An RBF-FD closest point method for solving PDEs on surfaces
Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper,...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 370; s. 43 - 57 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge
Elsevier Inc
01.10.2018
Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.
•In this paper, a new method for the numerical approximation of PDEs on surfaces is proposed. Our method has the advantage of being comprised of standard computational components, such as the closest point representation of the surface, and RBF finite difference methods.•Our approach uses a narrow computational tube around the surface and avoids the need for a quasi-uniform distribution of surface points. This makes the method a natural candidate for coupling with grid-based methods such as the grid-based particle method for moving interface problems (Leung and Zhao, J. Comput. Phys. 228 (8) (2009) 2993–3024).•The method is also efficient: it exploits repeated patterns in computational geometry, it uses small computational tubes, and it avoids an explicit interpolation step. Further-more, a change in the order of the method is carried out simply by changing the number of points in the finite difference stencil. See our novelty statement for details on how the method compares with the original closest point method (Ruuth and Merriman, J. Comput. Phys. 227 (3) (2008) 1943–1961) and recent RBF methods (e.g., Piret, J. Comput. Phys. 231 (14) (2012) 4662–4675).•We conduct convergence studies in two and three dimensions and apply the method to a variety of problems, including reaction–diffusion systems and image denoising. Second order accurate results are observed in our experiments. |
|---|---|
| AbstractList | Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method. Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method. •In this paper, a new method for the numerical approximation of PDEs on surfaces is proposed. Our method has the advantage of being comprised of standard computational components, such as the closest point representation of the surface, and RBF finite difference methods.•Our approach uses a narrow computational tube around the surface and avoids the need for a quasi-uniform distribution of surface points. This makes the method a natural candidate for coupling with grid-based methods such as the grid-based particle method for moving interface problems (Leung and Zhao, J. Comput. Phys. 228 (8) (2009) 2993–3024).•The method is also efficient: it exploits repeated patterns in computational geometry, it uses small computational tubes, and it avoids an explicit interpolation step. Further-more, a change in the order of the method is carried out simply by changing the number of points in the finite difference stencil. See our novelty statement for details on how the method compares with the original closest point method (Ruuth and Merriman, J. Comput. Phys. 227 (3) (2008) 1943–1961) and recent RBF methods (e.g., Piret, J. Comput. Phys. 231 (14) (2012) 4662–4675).•We conduct convergence studies in two and three dimensions and apply the method to a variety of problems, including reaction–diffusion systems and image denoising. Second order accurate results are observed in our experiments. |
| Author | Ling, L. Ruuth, S.J. Petras, A. |
| Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0002-3278-620X surname: Petras fullname: Petras, A. email: apetras@bcamath.org organization: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada – sequence: 2 givenname: L. surname: Ling fullname: Ling, L. organization: Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong – sequence: 3 givenname: S.J. surname: Ruuth fullname: Ruuth, S.J. email: sruuth@sfu.ca organization: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7CzxDph7LwcdVX6AKRKIARry3Em4Ci1i51W4u9JVVYsuprNPXdmzoSMrLNIyC2DmAHL79u41buYAxMxZDFwfkHGDEqIeMHyERkDcBaVZcmuyCSEFgBElooxmc0tfXtYR-sl1Z0LGHq6c8b2dIv9l6tp4zwNrjsY-0lfl6tAnaVh7xulMVyTy0Z1AW_-5pR8rFfvi6do8_L4vJhvIp3koo-aSqeoUmCV5liliIwxaHKlirTGPMkxgaZKMiUKVRYJL9IG00LlhcgqxhXHZEruTr077773w4mydXtvh5WSgyhFXkIqhhQ7pbR3IXhs5M6brfI_koE8OpKtHBzJoyMJmRwcDUzxj9GmV71xtvfKdGfJ2YnE4fGDQS-DNmg11saj7mXtzBn6F9y9gV0 |
| CitedBy_id | crossref_primary_10_1137_19M1288747 crossref_primary_10_1016_j_jcp_2023_112001 crossref_primary_10_1002_nme_7657 crossref_primary_10_1016_j_oceaneng_2019_106736 crossref_primary_10_1515_fca_2021_0037 crossref_primary_10_1137_23M1621265 crossref_primary_10_1016_j_amc_2024_129250 crossref_primary_10_1016_j_cam_2025_117014 crossref_primary_10_1007_s40571_019_00251_2 crossref_primary_10_1016_j_cpc_2025_109727 crossref_primary_10_1007_s00366_023_01794_y crossref_primary_10_1016_j_jcp_2021_110932 crossref_primary_10_1007_s10915_022_01966_w crossref_primary_10_1016_j_camwa_2024_11_013 crossref_primary_10_1016_j_enganabound_2024_105966 crossref_primary_10_1007_s42979_019_0046_4 crossref_primary_10_1140_epjp_i2019_12786_7 crossref_primary_10_1155_2023_6646144 crossref_primary_10_1007_s00466_022_02249_9 crossref_primary_10_1016_j_amc_2022_127622 crossref_primary_10_1016_j_apnum_2021_11_008 crossref_primary_10_1007_s10915_023_02150_4 crossref_primary_10_1016_j_camwa_2023_07_015 crossref_primary_10_1016_j_enganabound_2020_06_010 crossref_primary_10_1016_j_aml_2023_108634 crossref_primary_10_3390_math9090924 crossref_primary_10_1016_j_jcp_2023_112132 crossref_primary_10_1109_ACCESS_2019_2963390 crossref_primary_10_1145_3450966 crossref_primary_10_1007_s10444_020_09803_0 crossref_primary_10_1007_s10444_023_10044_0 crossref_primary_10_1002_cpa_22035 crossref_primary_10_1007_s00366_025_02159_3 crossref_primary_10_1016_j_enganabound_2019_12_003 crossref_primary_10_1016_j_jcp_2018_12_031 crossref_primary_10_1016_j_enganabound_2024_105794 crossref_primary_10_1007_s10915_024_02597_z crossref_primary_10_1145_3673652 crossref_primary_10_1007_s10915_022_02023_2 crossref_primary_10_1007_s00366_019_00909_8 crossref_primary_10_1016_j_enganabound_2023_04_019 crossref_primary_10_1016_j_jcp_2020_109340 crossref_primary_10_1109_ACCESS_2025_3575913 crossref_primary_10_1016_j_apm_2024_05_009 crossref_primary_10_1016_j_aml_2025_109635 |
| Cites_doi | 10.1016/j.jcp.2009.01.005 10.1186/s40687-016-0053-1 10.1137/080740003 10.1137/120865537 10.1016/j.jcp.2007.03.034 10.1016/j.jcp.2015.05.021 10.1090/S0025-5718-98-00913-2 10.1007/s10915-014-9914-1 10.1016/0009-2509(84)87017-7 10.1007/s10915-008-9196-6 10.1007/s10915-013-9688-x 10.1016/j.jcp.2007.10.009 10.1016/j.jcp.2016.02.024 10.1016/j.jcp.2016.05.026 10.1016/j.jcp.2011.06.021 10.1006/jcph.2001.6937 10.1017/S0962492914000130 10.1016/0021-9991(88)90177-5 10.1016/S1468-1218(03)00020-8 10.1016/S0025-5564(97)00075-8 10.1006/jcph.2002.7028 10.1016/j.camwa.2012.11.006 10.1016/j.jcp.2012.03.007 10.1137/16M1080410 10.1137/09076756X 10.1007/s10915-005-9012-5 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright Elsevier Science Ltd. Oct 1, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Oct 1, 2018 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2018.05.022 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 57 |
| ExternalDocumentID | 10_1016_j_jcp_2018_05_022 S002199911830322X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c368t-fbc4ea401bc2eb4ee1110f6aa74de636e30fb35a87a973274fe47a6785b12a2e3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436478200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Wed Nov 26 02:54:39 EST 2025 Sat Nov 29 03:10:20 EST 2025 Tue Nov 18 21:49:57 EST 2025 Fri Feb 23 02:17:17 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Closest point method Radial basis functions Finite differences Embedding method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-fbc4ea401bc2eb4ee1110f6aa74de636e30fb35a87a973274fe47a6785b12a2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3278-620X |
| OpenAccessLink | http://hdl.handle.net/20.500.11824/791 |
| PQID | 2089869048 |
| PQPubID | 2047462 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2089869048 crossref_primary_10_1016_j_jcp_2018_05_022 crossref_citationtrail_10_1016_j_jcp_2018_05_022 elsevier_sciencedirect_doi_10_1016_j_jcp_2018_05_022 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Greer (br0120) 2006; 29 Cheung, Ling, Ruuth (br0140) 2015; 297 Petras, Ruuth (br0440) 2016; 312 Flyer, Fornberg, Bayona, Barnett (br0330) 2016; 321 Fornberg, Larsson, Flyer (br0370) 2011; 33 Bertalmio, Bertozzi, Sapiro (br0020) 2001 Cheung, Ling (br0290) 2018; 40 Leung, Zhao (br0260) 2009; 228 Fasshauer (br0300) 2007 Turk (br0010) 1991 Bertalmıo, Cheng, Osher, Sapiro (br0100) 2001; 174 Fornberg, Flyer (br0310) 2015; 24 Flyer, Wright (br0130) 2009 Shu, Osher (br0340) 1988; 77 Floater, Hormann (br0090) 2005; vol. 1 (1) Shankar, Wright, Kirby, Fogelson (br0160) 2015; 63 Marz, Macdonald (br0210) 2012; 50 Dziuk, Elliott (br0110) 2007; 25 Ruuth, Merriman (br0170) 2008; 227 Merriman, Ruuth (br0270) 2007; 225 Tsai (br0280) 2002; 178 Macdonald, Brandman, Ruuth (br0200) 2011; 230 Weisstein (br0380) 2004 Piret (br0220) 2012; 231 Tian, Macdonald, Ruuth (br0030) 2009 Biddle, von Glehn, Macdonald, Marz (br0040) 2013 Kublik, Tsai (br0230) 2016; 3 Davydov, Schaback (br0350) Macdonald, Ruuth (br0180) 2008; 35 Chu, Tsai (br0240) Gottlieb, Shu (br0400) 1998; 67 Olsen, Maini, Sherratt (br0060) 1998; 147 Wendland (br0250) 2004 McGough, Riley (br0430) 2004; 5 Auer, Macdonald, Treib, Schneider, Westermann (br0070) 2012; vol. 31 Murray (br0050) 2001; vol. 18 Turk, Levoy (br0420) 1994 Fuselier, Wright (br0150) 2013; 56 Fornberg, Lehto, Powell (br0360) 2013; 65 Fornberg, Flyer (br0320) 2015 Lui, Wang, Chan (br0080) 2005 OEIS Foundation Inc. (br0390) 2011 Gray, Scott (br0410) 1984; 39 Macdonald, Ruuth (br0190) 2009; 31 Lui (10.1016/j.jcp.2018.05.022_br0080) 2005 Macdonald (10.1016/j.jcp.2018.05.022_br0200) 2011; 230 Fornberg (10.1016/j.jcp.2018.05.022_br0370) 2011; 33 Piret (10.1016/j.jcp.2018.05.022_br0220) 2012; 231 Wendland (10.1016/j.jcp.2018.05.022_br0250) 2004 Leung (10.1016/j.jcp.2018.05.022_br0260) 2009; 228 Gottlieb (10.1016/j.jcp.2018.05.022_br0400) 1998; 67 Biddle (10.1016/j.jcp.2018.05.022_br0040) 2013 Shu (10.1016/j.jcp.2018.05.022_br0340) 1988; 77 McGough (10.1016/j.jcp.2018.05.022_br0430) 2004; 5 Fornberg (10.1016/j.jcp.2018.05.022_br0320) 2015 Weisstein (10.1016/j.jcp.2018.05.022_br0380) Ruuth (10.1016/j.jcp.2018.05.022_br0170) 2008; 227 Greer (10.1016/j.jcp.2018.05.022_br0120) 2006; 29 Cheung (10.1016/j.jcp.2018.05.022_br0290) 2018; 40 Fornberg (10.1016/j.jcp.2018.05.022_br0360) 2013; 65 Murray (10.1016/j.jcp.2018.05.022_br0050) 2001; vol. 18 Marz (10.1016/j.jcp.2018.05.022_br0210) 2012; 50 Fasshauer (10.1016/j.jcp.2018.05.022_br0300) 2007 Fornberg (10.1016/j.jcp.2018.05.022_br0310) 2015; 24 Chu (10.1016/j.jcp.2018.05.022_br0240) Davydov (10.1016/j.jcp.2018.05.022_br0350) Cheung (10.1016/j.jcp.2018.05.022_br0140) 2015; 297 Petras (10.1016/j.jcp.2018.05.022_br0440) 2016; 312 Dziuk (10.1016/j.jcp.2018.05.022_br0110) 2007; 25 OEIS Foundation Inc. (10.1016/j.jcp.2018.05.022_br0390) Flyer (10.1016/j.jcp.2018.05.022_br0330) 2016; 321 Fuselier (10.1016/j.jcp.2018.05.022_br0150) 2013; 56 Auer (10.1016/j.jcp.2018.05.022_br0070) 2012; vol. 31 Turk (10.1016/j.jcp.2018.05.022_br0010) 1991 Bertalmio (10.1016/j.jcp.2018.05.022_br0020) 2001 Flyer (10.1016/j.jcp.2018.05.022_br0130) 2009 Bertalmıo (10.1016/j.jcp.2018.05.022_br0100) 2001; 174 Turk (10.1016/j.jcp.2018.05.022_br0420) 1994 Macdonald (10.1016/j.jcp.2018.05.022_br0190) 2009; 31 Kublik (10.1016/j.jcp.2018.05.022_br0230) 2016; 3 Gray (10.1016/j.jcp.2018.05.022_br0410) 1984; 39 Shankar (10.1016/j.jcp.2018.05.022_br0160) 2015; 63 Macdonald (10.1016/j.jcp.2018.05.022_br0180) 2008; 35 Floater (10.1016/j.jcp.2018.05.022_br0090) 2005; vol. 1 (1) Olsen (10.1016/j.jcp.2018.05.022_br0060) 1998; 147 Merriman (10.1016/j.jcp.2018.05.022_br0270) 2007; 225 Tian (10.1016/j.jcp.2018.05.022_br0030) 2009 Tsai (10.1016/j.jcp.2018.05.022_br0280) 2002; 178 |
| References_xml | – year: 2015 ident: br0320 article-title: A Primer on Radial Basis Functions with Applications to the Geosciences, vol. 87 – volume: 63 start-page: 745 year: 2015 end-page: 768 ident: br0160 article-title: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces publication-title: J. Sci. Comput. – year: 2001 ident: br0020 article-title: Navier–Stokes, fluid dynamics, and image and video inpainting publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 – volume: 35 start-page: 219 year: 2008 end-page: 240 ident: br0180 article-title: Level set equations on surfaces via the closest point method publication-title: J. Sci. Comput. – volume: 321 start-page: 21 year: 2016 end-page: 38 ident: br0330 article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy publication-title: J. Comput. Phys. – volume: 24 start-page: 215 year: 2015 end-page: 258 ident: br0310 article-title: Solving PDEs with radial basis functions publication-title: Acta Numer. – start-page: 3009 year: 2009 end-page: 3012 ident: br0030 article-title: Segmentation on surfaces with the closest point method publication-title: 2009 16th IEEE International Conference on Image Processing (ICIP) – volume: vol. 18 year: 2001 ident: br0050 article-title: Mathematical Biology. II Spatial Models and Biomedical Applications publication-title: Interdisciplinary Applied Mathematics – year: 2009 ident: br0130 article-title: A radial basis function method for the shallow water equations on a sphere publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences – year: 2004 ident: br0250 article-title: Scattered Data Approximation, vol. 17 – year: 2011 ident: br0390 article-title: The on-line encyclopedia of integer sequences – start-page: 529 year: 2013 end-page: 533 ident: br0040 article-title: A volume-based method for denoising on curved surfaces publication-title: 2013 20th IEEE International Conference on Image Processing (ICIP) – volume: 297 start-page: 194 year: 2015 end-page: 206 ident: br0140 article-title: A localized meshless method for diffusion on folded surfaces publication-title: J. Comput. Phys. – volume: 178 start-page: 175 year: 2002 end-page: 195 ident: br0280 article-title: Rapid and accurate computation of the distance function using grids publication-title: J. Comput. Phys. – volume: 39 start-page: 1087 year: 1984 end-page: 1097 ident: br0410 article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor publication-title: Chem. Eng. Sci. – volume: 40 start-page: A266 year: 2018 end-page: A287 ident: br0290 article-title: A kernel-based embedding method and convergence analysis for surfaces PDEs publication-title: SIAM J. Sci. Comput. – volume: 312 start-page: 139 year: 2016 end-page: 156 ident: br0440 article-title: PDEs on moving surfaces via the closest point method and a modified grid based particle method publication-title: J. Comput. Phys. – volume: 174 start-page: 759 year: 2001 end-page: 780 ident: br0100 article-title: Variational problems and partial differential equations on implicit surfaces publication-title: J. Comput. Phys. – year: 2007 ident: br0300 article-title: Meshfree Approximation Methods with MATLAB, vol. 6 – volume: 50 start-page: 3303 year: 2012 end-page: 3328 ident: br0210 article-title: Calculus on surfaces with general closest point functions publication-title: SIAM J. Numer. Anal. – volume: 147 start-page: 113 year: 1998 end-page: 129 ident: br0060 article-title: Spatially varying equilibria of mechanical models: application to dermal wound contraction publication-title: Math. Biosci. – ident: br0350 article-title: Optimal stencils in Sobolev spaces – volume: 33 start-page: 869 year: 2011 end-page: 892 ident: br0370 article-title: Stable computations with Gaussian radial basis functions publication-title: SIAM J. Sci. Comput. – volume: vol. 1 (1) year: 2005 ident: br0090 article-title: Surface parameterization: a tutorial and survey publication-title: Advances in Multiresolution for Geometric Modelling – volume: 231 start-page: 4662 year: 2012 end-page: 4675 ident: br0220 article-title: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces publication-title: J. Comput. Phys. – volume: 29 start-page: 321 year: 2006 end-page: 352 ident: br0120 article-title: An improvement of a recent Eulerian method for solving PDEs on general geometries publication-title: J. Sci. Comput. – start-page: 311 year: 1994 end-page: 318 ident: br0420 article-title: Zippered polygon meshes from range images publication-title: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques – volume: 5 start-page: 105 year: 2004 end-page: 121 ident: br0430 article-title: Pattern formation in the Gray–Scott model publication-title: Nonlinear Anal., Real World Appl. – year: 2004 ident: br0380 article-title: Gauss's circle problem, from MathWorld – a Wolfram web resource – volume: vol. 31 start-page: 1909 year: 2012 end-page: 1923 ident: br0070 article-title: Real-time fluid effects on surfaces using the closest point method publication-title: Computer Graphics Forum – volume: 228 start-page: 2993 year: 2009 end-page: 3024 ident: br0260 article-title: A grid based particle method for moving interface problems publication-title: J. Comput. Phys. – volume: 25 start-page: 385 year: 2007 ident: br0110 article-title: Surface finite elements for parabolic equations publication-title: J. Comput. Math. - Int. Ed. – volume: 225 start-page: 2267 year: 2007 end-page: 2282 ident: br0270 article-title: Diffusion generated motion of curves on surfaces publication-title: J. Comput. Phys. – volume: 77 start-page: 439 year: 1988 end-page: 471 ident: br0340 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. – volume: 230 start-page: 7944 year: 2011 end-page: 7956 ident: br0200 article-title: Solving eigenvalue problems on curved surfaces using the closest point method publication-title: J. Comput. Phys. – ident: br0240 article-title: Volumetric variational principles for a class of partial differential equations defined on surfaces and curves – volume: 31 start-page: 4330 year: 2009 end-page: 4350 ident: br0190 article-title: The implicit closest point method for the numerical solution of partial differential equations on surfaces publication-title: SIAM J. Sci. Comput. – volume: 56 start-page: 535 year: 2013 end-page: 565 ident: br0150 article-title: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces publication-title: J. Sci. Comput. – volume: 67 start-page: 73 year: 1998 end-page: 85 ident: br0400 article-title: Total variation diminishing Runge–Kutta schemes publication-title: Math. Comput. Am. Math. Soc. – volume: 3 start-page: 3 year: 2016 ident: br0230 article-title: Integration over curves and surfaces defined by the closest point mapping publication-title: Res. Math. Sci. – year: 1991 ident: br0010 article-title: Generating Textures on Arbitrary Surfaces Using Reaction–Diffusion, vol. 25 – volume: 227 start-page: 1943 year: 2008 end-page: 1961 ident: br0170 article-title: A simple embedding method for solving partial differential equations on surfaces publication-title: J. Comput. Phys. – start-page: 307 year: 2005 end-page: 319 ident: br0080 article-title: Solving PDEs on manifolds with global conformal parametrization publication-title: Variational, Geometric, and Level Set Methods in Computer Vision – volume: 65 start-page: 627 year: 2013 end-page: 637 ident: br0360 article-title: Stable calculation of Gaussian-based RBF-FD stencils publication-title: Comput. Math. Appl. – volume: 228 start-page: 2993 issue: 8 year: 2009 ident: 10.1016/j.jcp.2018.05.022_br0260 article-title: A grid based particle method for moving interface problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.01.005 – volume: 3 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.jcp.2018.05.022_br0230 article-title: Integration over curves and surfaces defined by the closest point mapping publication-title: Res. Math. Sci. doi: 10.1186/s40687-016-0053-1 – volume: 31 start-page: 4330 issue: 6 year: 2009 ident: 10.1016/j.jcp.2018.05.022_br0190 article-title: The implicit closest point method for the numerical solution of partial differential equations on surfaces publication-title: SIAM J. Sci. Comput. doi: 10.1137/080740003 – volume: 50 start-page: 3303 issue: 6 year: 2012 ident: 10.1016/j.jcp.2018.05.022_br0210 article-title: Calculus on surfaces with general closest point functions publication-title: SIAM J. Numer. Anal. doi: 10.1137/120865537 – volume: 225 start-page: 2267 issue: 2 year: 2007 ident: 10.1016/j.jcp.2018.05.022_br0270 article-title: Diffusion generated motion of curves on surfaces publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.03.034 – ident: 10.1016/j.jcp.2018.05.022_br0350 – volume: 297 start-page: 194 year: 2015 ident: 10.1016/j.jcp.2018.05.022_br0140 article-title: A localized meshless method for diffusion on folded surfaces publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.05.021 – volume: 67 start-page: 73 issue: 221 year: 1998 ident: 10.1016/j.jcp.2018.05.022_br0400 article-title: Total variation diminishing Runge–Kutta schemes publication-title: Math. Comput. Am. Math. Soc. doi: 10.1090/S0025-5718-98-00913-2 – volume: 63 start-page: 745 issue: 3 year: 2015 ident: 10.1016/j.jcp.2018.05.022_br0160 article-title: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9914-1 – volume: 39 start-page: 1087 issue: 6 year: 1984 ident: 10.1016/j.jcp.2018.05.022_br0410 article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(84)87017-7 – start-page: 3009 year: 2009 ident: 10.1016/j.jcp.2018.05.022_br0030 article-title: Segmentation on surfaces with the closest point method – volume: vol. 18 year: 2001 ident: 10.1016/j.jcp.2018.05.022_br0050 article-title: Mathematical Biology. II Spatial Models and Biomedical Applications – volume: vol. 1 (1) year: 2005 ident: 10.1016/j.jcp.2018.05.022_br0090 article-title: Surface parameterization: a tutorial and survey – volume: 35 start-page: 219 issue: 2–3 year: 2008 ident: 10.1016/j.jcp.2018.05.022_br0180 article-title: Level set equations on surfaces via the closest point method publication-title: J. Sci. Comput. doi: 10.1007/s10915-008-9196-6 – ident: 10.1016/j.jcp.2018.05.022_br0240 – volume: 56 start-page: 535 issue: 3 year: 2013 ident: 10.1016/j.jcp.2018.05.022_br0150 article-title: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9688-x – volume: 227 start-page: 1943 issue: 3 year: 2008 ident: 10.1016/j.jcp.2018.05.022_br0170 article-title: A simple embedding method for solving partial differential equations on surfaces publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.10.009 – volume: 25 start-page: 385 issue: 4 year: 2007 ident: 10.1016/j.jcp.2018.05.022_br0110 article-title: Surface finite elements for parabolic equations publication-title: J. Comput. Math. - Int. Ed. – volume: 312 start-page: 139 year: 2016 ident: 10.1016/j.jcp.2018.05.022_br0440 article-title: PDEs on moving surfaces via the closest point method and a modified grid based particle method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.024 – year: 2015 ident: 10.1016/j.jcp.2018.05.022_br0320 – volume: 321 start-page: 21 year: 2016 ident: 10.1016/j.jcp.2018.05.022_br0330 article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.05.026 – volume: 230 start-page: 7944 issue: 22 year: 2011 ident: 10.1016/j.jcp.2018.05.022_br0200 article-title: Solving eigenvalue problems on curved surfaces using the closest point method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.06.021 – year: 1991 ident: 10.1016/j.jcp.2018.05.022_br0010 – start-page: 529 year: 2013 ident: 10.1016/j.jcp.2018.05.022_br0040 article-title: A volume-based method for denoising on curved surfaces – volume: 174 start-page: 759 issue: 2 year: 2001 ident: 10.1016/j.jcp.2018.05.022_br0100 article-title: Variational problems and partial differential equations on implicit surfaces publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6937 – volume: 24 start-page: 215 year: 2015 ident: 10.1016/j.jcp.2018.05.022_br0310 article-title: Solving PDEs with radial basis functions publication-title: Acta Numer. doi: 10.1017/S0962492914000130 – volume: 77 start-page: 439 issue: 2 year: 1988 ident: 10.1016/j.jcp.2018.05.022_br0340 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90177-5 – ident: 10.1016/j.jcp.2018.05.022_br0380 – ident: 10.1016/j.jcp.2018.05.022_br0390 – start-page: 311 year: 1994 ident: 10.1016/j.jcp.2018.05.022_br0420 article-title: Zippered polygon meshes from range images – volume: 5 start-page: 105 issue: 1 year: 2004 ident: 10.1016/j.jcp.2018.05.022_br0430 article-title: Pattern formation in the Gray–Scott model publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/S1468-1218(03)00020-8 – volume: 147 start-page: 113 issue: 1 year: 1998 ident: 10.1016/j.jcp.2018.05.022_br0060 article-title: Spatially varying equilibria of mechanical models: application to dermal wound contraction publication-title: Math. Biosci. doi: 10.1016/S0025-5564(97)00075-8 – year: 2007 ident: 10.1016/j.jcp.2018.05.022_br0300 – volume: 178 start-page: 175 issue: 1 year: 2002 ident: 10.1016/j.jcp.2018.05.022_br0280 article-title: Rapid and accurate computation of the distance function using grids publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7028 – year: 2001 ident: 10.1016/j.jcp.2018.05.022_br0020 article-title: Navier–Stokes, fluid dynamics, and image and video inpainting – volume: 65 start-page: 627 issue: 4 year: 2013 ident: 10.1016/j.jcp.2018.05.022_br0360 article-title: Stable calculation of Gaussian-based RBF-FD stencils publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.11.006 – volume: 231 start-page: 4662 issue: 14 year: 2012 ident: 10.1016/j.jcp.2018.05.022_br0220 article-title: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.03.007 – start-page: 307 year: 2005 ident: 10.1016/j.jcp.2018.05.022_br0080 article-title: Solving PDEs on manifolds with global conformal parametrization – year: 2009 ident: 10.1016/j.jcp.2018.05.022_br0130 article-title: A radial basis function method for the shallow water equations on a sphere – volume: 40 start-page: A266 issue: 1 year: 2018 ident: 10.1016/j.jcp.2018.05.022_br0290 article-title: A kernel-based embedding method and convergence analysis for surfaces PDEs publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1080410 – volume: 33 start-page: 869 issue: 2 year: 2011 ident: 10.1016/j.jcp.2018.05.022_br0370 article-title: Stable computations with Gaussian radial basis functions publication-title: SIAM J. Sci. Comput. doi: 10.1137/09076756X – volume: vol. 31 start-page: 1909 year: 2012 ident: 10.1016/j.jcp.2018.05.022_br0070 article-title: Real-time fluid effects on surfaces using the closest point method – volume: 29 start-page: 321 issue: 3 year: 2006 ident: 10.1016/j.jcp.2018.05.022_br0120 article-title: An improvement of a recent Eulerian method for solving PDEs on general geometries publication-title: J. Sci. Comput. doi: 10.1007/s10915-005-9012-5 – year: 2004 ident: 10.1016/j.jcp.2018.05.022_br0250 |
| SSID | ssj0008548 |
| Score | 2.5361881 |
| Snippet | Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 43 |
| SubjectTerms | Basis functions Closest point method Clustering Computational physics Embedded systems Embedding method Evolutionary algorithms Finite difference method Finite differences Ill-conditioned problems (mathematics) Image processing systems Mathematical analysis Partial differential equations Radial basis function Radial basis functions |
| Title | An RBF-FD closest point method for solving PDEs on surfaces |
| URI | https://dx.doi.org/10.1016/j.jcp.2018.05.022 https://www.proquest.com/docview/2089869048 |
| Volume | 370 |
| WOSCitedRecordID | wos000436478200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF-09cEXv8VqlX3wySMht9lkN_Qp2ju0lFJqlXtbsrkJ9Ci545KT_vmd_Ur1pEUFX0JY8sXMZL52Zn6EvJ8DS2SR8Qi41hEXvIp00QCGKvMqa7RkYNujvx-LkxM5mxWnHhW1s3ACom3l1VWx-q-sxjVktmmd_Qt2Dw_FBTxHpuMR2Y7HP2J82Y7OPk6j6eGovlx2qPRHq-VF23usaFtWiB9g8winhxO7W9Bt1o0pzbrFU60t8kPIGrpcSHejU_u1awor46G6xwOlHA8rZ5uNS-B8jY_inzMNYznUrPn0V2iB-aVC09V4FA5yKwanRZMiiZhwTZRBzaYOIMQrSjebyZtcN6L6N2Xu8gqLeFGbwaJjaUesui7mrRnZZsvZzFPAaAlNMmOz-2SXiaxANbdbfpnMjgbjLDPujLP_6rDRbUv-tl50m6uyZbStJ3L-hDzyjKGlY_1Tcg_aZ-SxDyeoV9bdc3JQttRJAvWSQK0kUCcJFCWBekmgRhLosqVBEl6Qb9PJ-afPkcfKiOo0l33U6JpDhcGyrhloDoA2LGnyqhJ8DnmaQ5o0Os0qKSozn0nwBrio0FPJ9JhVDNKXZKddtvCKUA2cI_N4hsEBh7zRvBEpZIChd1EAsD2SBLKo2g-SN3gmlypUDC4UUlIZSqokU0jJPfJhuGXlpqjcdTEPtFbeDXTunULBuOu2_cAX5X_HThlFZDDXuHz9b099Qx7e_Ar7ZKdfb-AteVD_6C-69TsvXddDa4Y9 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RBF-FD+closest+point+method+for+solving+PDEs+on+surfaces&rft.jtitle=Journal+of+computational+physics&rft.au=Petras%2C+A.&rft.au=Ling%2C+L.&rft.au=Ruuth%2C+S.J.&rft.date=2018-10-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=370&rft.spage=43&rft.epage=57&rft_id=info:doi/10.1016%2Fj.jcp.2018.05.022&rft.externalDocID=S002199911830322X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |