGUZiOOZ3JKxiTaECR5MNZkzKh1VwAiZY0aOrY2IgGaoQgSOy4ARPKWOUUutF8Yzbj1_hnaKsgh7CFsVBM2ZsPCMhMqM4xKoveJeBGXDAL3rdkefJfQNfYWzHBdYwwLrZoH1doBexQ3UEdaiiHEzS7Opa320mOsJCDIwXBjPBuhtS5SX68o406YhwIQiElaP8k2PcplwwG8iPOgRwgF1_eaOoXQrIGoNlqdUIvqcB-h9x0BXzX__yOf_Rr6P7rHEg4QOD9DOutqEF-iu-7le1dXL5uBcAFYoFS4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgIAEPfKMVBlgIwQOz5MZtbD9WaNUqugq1A-3N8ldKpS0ZSctD_wP-a85xsi0wHkDKU3y2HPt8d_Hd_Q6htz6hmem7AaE-uBmNtESnjBHuuetbk0qraxDXKZ_NxMmJ_NwkhVVttHvrkqwl9ZVkNzkUJIQUhGoGgmxvolsD0FghkG---Hohf8GAjmH1PCGM8UGTKnP9GB119LtQ_sM7Wiud8YP_m-5DdL8xMvEocsUjdMPnj9G9owuE1uoJ-llXwwxxQvXWYJ07PLrizMZFhufwsjhbbb3DY1B_8dYQzzbRyQPjny6LcrX-dlZhMH0xjI7bW7bQfRH-tV2oTwz9S-_C_SueRHiKU3zwPYKMV0_Rl_HB8cdD0pRlIJalYkuGOtgQ2jsw1USWUGGpBEZIbaLF0JiACKj70gfguBQYwVFqE2qocVy7hBnHnqGdvMj9LsJGek6zhBt4Blym2jIB1E4yx700voc-tLujziP6hrrEWQ4LrGCBVb3AattDb8IGqgBrkYe4maXeVJWaLOZqBIIMDJeEpT30viHKinWprW7SEGBCAQmrQ_muQ7mMOODXEe51COGA2m5zy1CqERCVAstTSB58zj203zLQZfPfP_L5v5G_RncOj4-majqZfXqB7iaRHwnt76GddbnxL9Ft-2O9qspX9SH6BVj6GBI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIAQPfKOVbWAhBA_Mmhu3cfxYsVVUjGpaAe3N8ldKpS3ZkpSH_gf81_PFydbAeEBIeYrPlj_O57Pv7ncIvXURTXXfDgh1YGbUwhAVM0a447ZvdCyMqkFcD_l0mpyciKO1KP7a2701SYaYBkBpyqq9c5vurQW-iWFCwL0AMhskZHUb3RlA0iC4r8--X8lir0wHF3seEcb4oAmbubmNztH0u4D-w1JaH0DjR__f9cfoYaN84lHglifolsueogdfrpBby2foV50lE_yH6iXDKrN4tGbkxnmKj_3P_GyxchaP_bEYXhPxdBmMP77903leLKofZyX2KjH2reP29Q2qz-AObiFvsa9fOAvvsngSYCtO8cFFAB8vn6Nv44OvHz-RJl0DMSxOVmSoQLdQznoVLkkjmhgqPIPEJlLJUGtAClR94QBQLvYMYik1EdVUW65sxLRlL9BGlmduE2EtHKdpxLX_BlzEyrDEU1vBLHdCux760K6UPA-oHPIafxkmWPoJlvUEy1UPvYHFlAB3kYE_zVwty1JOZsdy5AWcV2giFvfQ-4YozatCGdWEJ_gOAUJWh_Jdh3Ie8MFvItzuEPqNa7rFLXPJRnCU0mukieBgi-6h3ZaZrov_PsiX_0b-Gt072h_Lw8n08xa6HwV2JLS_jTaqYul20F3zs1qUxat6P10CQ9Yg9g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLASSIFICATION+AND+APPLICATIONS+OF+RANDOMIZED+FUNCTIONAL+NUMERICAL+ALGORITHMS+FOR+THE+SOLUTION+OF+SECOND-KIND+FREDHOLM+INTEGRAL+EQUATIONS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Voytishek%2C+A.V&rft.date=2021-05-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=254&rft.issue=5&rft.spage=589&rft_id=info:doi/10.1007%2Fs10958-021-05328-z&rft.externalDBID=ISR&rft.externalDocID=A730613236 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |