Classification and Applications of Randomized Functional Numerical Algorithms for the Solution of Second-Kind Fredholm Integral Equations

Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical sciences (New York, N.Y.) Ročník 254; číslo 5; s. 589 - 605
Hlavný autor: Voytishek, A. V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2021
Springer
Springer Nature B.V
Predmet:
ISSN:1072-3374, 1573-8795
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient.
AbstractList Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient. Keywords and phrases: second-kind Fredholm integral equation, numerical solution, randomized algorithm, projection algorithm, grid algorithm, computational kernel. AMS Subject Classification: 65C40, 45B05, 65C05
Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient.
Audience Academic
Author Voytishek, A. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Voytishek
  fullname: Voytishek, A. V.
  email: vav@osmf.sscc.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk State University
BookMark eNp9ks1q3DAQgE1JofnpC_Qk6KkHpfqJbPm4LNl2aWghm5yFLI29Cra0kWxI9w361lXi0LKwBB0kDd83YkZzVpz44KEoPlFySQmpviZKaiExYRQTwZnE-3fFKRUVx7KqxUk-k4phzqurD8VZSg8kS6Xkp8WfZa9Tcq0zenTBI-0tWux2_es9odCi2xwMg9uDRavJm-e47tHPaYCYsR4t-i5EN26HhNoQ0bgFtAn99JIv6xswwVv8w-XUqwh2G_oBrf0IXczy9eM0v3RRvG91n-Dj635e3K-u75bf8c2vb-vl4gYbXso9FromVGiwlDLZMiINqcGY0jAtRdOIWjJNa6A1vSpJ21hCDCMNaWylLeON5efF5znvLobHCdKoHsIUc0VJMUFkXYky9-0f1ekelPNtGKM2g0tGLSpOSsoZLzOFj1AdeMil5R9qXQ4f8JdH-LwsDM4cFb4cCJkZ4Wns9JSSWm9uD1k2syaGlCK0ahfdoONvRYl6nhI1T4nKU6JepkTts8RnKWXYdxD_d-MN6y_kEsG0
Cites_doi 10.1016/S0378-3758(99)00081-6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-021-05328-z
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 605
ExternalDocumentID A730613236
10_1007_s10958_021_05328_z
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c368z-5a9015aed1128f208c09ecc6c2a85bb5982a19e191460fbd00c20b0bd7ad23bd3
IEDL.DBID RSV
ISSN 1072-3374
IngestDate Wed Sep 17 23:55:28 EDT 2025
Sat Nov 29 13:38:30 EST 2025
Sat Nov 29 11:15:04 EST 2025
Sat Nov 29 09:57:40 EST 2025
Wed Nov 26 09:42:51 EST 2025
Sat Nov 29 02:57:30 EST 2025
Fri Feb 21 02:48:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords numerical solution
65C40
grid algorithm
computational kernel
45B05
randomized algorithm
65C05
projection algorithm
second-kind Fredholm integral equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368z-5a9015aed1128f208c09ecc6c2a85bb5982a19e191460fbd00c20b0bd7ad23bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-021-05328-z.pdf
PQID 2508975657
PQPubID 2043545
PageCount 17
ParticipantIDs proquest_journals_2508975657
gale_infotracmisc_A730613236
gale_infotracgeneralonefile_A730613236
gale_infotracacademiconefile_A730613236
gale_incontextgauss_ISR_A730613236
crossref_primary_10_1007_s10958_021_05328_z
springer_journals_10_1007_s10958_021_05328_z
PublicationCentury 2000
PublicationDate 20210500
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle A Translation of Selected Russian- and Ukrainian-language Serial Publications in Mathematics
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References MikhailovGATrachevaNVUkhinovSARandomized projection method for estimating the angular distributions of polarized radiation based on numerical statistical modelingZh. Vychisl. Mat. Mat. Fiz.20165691560157035529161368.85005
BorovkovAAProbability Theory [in Russian]1986MoscowNauka0588.00024
KonovalovANIntroduction to Computational Methods of Linear Algebra [in Russian]1993NovosibirskNauka
N. A. Berkovsky, Modernization of the semi-statistical method for the numerical solution of integral equations, Ph.D. Thesis, St. Petersburg (2006).
M. D. Ramazanov, D. Ya. Rakhmatullin, L. Z. Valeeva, and E. L. Bannikova, “Solution of integral equations on multiprocessor computing systems,” Zh. Sib. Federal Univ. Tekh. Yekhnol., 2, No. 1, 69–87 (2009).
BulgakovaTEVoytishekAVConditional optimization of the randomized iterative methodZh. Vychisl. Mat. Mat. Fiz.20094971148115725993861224.65083
G. A. Mikhailov and A. V. Voytishek, Numerical Statistical Modeling. Monte Carlo Methods [in Russian], Akademia, Moscow (2006).
G. A. Mikhailov, Weight Monte Carlo Methods, Novosibirsk (2000).
IvanovVMKulchitskyOYA method of numerical solution of integral equations on a random gridDiffer. Uravn.19902623333411050399
A. V. Voytishek, “Randomized Iterative Numerical Models and Algorithms,” LAP LAMBERT Academic Publishing (2017).
MikhailovGAOptimization of Weight Monte Carlo Methods [in Russian]1987MoscowNauka
S. V. Rogazinsky, “Statistical modeling based on the projection method for the nonlinear Boltzmann equation,” in: Proc. Conf. “Marchuk Readings–2017”, Omega-Print, Novosibirsk (2017), pp. 82.
BakhvalovNSNumerical Methods [in Russian]1975MoscowNauka
KantorovichLVAkilovGPFunctional Analysis [in Russian]1984MoscowNauka0555.46001
MarchukGIMethods of Computational Mathematics [in Russian]1980MoscowNauka
VladimirovVSEquations of Mathematical Physics [in Russian]1981MoscowNauka
A. S. Frolov and N. N. Chentsov, “Application of dependent tests in the Monte Carlo method for obtaining smooth curves,” in: Proc. Conf. on Probability theory and Mathematical Statistics, Vilnius (1962), pp. 425–437.
MarchukGIAgoshkovVIIntroduction to Projection-Grid Methods [in Russian]1981MoscowNauka0642.65037
SabelfeldKKMonte Carlo methods in Boundary-Value Problems [in Russian]1989MoscowNauka
ShkarupaEVVoytishekAVConvergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodesJ. Stat. Plan. Inform.200085199211175925010.1016/S0378-3758(99)00081-6
VoytishekAVFunctional Estimates of the Monte Carlo Method [in Russian]2007NovosibirskNovosibirsk State Univ
5328_CR21
TE Bulgakova (5328_CR4) 2009; 49
5328_CR12
5328_CR5
LV Kantorovich (5328_CR7) 1984
GI Marchuk (5328_CR10) 1981
GI Marchuk (5328_CR9) 1980
5328_CR14
5328_CR15
5328_CR2
5328_CR16
VS Vladimirov (5328_CR19) 1981
AV Voytishek (5328_CR20) 2007
EV Shkarupa (5328_CR18) 2000; 85
GA Mikhailov (5328_CR11) 1987
NS Bakhvalov (5328_CR1) 1975
AN Konovalov (5328_CR8) 1993
VM Ivanov (5328_CR6) 1990; 26
KK Sabelfeld (5328_CR17) 1989
AA Borovkov (5328_CR3) 1986
GA Mikhailov (5328_CR13) 2016; 56
References_xml – reference: S. V. Rogazinsky, “Statistical modeling based on the projection method for the nonlinear Boltzmann equation,” in: Proc. Conf. “Marchuk Readings–2017”, Omega-Print, Novosibirsk (2017), pp. 82.
– reference: BakhvalovNSNumerical Methods [in Russian]1975MoscowNauka
– reference: MarchukGIAgoshkovVIIntroduction to Projection-Grid Methods [in Russian]1981MoscowNauka0642.65037
– reference: BulgakovaTEVoytishekAVConditional optimization of the randomized iterative methodZh. Vychisl. Mat. Mat. Fiz.20094971148115725993861224.65083
– reference: G. A. Mikhailov and A. V. Voytishek, Numerical Statistical Modeling. Monte Carlo Methods [in Russian], Akademia, Moscow (2006).
– reference: MikhailovGAOptimization of Weight Monte Carlo Methods [in Russian]1987MoscowNauka
– reference: KantorovichLVAkilovGPFunctional Analysis [in Russian]1984MoscowNauka0555.46001
– reference: VladimirovVSEquations of Mathematical Physics [in Russian]1981MoscowNauka
– reference: VoytishekAVFunctional Estimates of the Monte Carlo Method [in Russian]2007NovosibirskNovosibirsk State Univ
– reference: A. V. Voytishek, “Randomized Iterative Numerical Models and Algorithms,” LAP LAMBERT Academic Publishing (2017).
– reference: MarchukGIMethods of Computational Mathematics [in Russian]1980MoscowNauka
– reference: ShkarupaEVVoytishekAVConvergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodesJ. Stat. Plan. Inform.200085199211175925010.1016/S0378-3758(99)00081-6
– reference: SabelfeldKKMonte Carlo methods in Boundary-Value Problems [in Russian]1989MoscowNauka
– reference: M. D. Ramazanov, D. Ya. Rakhmatullin, L. Z. Valeeva, and E. L. Bannikova, “Solution of integral equations on multiprocessor computing systems,” Zh. Sib. Federal Univ. Tekh. Yekhnol., 2, No. 1, 69–87 (2009).
– reference: BorovkovAAProbability Theory [in Russian]1986MoscowNauka0588.00024
– reference: MikhailovGATrachevaNVUkhinovSARandomized projection method for estimating the angular distributions of polarized radiation based on numerical statistical modelingZh. Vychisl. Mat. Mat. Fiz.20165691560157035529161368.85005
– reference: N. A. Berkovsky, Modernization of the semi-statistical method for the numerical solution of integral equations, Ph.D. Thesis, St. Petersburg (2006).
– reference: G. A. Mikhailov, Weight Monte Carlo Methods, Novosibirsk (2000).
– reference: A. S. Frolov and N. N. Chentsov, “Application of dependent tests in the Monte Carlo method for obtaining smooth curves,” in: Proc. Conf. on Probability theory and Mathematical Statistics, Vilnius (1962), pp. 425–437.
– reference: KonovalovANIntroduction to Computational Methods of Linear Algebra [in Russian]1993NovosibirskNauka
– reference: IvanovVMKulchitskyOYA method of numerical solution of integral equations on a random gridDiffer. Uravn.19902623333411050399
– volume-title: Introduction to Projection-Grid Methods [in Russian]
  year: 1981
  ident: 5328_CR10
– volume-title: Probability Theory [in Russian]
  year: 1986
  ident: 5328_CR3
– volume-title: Functional Estimates of the Monte Carlo Method [in Russian]
  year: 2007
  ident: 5328_CR20
– volume-title: Optimization of Weight Monte Carlo Methods [in Russian]
  year: 1987
  ident: 5328_CR11
– volume: 85
  start-page: 199
  year: 2000
  ident: 5328_CR18
  publication-title: J. Stat. Plan. Inform.
  doi: 10.1016/S0378-3758(99)00081-6
– ident: 5328_CR2
– volume: 26
  start-page: 333
  issue: 2
  year: 1990
  ident: 5328_CR6
  publication-title: Differ. Uravn.
– ident: 5328_CR5
– volume-title: Monte Carlo methods in Boundary-Value Problems [in Russian]
  year: 1989
  ident: 5328_CR17
– ident: 5328_CR21
– ident: 5328_CR16
– ident: 5328_CR15
– volume-title: Functional Analysis [in Russian]
  year: 1984
  ident: 5328_CR7
– volume: 49
  start-page: 1148
  issue: 7
  year: 2009
  ident: 5328_CR4
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 56
  start-page: 1560
  issue: 9
  year: 2016
  ident: 5328_CR13
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume-title: Methods of Computational Mathematics [in Russian]
  year: 1980
  ident: 5328_CR9
– ident: 5328_CR14
– volume-title: Equations of Mathematical Physics [in Russian]
  year: 1981
  ident: 5328_CR19
– volume-title: Numerical Methods [in Russian]
  year: 1975
  ident: 5328_CR1
– volume-title: Introduction to Computational Methods of Linear Algebra [in Russian]
  year: 1993
  ident: 5328_CR8
– ident: 5328_CR12
SSID ssj0007683
Score 2.2056246
Snippet Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 589
SubjectTerms Algorithms
Fredholm equations
Integral equations
Kernels
Mathematics
Mathematics and Statistics
Projection
Title Classification and Applications of Randomized Functional Numerical Algorithms for the Solution of Second-Kind Fredholm Integral Equations
URI https://link.springer.com/article/10.1007/s10958-021-05328-z
https://www.proquest.com/docview/2508975657
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5B4UAPvFGXFmQhBAew5M3DcY4r1BWVYIV2AfVm-REvK7VJm-xy2H_Av-44TtoGygGu8Xjk2OPx2DPzDcBrlXGepMJQFytHE24VVUrH1FrjuNZ4h9Ytuv6nbDYTx8f5ly4prOmj3XuXZKupryW75amgPqTAVzMQdHsb7uBxJ_x2nC--X-pfNKBDWH0W0TjOki5V5mYeg-Pod6X8h3e0PXSmD_5vuA_hfmdkkkmQikdwqygfw-7nS4TW5gn8aqth-jihdmmIKi2ZXHNmk8qROX6sTlfbwpIpHn_h1ZDMNsHJg_xPllW9Wv84bQiavgS5k_6VzXdf-Lu29fWJsX9dWP_-So4CPMUJOTwPIOPNU_g2Pfz64SPtyjJQE3OxpanyNoQqLJpqwkVMGJajIHATKZFq7REB1TgvPHAcZ05bxkzENNM2UzaKtY2fwU5ZlcUeEJsykxqtRZ4mCYqTShVHdiYaO8eSYjyCd_3qyLOAviGvcJb9BEucYNlOsNyO4JVfQOlhLUofN7NUm6aRR4u5nKAiQ8MlivkI3nZErlrXyqguDQEH5JGwBpRvBpTLgAN-E-HBgBA3qBk29wIlOwXRSLQ8RZ55n_MI3vcCdNX89598_m_k-3AvCjJI2fgAdtb1pngBd83P9aqpX7Yb5wLa5hYJ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BQAIe-EYrDLAQggdmyc2H4zxWaNUqugq1A-3N8kdSKm3JSFoe-h_wX3OOk22B8QCv8fnk2Ofz2Xf3O4C3KuE8ioWheahyGnGrqFI6pNaanGuNd2jdoOtPk9lMnJykn9uksLqLdu9cko2mvpLslsaCupACV81A0O1NuBXhieUC-eaLrxf6Fw1oH1afBDQMk6hNlbmeR-84-l0p_-EdbQ6d8YP_G-5DuN8amWTkpeIR3MiKx3Dv6AKhtX4CP5tqmC5OqFkaogpLRlec2aTMyRw_lmerbWbJGI8__2pIZhvv5EH-p8uyWq2_ndUETV-C3En3yua6L9xd27r6xNi_yqx7fyUTD09xSg6-e5Dx-il8GR8cfzykbVkGakIutjRWzoZQmUVTTeQBE4alKAjcBErEWjtEQDVMMwccx1muLWMmYJppmygbhNqGz2CnKItsF4iNmYmN1iKNowjFScWKIzsTDPOcRdlwAB-61ZHnHn1DXuIsuwmWOMGymWC5HcAbt4DSwVoULm5mqTZ1LSeLuRyhIkPDJQj5AN63RHm5rpRRbRoCDsghYfUo3_Uolx4H_DrCvR4hblDTb-4ESrYKopZoeYo0cT7nAex3AnTZ_PeffP5v5K_hzuHx0VROJ7NPL-Bu4OWRsuEe7KyrTfYSbpsf61VdvWo20S_n_Bjt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIAQH3qhLW7AQggO16s3DcY4r2hUryqrqAurN8iNeVmqTNsly2H_Av64nTtoNlAPiGo9Hjj0ejz0z3yD0ViaMRTHXxIbSkogZSaRUITFGW6aUu0OrBl3_MJlO-clJerSWxd9Eu3cuSZ_TAChNeb13buzeWuJbGnMC4QVQ2YCT1W10J4KiQXBfn32_0sXOmPYh9klAwjCJ2rSZm3n0jqbfFfQfntLmABo_-v-hP0YPW-MTj7y0PEG3svwpevDlCrm1eoZ-NVUyIX6oWTIsc4NHa05uXFh87D4WZ4tVZvDYHYv-NRFPl9754_ifzotyUf84q7AzibHjjrvXN-g-gzu4gbrFrn-ZGXiXxRMPW3GKDy48-Hj1HH0bH3z9-Im05RqIDhlfkViCbSEz40w4bgPKNU2dgDAdSB4rBUiBcphmACjHqFWGUh1QRZVJpAlCZcIXaCMv8mwTYRNTHWuleBpHkRMzGUvm2OlgaC2NsuEAfehWSpx7VA5xjb8MEyzcBItmgsVqgN7AYgqAu8ghnmYul1UlJrNjMXIKzhk0QcgG6H1LZIu6lFq26QluQICQ1aN816Oce3zwmwi3e4Ru4-p-cydcolUclXAWKU8T8EUP0G4nTNfNf__Jl_9G_hrdO9ofi8PJ9PMWuh94cSR0uI026nKZ7aC7-me9qMpXzX66BOANIdE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLASSIFICATION+AND+APPLICATIONS+OF+RANDOMIZED+FUNCTIONAL+NUMERICAL+ALGORITHMS+FOR+THE+SOLUTION+OF+SECOND-KIND+FREDHOLM+INTEGRAL+EQUATIONS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Voytishek%2C+A.V&rft.date=2021-05-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=254&rft.issue=5&rft.spage=589&rft_id=info:doi/10.1007%2Fs10958-021-05328-z&rft.externalDocID=A730613236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon