An RBF-FD closest point method for solving PDEs on surfaces

Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational physics Ročník 370; s. 43 - 57
Hlavní autori: Petras, A., Ling, L., Ruuth, S.J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge Elsevier Inc 01.10.2018
Elsevier Science Ltd
Predmet:
ISSN:0021-9991, 1090-2716
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method. •In this paper, a new method for the numerical approximation of PDEs on surfaces is proposed. Our method has the advantage of being comprised of standard computational components, such as the closest point representation of the surface, and RBF finite difference methods.•Our approach uses a narrow computational tube around the surface and avoids the need for a quasi-uniform distribution of surface points. This makes the method a natural candidate for coupling with grid-based methods such as the grid-based particle method for moving interface problems (Leung and Zhao, J. Comput. Phys. 228 (8) (2009) 2993–3024).•The method is also efficient: it exploits repeated patterns in computational geometry, it uses small computational tubes, and it avoids an explicit interpolation step. Further-more, a change in the order of the method is carried out simply by changing the number of points in the finite difference stencil. See our novelty statement for details on how the method compares with the original closest point method (Ruuth and Merriman, J. Comput. Phys. 227 (3) (2008) 1943–1961) and recent RBF methods (e.g., Piret, J. Comput. Phys. 231 (14) (2012) 4662–4675).•We conduct convergence studies in two and three dimensions and apply the method to a variety of problems, including reaction–diffusion systems and image denoising. Second order accurate results are observed in our experiments.
AbstractList Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.
Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method. •In this paper, a new method for the numerical approximation of PDEs on surfaces is proposed. Our method has the advantage of being comprised of standard computational components, such as the closest point representation of the surface, and RBF finite difference methods.•Our approach uses a narrow computational tube around the surface and avoids the need for a quasi-uniform distribution of surface points. This makes the method a natural candidate for coupling with grid-based methods such as the grid-based particle method for moving interface problems (Leung and Zhao, J. Comput. Phys. 228 (8) (2009) 2993–3024).•The method is also efficient: it exploits repeated patterns in computational geometry, it uses small computational tubes, and it avoids an explicit interpolation step. Further-more, a change in the order of the method is carried out simply by changing the number of points in the finite difference stencil. See our novelty statement for details on how the method compares with the original closest point method (Ruuth and Merriman, J. Comput. Phys. 227 (3) (2008) 1943–1961) and recent RBF methods (e.g., Piret, J. Comput. Phys. 231 (14) (2012) 4662–4675).•We conduct convergence studies in two and three dimensions and apply the method to a variety of problems, including reaction–diffusion systems and image denoising. Second order accurate results are observed in our experiments.
Author Ling, L.
Ruuth, S.J.
Petras, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-3278-620X
  surname: Petras
  fullname: Petras, A.
  email: apetras@bcamath.org
  organization: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
– sequence: 2
  givenname: L.
  surname: Ling
  fullname: Ling, L.
  organization: Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
– sequence: 3
  givenname: S.J.
  surname: Ruuth
  fullname: Ruuth, S.J.
  email: sruuth@sfu.ca
  organization: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
BookMark eNp9kMtOwzAQRS1UJNrCB7CzxDph7LwcdVX6AKRKIARry3Em4Ci1i51W4u9JVVYsuprNPXdmzoSMrLNIyC2DmAHL79u41buYAxMxZDFwfkHGDEqIeMHyERkDcBaVZcmuyCSEFgBElooxmc0tfXtYR-sl1Z0LGHq6c8b2dIv9l6tp4zwNrjsY-0lfl6tAnaVh7xulMVyTy0Z1AW_-5pR8rFfvi6do8_L4vJhvIp3koo-aSqeoUmCV5liliIwxaHKlirTGPMkxgaZKMiUKVRYJL9IG00LlhcgqxhXHZEruTr077773w4mydXtvh5WSgyhFXkIqhhQ7pbR3IXhs5M6brfI_koE8OpKtHBzJoyMJmRwcDUzxj9GmV71xtvfKdGfJ2YnE4fGDQS-DNmg11saj7mXtzBn6F9y9gV0
CitedBy_id crossref_primary_10_1137_19M1288747
crossref_primary_10_1016_j_jcp_2023_112001
crossref_primary_10_1002_nme_7657
crossref_primary_10_1016_j_oceaneng_2019_106736
crossref_primary_10_1515_fca_2021_0037
crossref_primary_10_1137_23M1621265
crossref_primary_10_1016_j_amc_2024_129250
crossref_primary_10_1016_j_cam_2025_117014
crossref_primary_10_1007_s40571_019_00251_2
crossref_primary_10_1016_j_cpc_2025_109727
crossref_primary_10_1007_s00366_023_01794_y
crossref_primary_10_1016_j_jcp_2021_110932
crossref_primary_10_1007_s10915_022_01966_w
crossref_primary_10_1016_j_camwa_2024_11_013
crossref_primary_10_1016_j_enganabound_2024_105966
crossref_primary_10_1007_s42979_019_0046_4
crossref_primary_10_1140_epjp_i2019_12786_7
crossref_primary_10_1155_2023_6646144
crossref_primary_10_1007_s00466_022_02249_9
crossref_primary_10_1016_j_amc_2022_127622
crossref_primary_10_1016_j_apnum_2021_11_008
crossref_primary_10_1007_s10915_023_02150_4
crossref_primary_10_1016_j_camwa_2023_07_015
crossref_primary_10_1016_j_enganabound_2020_06_010
crossref_primary_10_1016_j_aml_2023_108634
crossref_primary_10_3390_math9090924
crossref_primary_10_1016_j_jcp_2023_112132
crossref_primary_10_1109_ACCESS_2019_2963390
crossref_primary_10_1145_3450966
crossref_primary_10_1007_s10444_020_09803_0
crossref_primary_10_1007_s10444_023_10044_0
crossref_primary_10_1002_cpa_22035
crossref_primary_10_1007_s00366_025_02159_3
crossref_primary_10_1016_j_enganabound_2019_12_003
crossref_primary_10_1016_j_jcp_2018_12_031
crossref_primary_10_1016_j_enganabound_2024_105794
crossref_primary_10_1007_s10915_024_02597_z
crossref_primary_10_1145_3673652
crossref_primary_10_1007_s10915_022_02023_2
crossref_primary_10_1007_s00366_019_00909_8
crossref_primary_10_1016_j_enganabound_2023_04_019
crossref_primary_10_1016_j_jcp_2020_109340
crossref_primary_10_1109_ACCESS_2025_3575913
crossref_primary_10_1016_j_apm_2024_05_009
crossref_primary_10_1016_j_aml_2025_109635
Cites_doi 10.1016/j.jcp.2009.01.005
10.1186/s40687-016-0053-1
10.1137/080740003
10.1137/120865537
10.1016/j.jcp.2007.03.034
10.1016/j.jcp.2015.05.021
10.1090/S0025-5718-98-00913-2
10.1007/s10915-014-9914-1
10.1016/0009-2509(84)87017-7
10.1007/s10915-008-9196-6
10.1007/s10915-013-9688-x
10.1016/j.jcp.2007.10.009
10.1016/j.jcp.2016.02.024
10.1016/j.jcp.2016.05.026
10.1016/j.jcp.2011.06.021
10.1006/jcph.2001.6937
10.1017/S0962492914000130
10.1016/0021-9991(88)90177-5
10.1016/S1468-1218(03)00020-8
10.1016/S0025-5564(97)00075-8
10.1006/jcph.2002.7028
10.1016/j.camwa.2012.11.006
10.1016/j.jcp.2012.03.007
10.1137/16M1080410
10.1137/09076756X
10.1007/s10915-005-9012-5
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier Science Ltd. Oct 1, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Oct 1, 2018
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2018.05.022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 57
ExternalDocumentID 10_1016_j_jcp_2018_05_022
S002199911830322X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-fbc4ea401bc2eb4ee1110f6aa74de636e30fb35a87a973274fe47a6785b12a2e3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436478200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Wed Nov 26 02:54:39 EST 2025
Sat Nov 29 03:10:20 EST 2025
Tue Nov 18 21:49:57 EST 2025
Fri Feb 23 02:17:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Closest point method
Radial basis functions
Finite differences
Embedding method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-fbc4ea401bc2eb4ee1110f6aa74de636e30fb35a87a973274fe47a6785b12a2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3278-620X
OpenAccessLink http://hdl.handle.net/20.500.11824/791
PQID 2089869048
PQPubID 2047462
PageCount 15
ParticipantIDs proquest_journals_2089869048
crossref_primary_10_1016_j_jcp_2018_05_022
crossref_citationtrail_10_1016_j_jcp_2018_05_022
elsevier_sciencedirect_doi_10_1016_j_jcp_2018_05_022
PublicationCentury 2000
PublicationDate 2018-10-01
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Greer (br0120) 2006; 29
Cheung, Ling, Ruuth (br0140) 2015; 297
Petras, Ruuth (br0440) 2016; 312
Flyer, Fornberg, Bayona, Barnett (br0330) 2016; 321
Fornberg, Larsson, Flyer (br0370) 2011; 33
Bertalmio, Bertozzi, Sapiro (br0020) 2001
Cheung, Ling (br0290) 2018; 40
Leung, Zhao (br0260) 2009; 228
Fasshauer (br0300) 2007
Turk (br0010) 1991
Bertalmıo, Cheng, Osher, Sapiro (br0100) 2001; 174
Fornberg, Flyer (br0310) 2015; 24
Flyer, Wright (br0130) 2009
Shu, Osher (br0340) 1988; 77
Floater, Hormann (br0090) 2005; vol. 1 (1)
Shankar, Wright, Kirby, Fogelson (br0160) 2015; 63
Marz, Macdonald (br0210) 2012; 50
Dziuk, Elliott (br0110) 2007; 25
Ruuth, Merriman (br0170) 2008; 227
Merriman, Ruuth (br0270) 2007; 225
Tsai (br0280) 2002; 178
Macdonald, Brandman, Ruuth (br0200) 2011; 230
Weisstein (br0380) 2004
Piret (br0220) 2012; 231
Tian, Macdonald, Ruuth (br0030) 2009
Biddle, von Glehn, Macdonald, Marz (br0040) 2013
Kublik, Tsai (br0230) 2016; 3
Davydov, Schaback (br0350)
Macdonald, Ruuth (br0180) 2008; 35
Chu, Tsai (br0240)
Gottlieb, Shu (br0400) 1998; 67
Olsen, Maini, Sherratt (br0060) 1998; 147
Wendland (br0250) 2004
McGough, Riley (br0430) 2004; 5
Auer, Macdonald, Treib, Schneider, Westermann (br0070) 2012; vol. 31
Murray (br0050) 2001; vol. 18
Turk, Levoy (br0420) 1994
Fuselier, Wright (br0150) 2013; 56
Fornberg, Lehto, Powell (br0360) 2013; 65
Fornberg, Flyer (br0320) 2015
Lui, Wang, Chan (br0080) 2005
OEIS Foundation Inc. (br0390) 2011
Gray, Scott (br0410) 1984; 39
Macdonald, Ruuth (br0190) 2009; 31
Lui (10.1016/j.jcp.2018.05.022_br0080) 2005
Macdonald (10.1016/j.jcp.2018.05.022_br0200) 2011; 230
Fornberg (10.1016/j.jcp.2018.05.022_br0370) 2011; 33
Piret (10.1016/j.jcp.2018.05.022_br0220) 2012; 231
Wendland (10.1016/j.jcp.2018.05.022_br0250) 2004
Leung (10.1016/j.jcp.2018.05.022_br0260) 2009; 228
Gottlieb (10.1016/j.jcp.2018.05.022_br0400) 1998; 67
Biddle (10.1016/j.jcp.2018.05.022_br0040) 2013
Shu (10.1016/j.jcp.2018.05.022_br0340) 1988; 77
McGough (10.1016/j.jcp.2018.05.022_br0430) 2004; 5
Fornberg (10.1016/j.jcp.2018.05.022_br0320) 2015
Weisstein (10.1016/j.jcp.2018.05.022_br0380)
Ruuth (10.1016/j.jcp.2018.05.022_br0170) 2008; 227
Greer (10.1016/j.jcp.2018.05.022_br0120) 2006; 29
Cheung (10.1016/j.jcp.2018.05.022_br0290) 2018; 40
Fornberg (10.1016/j.jcp.2018.05.022_br0360) 2013; 65
Murray (10.1016/j.jcp.2018.05.022_br0050) 2001; vol. 18
Marz (10.1016/j.jcp.2018.05.022_br0210) 2012; 50
Fasshauer (10.1016/j.jcp.2018.05.022_br0300) 2007
Fornberg (10.1016/j.jcp.2018.05.022_br0310) 2015; 24
Chu (10.1016/j.jcp.2018.05.022_br0240)
Davydov (10.1016/j.jcp.2018.05.022_br0350)
Cheung (10.1016/j.jcp.2018.05.022_br0140) 2015; 297
Petras (10.1016/j.jcp.2018.05.022_br0440) 2016; 312
Dziuk (10.1016/j.jcp.2018.05.022_br0110) 2007; 25
OEIS Foundation Inc. (10.1016/j.jcp.2018.05.022_br0390)
Flyer (10.1016/j.jcp.2018.05.022_br0330) 2016; 321
Fuselier (10.1016/j.jcp.2018.05.022_br0150) 2013; 56
Auer (10.1016/j.jcp.2018.05.022_br0070) 2012; vol. 31
Turk (10.1016/j.jcp.2018.05.022_br0010) 1991
Bertalmio (10.1016/j.jcp.2018.05.022_br0020) 2001
Flyer (10.1016/j.jcp.2018.05.022_br0130) 2009
Bertalmıo (10.1016/j.jcp.2018.05.022_br0100) 2001; 174
Turk (10.1016/j.jcp.2018.05.022_br0420) 1994
Macdonald (10.1016/j.jcp.2018.05.022_br0190) 2009; 31
Kublik (10.1016/j.jcp.2018.05.022_br0230) 2016; 3
Gray (10.1016/j.jcp.2018.05.022_br0410) 1984; 39
Shankar (10.1016/j.jcp.2018.05.022_br0160) 2015; 63
Macdonald (10.1016/j.jcp.2018.05.022_br0180) 2008; 35
Floater (10.1016/j.jcp.2018.05.022_br0090) 2005; vol. 1 (1)
Olsen (10.1016/j.jcp.2018.05.022_br0060) 1998; 147
Merriman (10.1016/j.jcp.2018.05.022_br0270) 2007; 225
Tian (10.1016/j.jcp.2018.05.022_br0030) 2009
Tsai (10.1016/j.jcp.2018.05.022_br0280) 2002; 178
References_xml – year: 2015
  ident: br0320
  article-title: A Primer on Radial Basis Functions with Applications to the Geosciences, vol. 87
– volume: 63
  start-page: 745
  year: 2015
  end-page: 768
  ident: br0160
  article-title: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces
  publication-title: J. Sci. Comput.
– year: 2001
  ident: br0020
  article-title: Navier–Stokes, fluid dynamics, and image and video inpainting
  publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1
– volume: 35
  start-page: 219
  year: 2008
  end-page: 240
  ident: br0180
  article-title: Level set equations on surfaces via the closest point method
  publication-title: J. Sci. Comput.
– volume: 321
  start-page: 21
  year: 2016
  end-page: 38
  ident: br0330
  article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy
  publication-title: J. Comput. Phys.
– volume: 24
  start-page: 215
  year: 2015
  end-page: 258
  ident: br0310
  article-title: Solving PDEs with radial basis functions
  publication-title: Acta Numer.
– start-page: 3009
  year: 2009
  end-page: 3012
  ident: br0030
  article-title: Segmentation on surfaces with the closest point method
  publication-title: 2009 16th IEEE International Conference on Image Processing (ICIP)
– volume: vol. 18
  year: 2001
  ident: br0050
  article-title: Mathematical Biology. II Spatial Models and Biomedical Applications
  publication-title: Interdisciplinary Applied Mathematics
– year: 2009
  ident: br0130
  article-title: A radial basis function method for the shallow water equations on a sphere
  publication-title: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
– year: 2004
  ident: br0250
  article-title: Scattered Data Approximation, vol. 17
– year: 2011
  ident: br0390
  article-title: The on-line encyclopedia of integer sequences
– start-page: 529
  year: 2013
  end-page: 533
  ident: br0040
  article-title: A volume-based method for denoising on curved surfaces
  publication-title: 2013 20th IEEE International Conference on Image Processing (ICIP)
– volume: 297
  start-page: 194
  year: 2015
  end-page: 206
  ident: br0140
  article-title: A localized meshless method for diffusion on folded surfaces
  publication-title: J. Comput. Phys.
– volume: 178
  start-page: 175
  year: 2002
  end-page: 195
  ident: br0280
  article-title: Rapid and accurate computation of the distance function using grids
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 1087
  year: 1984
  end-page: 1097
  ident: br0410
  article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor
  publication-title: Chem. Eng. Sci.
– volume: 40
  start-page: A266
  year: 2018
  end-page: A287
  ident: br0290
  article-title: A kernel-based embedding method and convergence analysis for surfaces PDEs
  publication-title: SIAM J. Sci. Comput.
– volume: 312
  start-page: 139
  year: 2016
  end-page: 156
  ident: br0440
  article-title: PDEs on moving surfaces via the closest point method and a modified grid based particle method
  publication-title: J. Comput. Phys.
– volume: 174
  start-page: 759
  year: 2001
  end-page: 780
  ident: br0100
  article-title: Variational problems and partial differential equations on implicit surfaces
  publication-title: J. Comput. Phys.
– year: 2007
  ident: br0300
  article-title: Meshfree Approximation Methods with MATLAB, vol. 6
– volume: 50
  start-page: 3303
  year: 2012
  end-page: 3328
  ident: br0210
  article-title: Calculus on surfaces with general closest point functions
  publication-title: SIAM J. Numer. Anal.
– volume: 147
  start-page: 113
  year: 1998
  end-page: 129
  ident: br0060
  article-title: Spatially varying equilibria of mechanical models: application to dermal wound contraction
  publication-title: Math. Biosci.
– ident: br0350
  article-title: Optimal stencils in Sobolev spaces
– volume: 33
  start-page: 869
  year: 2011
  end-page: 892
  ident: br0370
  article-title: Stable computations with Gaussian radial basis functions
  publication-title: SIAM J. Sci. Comput.
– volume: vol. 1 (1)
  year: 2005
  ident: br0090
  article-title: Surface parameterization: a tutorial and survey
  publication-title: Advances in Multiresolution for Geometric Modelling
– volume: 231
  start-page: 4662
  year: 2012
  end-page: 4675
  ident: br0220
  article-title: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces
  publication-title: J. Comput. Phys.
– volume: 29
  start-page: 321
  year: 2006
  end-page: 352
  ident: br0120
  article-title: An improvement of a recent Eulerian method for solving PDEs on general geometries
  publication-title: J. Sci. Comput.
– start-page: 311
  year: 1994
  end-page: 318
  ident: br0420
  article-title: Zippered polygon meshes from range images
  publication-title: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques
– volume: 5
  start-page: 105
  year: 2004
  end-page: 121
  ident: br0430
  article-title: Pattern formation in the Gray–Scott model
  publication-title: Nonlinear Anal., Real World Appl.
– year: 2004
  ident: br0380
  article-title: Gauss's circle problem, from MathWorld – a Wolfram web resource
– volume: vol. 31
  start-page: 1909
  year: 2012
  end-page: 1923
  ident: br0070
  article-title: Real-time fluid effects on surfaces using the closest point method
  publication-title: Computer Graphics Forum
– volume: 228
  start-page: 2993
  year: 2009
  end-page: 3024
  ident: br0260
  article-title: A grid based particle method for moving interface problems
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 385
  year: 2007
  ident: br0110
  article-title: Surface finite elements for parabolic equations
  publication-title: J. Comput. Math. - Int. Ed.
– volume: 225
  start-page: 2267
  year: 2007
  end-page: 2282
  ident: br0270
  article-title: Diffusion generated motion of curves on surfaces
  publication-title: J. Comput. Phys.
– volume: 77
  start-page: 439
  year: 1988
  end-page: 471
  ident: br0340
  article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes
  publication-title: J. Comput. Phys.
– volume: 230
  start-page: 7944
  year: 2011
  end-page: 7956
  ident: br0200
  article-title: Solving eigenvalue problems on curved surfaces using the closest point method
  publication-title: J. Comput. Phys.
– ident: br0240
  article-title: Volumetric variational principles for a class of partial differential equations defined on surfaces and curves
– volume: 31
  start-page: 4330
  year: 2009
  end-page: 4350
  ident: br0190
  article-title: The implicit closest point method for the numerical solution of partial differential equations on surfaces
  publication-title: SIAM J. Sci. Comput.
– volume: 56
  start-page: 535
  year: 2013
  end-page: 565
  ident: br0150
  article-title: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces
  publication-title: J. Sci. Comput.
– volume: 67
  start-page: 73
  year: 1998
  end-page: 85
  ident: br0400
  article-title: Total variation diminishing Runge–Kutta schemes
  publication-title: Math. Comput. Am. Math. Soc.
– volume: 3
  start-page: 3
  year: 2016
  ident: br0230
  article-title: Integration over curves and surfaces defined by the closest point mapping
  publication-title: Res. Math. Sci.
– year: 1991
  ident: br0010
  article-title: Generating Textures on Arbitrary Surfaces Using Reaction–Diffusion, vol. 25
– volume: 227
  start-page: 1943
  year: 2008
  end-page: 1961
  ident: br0170
  article-title: A simple embedding method for solving partial differential equations on surfaces
  publication-title: J. Comput. Phys.
– start-page: 307
  year: 2005
  end-page: 319
  ident: br0080
  article-title: Solving PDEs on manifolds with global conformal parametrization
  publication-title: Variational, Geometric, and Level Set Methods in Computer Vision
– volume: 65
  start-page: 627
  year: 2013
  end-page: 637
  ident: br0360
  article-title: Stable calculation of Gaussian-based RBF-FD stencils
  publication-title: Comput. Math. Appl.
– volume: 228
  start-page: 2993
  issue: 8
  year: 2009
  ident: 10.1016/j.jcp.2018.05.022_br0260
  article-title: A grid based particle method for moving interface problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.01.005
– volume: 3
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.jcp.2018.05.022_br0230
  article-title: Integration over curves and surfaces defined by the closest point mapping
  publication-title: Res. Math. Sci.
  doi: 10.1186/s40687-016-0053-1
– volume: 31
  start-page: 4330
  issue: 6
  year: 2009
  ident: 10.1016/j.jcp.2018.05.022_br0190
  article-title: The implicit closest point method for the numerical solution of partial differential equations on surfaces
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080740003
– volume: 50
  start-page: 3303
  issue: 6
  year: 2012
  ident: 10.1016/j.jcp.2018.05.022_br0210
  article-title: Calculus on surfaces with general closest point functions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120865537
– volume: 225
  start-page: 2267
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2018.05.022_br0270
  article-title: Diffusion generated motion of curves on surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.03.034
– ident: 10.1016/j.jcp.2018.05.022_br0350
– volume: 297
  start-page: 194
  year: 2015
  ident: 10.1016/j.jcp.2018.05.022_br0140
  article-title: A localized meshless method for diffusion on folded surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.05.021
– volume: 67
  start-page: 73
  issue: 221
  year: 1998
  ident: 10.1016/j.jcp.2018.05.022_br0400
  article-title: Total variation diminishing Runge–Kutta schemes
  publication-title: Math. Comput. Am. Math. Soc.
  doi: 10.1090/S0025-5718-98-00913-2
– volume: 63
  start-page: 745
  issue: 3
  year: 2015
  ident: 10.1016/j.jcp.2018.05.022_br0160
  article-title: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9914-1
– volume: 39
  start-page: 1087
  issue: 6
  year: 1984
  ident: 10.1016/j.jcp.2018.05.022_br0410
  article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(84)87017-7
– start-page: 3009
  year: 2009
  ident: 10.1016/j.jcp.2018.05.022_br0030
  article-title: Segmentation on surfaces with the closest point method
– volume: vol. 18
  year: 2001
  ident: 10.1016/j.jcp.2018.05.022_br0050
  article-title: Mathematical Biology. II Spatial Models and Biomedical Applications
– volume: vol. 1 (1)
  year: 2005
  ident: 10.1016/j.jcp.2018.05.022_br0090
  article-title: Surface parameterization: a tutorial and survey
– volume: 35
  start-page: 219
  issue: 2–3
  year: 2008
  ident: 10.1016/j.jcp.2018.05.022_br0180
  article-title: Level set equations on surfaces via the closest point method
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9196-6
– ident: 10.1016/j.jcp.2018.05.022_br0240
– volume: 56
  start-page: 535
  issue: 3
  year: 2013
  ident: 10.1016/j.jcp.2018.05.022_br0150
  article-title: A high-order kernel method for diffusion and reaction–diffusion equations on surfaces
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9688-x
– volume: 227
  start-page: 1943
  issue: 3
  year: 2008
  ident: 10.1016/j.jcp.2018.05.022_br0170
  article-title: A simple embedding method for solving partial differential equations on surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.10.009
– volume: 25
  start-page: 385
  issue: 4
  year: 2007
  ident: 10.1016/j.jcp.2018.05.022_br0110
  article-title: Surface finite elements for parabolic equations
  publication-title: J. Comput. Math. - Int. Ed.
– volume: 312
  start-page: 139
  year: 2016
  ident: 10.1016/j.jcp.2018.05.022_br0440
  article-title: PDEs on moving surfaces via the closest point method and a modified grid based particle method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.024
– year: 2015
  ident: 10.1016/j.jcp.2018.05.022_br0320
– volume: 321
  start-page: 21
  year: 2016
  ident: 10.1016/j.jcp.2018.05.022_br0330
  article-title: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.026
– volume: 230
  start-page: 7944
  issue: 22
  year: 2011
  ident: 10.1016/j.jcp.2018.05.022_br0200
  article-title: Solving eigenvalue problems on curved surfaces using the closest point method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.06.021
– year: 1991
  ident: 10.1016/j.jcp.2018.05.022_br0010
– start-page: 529
  year: 2013
  ident: 10.1016/j.jcp.2018.05.022_br0040
  article-title: A volume-based method for denoising on curved surfaces
– volume: 174
  start-page: 759
  issue: 2
  year: 2001
  ident: 10.1016/j.jcp.2018.05.022_br0100
  article-title: Variational problems and partial differential equations on implicit surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6937
– volume: 24
  start-page: 215
  year: 2015
  ident: 10.1016/j.jcp.2018.05.022_br0310
  article-title: Solving PDEs with radial basis functions
  publication-title: Acta Numer.
  doi: 10.1017/S0962492914000130
– volume: 77
  start-page: 439
  issue: 2
  year: 1988
  ident: 10.1016/j.jcp.2018.05.022_br0340
  article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90177-5
– ident: 10.1016/j.jcp.2018.05.022_br0380
– ident: 10.1016/j.jcp.2018.05.022_br0390
– start-page: 311
  year: 1994
  ident: 10.1016/j.jcp.2018.05.022_br0420
  article-title: Zippered polygon meshes from range images
– volume: 5
  start-page: 105
  issue: 1
  year: 2004
  ident: 10.1016/j.jcp.2018.05.022_br0430
  article-title: Pattern formation in the Gray–Scott model
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/S1468-1218(03)00020-8
– volume: 147
  start-page: 113
  issue: 1
  year: 1998
  ident: 10.1016/j.jcp.2018.05.022_br0060
  article-title: Spatially varying equilibria of mechanical models: application to dermal wound contraction
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(97)00075-8
– year: 2007
  ident: 10.1016/j.jcp.2018.05.022_br0300
– volume: 178
  start-page: 175
  issue: 1
  year: 2002
  ident: 10.1016/j.jcp.2018.05.022_br0280
  article-title: Rapid and accurate computation of the distance function using grids
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7028
– year: 2001
  ident: 10.1016/j.jcp.2018.05.022_br0020
  article-title: Navier–Stokes, fluid dynamics, and image and video inpainting
– volume: 65
  start-page: 627
  issue: 4
  year: 2013
  ident: 10.1016/j.jcp.2018.05.022_br0360
  article-title: Stable calculation of Gaussian-based RBF-FD stencils
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.11.006
– volume: 231
  start-page: 4662
  issue: 14
  year: 2012
  ident: 10.1016/j.jcp.2018.05.022_br0220
  article-title: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.03.007
– start-page: 307
  year: 2005
  ident: 10.1016/j.jcp.2018.05.022_br0080
  article-title: Solving PDEs on manifolds with global conformal parametrization
– year: 2009
  ident: 10.1016/j.jcp.2018.05.022_br0130
  article-title: A radial basis function method for the shallow water equations on a sphere
– volume: 40
  start-page: A266
  issue: 1
  year: 2018
  ident: 10.1016/j.jcp.2018.05.022_br0290
  article-title: A kernel-based embedding method and convergence analysis for surfaces PDEs
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1080410
– volume: 33
  start-page: 869
  issue: 2
  year: 2011
  ident: 10.1016/j.jcp.2018.05.022_br0370
  article-title: Stable computations with Gaussian radial basis functions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/09076756X
– volume: vol. 31
  start-page: 1909
  year: 2012
  ident: 10.1016/j.jcp.2018.05.022_br0070
  article-title: Real-time fluid effects on surfaces using the closest point method
– volume: 29
  start-page: 321
  issue: 3
  year: 2006
  ident: 10.1016/j.jcp.2018.05.022_br0120
  article-title: An improvement of a recent Eulerian method for solving PDEs on general geometries
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-005-9012-5
– year: 2004
  ident: 10.1016/j.jcp.2018.05.022_br0250
SSID ssj0008548
Score 2.5361881
Snippet Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Basis functions
Closest point method
Clustering
Computational physics
Embedded systems
Embedding method
Evolutionary algorithms
Finite difference method
Finite differences
Ill-conditioned problems (mathematics)
Image processing systems
Mathematical analysis
Partial differential equations
Radial basis function
Radial basis functions
Title An RBF-FD closest point method for solving PDEs on surfaces
URI https://dx.doi.org/10.1016/j.jcp.2018.05.022
https://www.proquest.com/docview/2089869048
Volume 370
WOSCitedRecordID wos000436478200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3da9swEMDF1u5hL1v3xbp1Qw97WlCwLdmW6JPbJmyllNJ1kDdjKRI0FCXEzuif37MkO11KyvqwFxPs-JD9k-_O59MdQt9krmgqs5hoFRnCgAMR3ExJmk6NFFM4xtxC4bP8_JxPJuIi9NisXTuB3Fp-eysW_xU17APY7dLZJ-DuhcIO-A3QYQvYYftP4As7uDwak_HJQN3Ma1D6g8X82jahV7RLK4QBuDjCxcnIfS2oV0vTpmZt8VSV6_zQRQ19LKRe69Rm6ReFFcM-uyc0Sjnr91yuVj6A82t4OrwfaYh5n7O2zvyPSetQ3tee1Pf9CPrPl1wKltRXnn6go324YDacqbZeaMxd5VS_OPnvetgbdqrPHuwS02YliChbEWWUliDiOdpN8lSActstfo4mp71J5inzJjlcQPd52yX6bYxjm4OyYaqd_3G1h14FHLjwwN-gZ9q-Ra_DSwQOKrp-hw4Liz1_HPhjxx97_hj448Aft_zx3OKO_3v0ezy6Ov5BQocMomjGG2KkYrqCV2SpEg1PlQbLFZmsqnI21RnNNI2MpGnF86qtypQzo1legX-SyjipEk0_oB07t_ojwkrphEoJ_qahIBMkUyaFFrFJRGZSvo-i7raUKpSPb7uY3JRbceyj7_0pC1875bE_s-5el8H5805dCfPmsdMOOi5leAhrOM5F22mN8U9PGcJn9HI97Q_QTrNc6S_ohfrTXNfLr2FO3QGQeICO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RBF-FD+closest+point+method+for+solving+PDEs+on+surfaces&rft.jtitle=Journal+of+computational+physics&rft.au=Petras%2C+A.&rft.au=Ling%2C+L.&rft.au=Ruuth%2C+S.J.&rft.date=2018-10-01&rft.issn=0021-9991&rft.volume=370&rft.spage=43&rft.epage=57&rft_id=info:doi/10.1016%2Fj.jcp.2018.05.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2018_05_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon