do-mpc: Towards FAIR nonlinear and robust model predictive control
Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further improved in recent years with advanced MPC schemes for nonlinear systems under uncertainty including economic control objectives. These recent...
Uložené v:
| Vydané v: | Control engineering practice Ročník 140; s. 105676 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2023
|
| Predmet: | |
| ISSN: | 0967-0661, 1873-6939 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further improved in recent years with advanced MPC schemes for nonlinear systems under uncertainty including economic control objectives. These recent improvements often fail to bridge the gap between MPC researchers and control practitioners in academia and industry, where classical control approaches and traditional linear MPC still dominate most applications. This is despite the fact that advanced MPC controllers can lead to significant energy savings, yield improvements, safer operation and other benefits.
In this work, we identify four main obstacles hindering the widespread adoption of advanced MPC methods. These are the unavailability of models, the challenges associated with deploying complex controllers on physical systems, the scarcity of rapid prototyping tools for advanced methods and the limited reproducibility and reusability of advanced MPC controllers and their results. We find that the FAIR principles (findable, accessible, interoperable, reusable) for scientific data-management and research software can play an important role in tackling these obstacles. Following these guidelines, we discuss FAIR solutions and present the open-source software do-mpc as a concrete implementation. The presented solutions include interoperability with neural network toolboxes to simplify nonlinear system identification, interoperability with the OPC UA communication protocol for deployment, and a reproducible data-sampling framework for transparent controller validation, system identification and approximate MPC. The potential of the proposed solutions is illustrated with several simulation studies.
•Analysis of obstacles hindering the widespread adoption of advanced MPC.•Discussion of solutions to overcome these obstacles considering the FAIR principles.•Introduction of do-mpc, an advanced MPC software, implementing the FAIR solutions.•Comparison of do-mpc with other tools under consideration of the FAIR principles.•Demonstration of FAIR solutions in several simulation studies. |
|---|---|
| AbstractList | Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further improved in recent years with advanced MPC schemes for nonlinear systems under uncertainty including economic control objectives. These recent improvements often fail to bridge the gap between MPC researchers and control practitioners in academia and industry, where classical control approaches and traditional linear MPC still dominate most applications. This is despite the fact that advanced MPC controllers can lead to significant energy savings, yield improvements, safer operation and other benefits.
In this work, we identify four main obstacles hindering the widespread adoption of advanced MPC methods. These are the unavailability of models, the challenges associated with deploying complex controllers on physical systems, the scarcity of rapid prototyping tools for advanced methods and the limited reproducibility and reusability of advanced MPC controllers and their results. We find that the FAIR principles (findable, accessible, interoperable, reusable) for scientific data-management and research software can play an important role in tackling these obstacles. Following these guidelines, we discuss FAIR solutions and present the open-source software do-mpc as a concrete implementation. The presented solutions include interoperability with neural network toolboxes to simplify nonlinear system identification, interoperability with the OPC UA communication protocol for deployment, and a reproducible data-sampling framework for transparent controller validation, system identification and approximate MPC. The potential of the proposed solutions is illustrated with several simulation studies.
•Analysis of obstacles hindering the widespread adoption of advanced MPC.•Discussion of solutions to overcome these obstacles considering the FAIR principles.•Introduction of do-mpc, an advanced MPC software, implementing the FAIR solutions.•Comparison of do-mpc with other tools under consideration of the FAIR principles.•Demonstration of FAIR solutions in several simulation studies. |
| ArticleNumber | 105676 |
| Author | Heinlein, Moritz Lucia, Sergio Fiedler, Felix Karg, Benjamin Brabender, Felix Brandner, Dean Lüken, Lukas |
| Author_xml | – sequence: 1 givenname: Felix orcidid: 0000-0003-3490-1256 surname: Fiedler fullname: Fiedler, Felix email: felix.fiedler@tu-dortmund.de – sequence: 2 givenname: Benjamin orcidid: 0000-0002-9779-3101 surname: Karg fullname: Karg, Benjamin – sequence: 3 givenname: Lukas orcidid: 0009-0004-5599-8282 surname: Lüken fullname: Lüken, Lukas – sequence: 4 givenname: Dean orcidid: 0000-0003-1500-7064 surname: Brandner fullname: Brandner, Dean – sequence: 5 givenname: Moritz orcidid: 0000-0002-2476-5919 surname: Heinlein fullname: Heinlein, Moritz – sequence: 6 givenname: Felix orcidid: 0009-0007-0737-5998 surname: Brabender fullname: Brabender, Felix – sequence: 7 givenname: Sergio orcidid: 0000-0002-3347-5593 surname: Lucia fullname: Lucia, Sergio |
| BookMark | eNqNkN1KAzEQRoNUsK2-Q15ga366sxsvhLZYLRQEqdchnSSSst2UZK349m6pIHijVwMD3_lmzogM2tg6QihnE8443O4m2C_at0MyOBFMyH5dQgUXZMjrShagpBqQIVNQFQyAX5FRzjvWR5XiQzK3sdgf8I5u4odJNtPlbPVC-44mtM4kalpLU9y-547uo3UNPSRnA3bh6Ghf3KXYXJNLb5rsbr7nmLwuHzaLp2L9_LhazNYFSqi7wgPWIMCjFwwdKLC1FUZVJdv6mpdQSjCMV0KVtXUehRBQCVTTCr2cbqWXY3J_5mKKOSfnNYbOdOF0hQmN5kyfjOid_jGiT0b02UgPqH8BDinsTfr8T3R-jrr-wWNwSWcMrsXeRXLYaRvD35AvD0ODzg |
| CitedBy_id | crossref_primary_10_1016_j_coche_2024_101035 crossref_primary_10_1016_j_cherd_2025_06_038 crossref_primary_10_3389_fnbot_2024_1428358 crossref_primary_10_3390_su16156347 crossref_primary_10_1007_s12273_025_1275_1 crossref_primary_10_1016_j_apenergy_2025_125496 crossref_primary_10_1002_oca_3234 crossref_primary_10_1016_j_compchemeng_2025_109396 crossref_primary_10_3390_en17205117 crossref_primary_10_1016_j_ifacol_2025_07_115 crossref_primary_10_1109_ACCESS_2025_3556980 crossref_primary_10_1109_LCSYS_2024_3407635 crossref_primary_10_1016_j_ifacol_2024_08_382 crossref_primary_10_1038_s41598_024_66104_y crossref_primary_10_1515_nleng_2025_0099 crossref_primary_10_1109_TAC_2025_3558137 crossref_primary_10_3390_en18123027 crossref_primary_10_1016_j_enbuild_2025_115299 crossref_primary_10_1016_j_jss_2024_112166 crossref_primary_10_1016_j_ifacol_2025_07_112 crossref_primary_10_1063_5_0215502 crossref_primary_10_1016_j_apenergy_2024_124328 crossref_primary_10_1016_j_compchemeng_2025_109344 crossref_primary_10_1088_1748_3190_ad8e25 crossref_primary_10_1016_j_asoc_2024_111802 crossref_primary_10_3390_math13060961 crossref_primary_10_1109_ACCESS_2023_3326344 crossref_primary_10_1109_TASE_2024_3519012 crossref_primary_10_1016_j_ifacol_2025_08_054 crossref_primary_10_1088_1741_2552_ad731f crossref_primary_10_3390_machines11121050 crossref_primary_10_1016_j_ifacol_2024_09_037 crossref_primary_10_3390_app15020880 crossref_primary_10_1016_j_compchemeng_2025_109363 crossref_primary_10_1109_ACCESS_2024_3444899 crossref_primary_10_3389_frai_2025_1569395 crossref_primary_10_3390_app14125213 crossref_primary_10_1016_j_sysconle_2024_105991 crossref_primary_10_1016_j_compchemeng_2025_109114 crossref_primary_10_1109_TCYB_2025_3536606 crossref_primary_10_1109_LRA_2024_3518096 crossref_primary_10_1371_journal_pcbi_1012603 |
| Cites_doi | 10.1109/TAC.2014.2304371 10.1002/rnc.5696 10.1016/j.apenergy.2022.119104 10.1007/s12532-021-00208-8 10.1016/S0098-1354(98)00301-9 10.1007/s10107-004-0559-y 10.1016/j.arcontrol.2009.12.001 10.1016/j.ifacol.2021.08.326 10.1007/BF02055196 10.1016/j.ifacol.2015.09.022 10.1038/s41557-021-00716-z 10.1109/LCSYS.2020.2980479 10.1016/S0005-1098(01)00174-1 10.1109/MIE.2015.2478920 10.1109/MCS.2016.2602087 10.1016/j.automatica.2012.02.021 10.1016/j.jprocont.2013.08.008 10.1016/j.conengprac.2016.12.009 10.3390/s21124193 10.1016/j.ifacol.2021.08.417 10.1109/CVPR.2016.90 10.1016/j.compchemeng.2021.107291 10.1080/19401493.2022.2058091 10.1109/ACCESS.2022.3183746 10.1080/00207179.2017.1316017 10.1016/j.drudis.2019.01.008 10.1007/s11081-018-9417-2 10.1016/S0098-1354(97)00261-5 10.1109/MIE.2013.2290138 10.1038/s41592-019-0686-2 10.1002/rnc.5686 10.1016/j.procir.2016.11.055 10.1016/j.buildenv.2021.107952 10.1016/0893-6080(89)90020-8 10.1109/TAC.2021.3124983 10.1038/sdata.2016.18 10.1002/rnc.1758 10.1016/j.ifacol.2020.12.071 10.1109/TCYB.2020.2999556 10.1016/j.automatica.2021.109571 10.1007/s12532-018-0139-4 10.1515/auto-2018-0083 10.1016/j.ifacol.2020.12.1329 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2023.105676 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| ExternalDocumentID | 10_1016_j_conengprac_2023_105676 S0967066123002459 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c368t-f6c8626fcf20ce696d8d2a9750bf8156536a0172958defc222672c947cf34b3f3 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074772500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Tue Nov 18 22:17:15 EST 2025 Sat Nov 29 07:08:05 EST 2025 Fri Feb 23 02:35:12 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Learning-based control Robust control Nonlinear model predictive control |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-f6c8626fcf20ce696d8d2a9750bf8156536a0172958defc222672c947cf34b3f3 |
| ORCID | 0000-0003-3490-1256 0000-0003-1500-7064 0000-0002-2476-5919 0000-0002-9779-3101 0009-0004-5599-8282 0009-0007-0737-5998 0000-0002-3347-5593 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.conengprac.2023.105676 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2023_105676 crossref_primary_10_1016_j_conengprac_2023_105676 elsevier_sciencedirect_doi_10_1016_j_conengprac_2023_105676 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ljung, Andersson, Tiels, Schön (b34) 2020; 53 Forbes, Patwardhan, Hamadah, Gopaluni (b20) 2015; 48 Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak (b58) 2016; 3 Klatt, Engell (b28) 1998; 22 Lucia (b35) 2015 Chen, Bruschetta, Picotti, Beghi (b11) 2019 Pfrommer, Sojoudi (b47) 2022 Risbeck, Rawlings (b49) 2016 Goel, Hassibi (b22) 2022 Mesbah (b42) 2016; 36 Förster (b21) 2015 Chen, Saulnier, Atanasov, Lee, Kumar, Pappas (b12) 2018 Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b44) 2019; 32 Mayne, Kerrigan, van Wyk, Falugi (b41) 2011; 21 Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu (b15) 2017 Marzullo, Dey, Long, Leiva Vilaplana, Henze (b40) 2022; 15 Karg, Lucia (b27) 2020; 50 Kouvaritakis, Cannon (b30) 2016 Morari, H. Lee (b43) 1999; 23 Wächter, Biegler (b56) 2006; 106 Zeilinger, Morari, Jones (b63) 2014; 59 Bemporad, Morari, Dua, Pistikopoulos (b6) 2002; 38 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Guillén, Fiedler, Sarnago, Lucía, Lucía (b23) 2022; 10 Sopasakis, Fresk, Patrinos (b52) 2020; 53 Vazquez, Leon, Franquelo, Rodriguez, Young, Marquez (b53) 2014; 8 Lucia, Finkler, Engell (b36) 2013; 23 Zanelli, Domahidi, Jerez, Morari (b62) 2020; 93 Blondel, Berthet, Cuturi, Frostig, Hoyer, Llinares-Lopez (b8) 2022; 35 Bonassi, Farina, Scattolini (b10) 2021; 54 Patria, Rossi, Fernandez, Dominguez (b45) 2021; 21 Chue Hong, Katz, Barker, Lamprecht, Martinez, Psomopoulos (b13) 2021 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau (b55) 2020; 17 (b2) 2006 Hornik, Stinchcombe, White (b25) 1989; 2 Andersson, Gillis, Horn, Rawlings, Diehl (b3) 2019; 11 Kouro, Perez, Rodriguez, Llor, Young (b29) 2015; 9 Lucia, Tătulea-Codrean, Schoppmeyer, Engell (b38) 2017; 60 Paulson, Mesbah (b46) 2020; 4 Abadi, Agarwal, Barham, Brevdo, Chen, Citro (b1) 2016 Rawlings, Angeli, Bates (b48) 2012 Winqvist, Venkitaraman, Wahlberg (b59) 2021; 54 Baldacchino, Anderson, Kadirkamanathan (b5) 2012; 48 (pp. 770–778). Schleipen, Gilani, Bischoff, Pfrommer (b51) 2016; 57 Cocola, Hand (b14) 2020 Krishnamoorthy (b31) 2022; 67 Elokda, Coulson, Beuchat, Lygeros, Dörfler (b16) 2021; 31 Lüken, Brandner, Lucia (b39) 2023 Wise, de Barron, Splendiani, Balali-Mood, Vasant, Little (b60) 2019; 24 Englert, Völz, Mesmer, Rhein, Graichen (b17) 2019; 20 Karg, Alamo, Lucia (b26) 2021; 31 Artrith, Butler, Coudert, Han, Isayev, Jain (b4) 2021; 13 Findeisen, Graichen, Mönnigmann (b19) 2018; 66 Blum, Wang, Weyandt, Kim, Wetter, Hong (b9) 2022; 318 Ljung (b33) 2010; 34 Scampicchio, Aravkin, Pillonetto (b50) 2021; 129 Verschueren, Frison, Kouzoupis, Frey, van Duijkeren, Zanelli (b54) 2022; 14 Yao, Shekhar (b61) 2021; 200 Biegler (b7) 2010 Lucia, Paulen, Engell (b37) 2014 Kumar, Rawlings, Wright (b32) 2021; 150 Wang (b57) 2017 Fiacco, Ishizuka (b18) 1990; 27 Andersson (10.1016/j.conengprac.2023.105676_b3) 2019; 11 Biegler (10.1016/j.conengprac.2023.105676_b7) 2010 Lucia (10.1016/j.conengprac.2023.105676_b37) 2014 Mayne (10.1016/j.conengprac.2023.105676_b41) 2011; 21 Chen (10.1016/j.conengprac.2023.105676_b12) 2018 Zanelli (10.1016/j.conengprac.2023.105676_b62) 2020; 93 Goel (10.1016/j.conengprac.2023.105676_b22) 2022 Lüken (10.1016/j.conengprac.2023.105676_b39) 2023 Wächter (10.1016/j.conengprac.2023.105676_b56) 2006; 106 Kouro (10.1016/j.conengprac.2023.105676_b29) 2015; 9 Blondel (10.1016/j.conengprac.2023.105676_b8) 2022; 35 Schleipen (10.1016/j.conengprac.2023.105676_b51) 2016; 57 Vazquez (10.1016/j.conengprac.2023.105676_b53) 2014; 8 Karg (10.1016/j.conengprac.2023.105676_b26) 2021; 31 Krishnamoorthy (10.1016/j.conengprac.2023.105676_b31) 2022; 67 Kouvaritakis (10.1016/j.conengprac.2023.105676_b30) 2016 Artrith (10.1016/j.conengprac.2023.105676_b4) 2021; 13 Winqvist (10.1016/j.conengprac.2023.105676_b59) 2021; 54 Verschueren (10.1016/j.conengprac.2023.105676_b54) 2022; 14 Bemporad (10.1016/j.conengprac.2023.105676_b6) 2002; 38 Karg (10.1016/j.conengprac.2023.105676_b27) 2020; 50 Zeilinger (10.1016/j.conengprac.2023.105676_b63) 2014; 59 Bonassi (10.1016/j.conengprac.2023.105676_b10) 2021; 54 Englert (10.1016/j.conengprac.2023.105676_b17) 2019; 20 Paszke (10.1016/j.conengprac.2023.105676_b44) 2019; 32 Patria (10.1016/j.conengprac.2023.105676_b45) 2021; 21 Wilkinson (10.1016/j.conengprac.2023.105676_b58) 2016; 3 Czarnecki (10.1016/j.conengprac.2023.105676_b15) 2017 Förster (10.1016/j.conengprac.2023.105676_b21) 2015 Lucia (10.1016/j.conengprac.2023.105676_b38) 2017; 60 Mesbah (10.1016/j.conengprac.2023.105676_b42) 2016; 36 Chue Hong (10.1016/j.conengprac.2023.105676_b13) 2021 10.1016/j.conengprac.2023.105676_b24 Risbeck (10.1016/j.conengprac.2023.105676_b49) 2016 Sopasakis (10.1016/j.conengprac.2023.105676_b52) 2020; 53 Findeisen (10.1016/j.conengprac.2023.105676_b19) 2018; 66 Lucia (10.1016/j.conengprac.2023.105676_b36) 2013; 23 Marzullo (10.1016/j.conengprac.2023.105676_b40) 2022; 15 (10.1016/j.conengprac.2023.105676_b2) 2006 Klatt (10.1016/j.conengprac.2023.105676_b28) 1998; 22 Virtanen (10.1016/j.conengprac.2023.105676_b55) 2020; 17 Fiacco (10.1016/j.conengprac.2023.105676_b18) 1990; 27 Elokda (10.1016/j.conengprac.2023.105676_b16) 2021; 31 Lucia (10.1016/j.conengprac.2023.105676_b35) 2015 Hornik (10.1016/j.conengprac.2023.105676_b25) 1989; 2 Morari (10.1016/j.conengprac.2023.105676_b43) 1999; 23 Ljung (10.1016/j.conengprac.2023.105676_b34) 2020; 53 Abadi (10.1016/j.conengprac.2023.105676_b1) 2016 Rawlings (10.1016/j.conengprac.2023.105676_b48) 2012 Ljung (10.1016/j.conengprac.2023.105676_b33) 2010; 34 Scampicchio (10.1016/j.conengprac.2023.105676_b50) 2021; 129 Guillén (10.1016/j.conengprac.2023.105676_b23) 2022; 10 Yao (10.1016/j.conengprac.2023.105676_b61) 2021; 200 Wang (10.1016/j.conengprac.2023.105676_b57) 2017 Wise (10.1016/j.conengprac.2023.105676_b60) 2019; 24 Cocola (10.1016/j.conengprac.2023.105676_b14) 2020 Paulson (10.1016/j.conengprac.2023.105676_b46) 2020; 4 Chen (10.1016/j.conengprac.2023.105676_b11) 2019 Blum (10.1016/j.conengprac.2023.105676_b9) 2022; 318 Kumar (10.1016/j.conengprac.2023.105676_b32) 2021; 150 Pfrommer (10.1016/j.conengprac.2023.105676_b47) 2022 Baldacchino (10.1016/j.conengprac.2023.105676_b5) 2012; 48 Forbes (10.1016/j.conengprac.2023.105676_b20) 2015; 48 |
| References_xml | – start-page: 6652 year: 2022 end-page: 6657 ident: b22 article-title: The power of linear controllers in LQR control publication-title: IEEE 61st conference on decision and control – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b25 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – start-page: 5324 year: 2017 end-page: 5329 ident: b57 article-title: A new concept using LSTM neural networks for dynamic system identification publication-title: American control conference – volume: 35 start-page: 5230 year: 2022 end-page: 5242 ident: b8 article-title: Efficient and modular implicit differentiation publication-title: Advances in Neural Information Processing Systems – volume: 67 start-page: 6090 year: 2022 end-page: 6097 ident: b31 article-title: A sensitivity-based data augmentation framework for model predictive control policy approximation publication-title: IEEE Transactions on Automatic Control – volume: 57 start-page: 315 year: 2016 end-page: 320 ident: b51 article-title: OPC UA & industrie 4.0 - enabling technology with high diversity and variability publication-title: Procedia CIRP – volume: 200 year: 2021 ident: b61 article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field publication-title: Building and Environment – volume: 60 start-page: 51 year: 2017 end-page: 62 ident: b38 article-title: Rapid development of modular and sustainable nonlinear model predictive control solutions publication-title: Control Engineering Practice – volume: 54 start-page: 7 year: 2021 end-page: 12 ident: b59 article-title: Learning models of model predictive controllers using gradient data publication-title: IFAC-PapersOnLine – volume: 20 start-page: 769 year: 2019 end-page: 809 ident: b17 article-title: A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC) publication-title: Optimization and Engineering – volume: 31 start-page: 8855 year: 2021 end-page: 8876 ident: b26 article-title: Probabilistic performance validation of deep learning-based robust NMPC controllers publication-title: International Journal of Robust and Nonlinear Control – volume: 23 start-page: 1306 year: 2013 end-page: 1319 ident: b36 article-title: Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty publication-title: Journal of Process Control – start-page: 2346 year: 2022 end-page: 2353 ident: b47 article-title: LQR control with sparse adversarial disturbances publication-title: IEEE 61st conference on decision and control – volume: 50 start-page: 3866 year: 2020 end-page: 3878 ident: b27 article-title: Efficient representation and approximation of model predictive control laws via deep learning publication-title: IEEE Transactions on Cybernetics – year: 2015 ident: b35 article-title: Robust multi-stage nonlinear model predictive control – year: 2016 ident: b30 publication-title: Model predictive control – volume: 24 start-page: 933 year: 2019 end-page: 938 ident: b60 article-title: Implementation and relevance of FAIR data principles in biopharmaceutical R&D publication-title: Drug Discovery Today – volume: 14 start-page: 147 year: 2022 end-page: 183 ident: b54 article-title: Acados—a modular open-source framework for fast embedded optimal control publication-title: Mathematical Programming Computation – year: 2010 ident: b7 article-title: Nonlinear programming: concepts, algorithms, and applications to chemical processes, vol. 10 – volume: 9 start-page: 8 year: 2015 end-page: 21 ident: b29 article-title: Model predictive control: MPC’s role in the evolution of power electronics publication-title: IEEE Industrial Electronics Magazine – year: 2016 ident: b49 article-title: MPCTools: Nonlinear model predictive control tools for CasADi – volume: 11 start-page: 1 year: 2019 end-page: 36 ident: b3 article-title: CasADi: A software framework for nonlinear optimization and optimal control publication-title: Mathematical Programming Computation – volume: 36 start-page: 30 year: 2016 end-page: 44 ident: b42 article-title: Stochastic model predictive control: An overview and perspectives for future research publication-title: IEEE Control Systems – volume: 3 year: 2016 ident: b58 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Scientific Data – volume: 54 start-page: 547 year: 2021 end-page: 552 ident: b10 article-title: Stability of discrete-time feed-forward neural networks in NARX configuration publication-title: IFAC-PapersOnLine – volume: 13 start-page: 505 year: 2021 end-page: 508 ident: b4 article-title: Best practices in machine learning for chemistry publication-title: Nature Chemistry – volume: 59 start-page: 1190 year: 2014 end-page: 1202 ident: b63 article-title: Soft constrained model predictive control with robust stability guarantees publication-title: IEEE Transactions on Automatic Control – volume: 4 start-page: 719 year: 2020 end-page: 724 ident: b46 article-title: Approximate closed-loop robust model predictive control with guaranteed stability and constraint satisfaction publication-title: IEEE Control Systems Letters – volume: 22 start-page: 491 year: 1998 end-page: 502 ident: b28 article-title: Gain-scheduling trajectory control of a continuous stirred tank reactor publication-title: Computers & Chemical Engineering – volume: 318 year: 2022 ident: b9 article-title: Field demonstration and implementation analysis of model predictive control in an office HVAC system publication-title: Applied Energy – start-page: 3365 year: 2019 end-page: 3370 ident: b11 article-title: MATMPC - A MATLAB based toolbox for real-time nonlinear model predictive control publication-title: 18th European control conference – year: 2015 ident: b21 article-title: System identification of the crazyflie 2.0 nano quadrocopter – year: 2023 ident: b39 article-title: Sobolev training for data-efficient approximate nonlinear MPC publication-title: 22nd IFAC world congress – year: 2017 ident: b15 article-title: Sobolev training for neural networks publication-title: Advances in neural information processing systems, vol. 30 – volume: 53 start-page: 1175 year: 2020 end-page: 1181 ident: b34 article-title: Deep learning and system identification publication-title: IFAC-PapersOnLine – year: 2021 ident: b13 article-title: FAIR principles for research software (FAIR4RS principles), research data alliance publication-title: Research Data Alliance – volume: 150 year: 2021 ident: b32 article-title: Industrial, large-scale model predictive control with structured neural networks publication-title: Computers & Chemical Engineering – volume: 38 start-page: 3 year: 2002 end-page: 20 ident: b6 article-title: The explicit linear quadratic regulator for constrained systems publication-title: Automatica – volume: 48 start-page: 531 year: 2015 end-page: 538 ident: b20 article-title: Model predictive control in industry: Challenges and opportunities publication-title: IFAC-PapersOnLine – volume: 66 start-page: 877 year: 2018 end-page: 902 ident: b19 article-title: Eingebettete Optimierung in der Regelungstechnik – Grundlagen und Herausforderungen publication-title: at - Automatisierungstechnik – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b55 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature methods – start-page: 1520 year: 2018 end-page: 1527 ident: b12 article-title: Approximating explicit model predictive control using constrained neural networks publication-title: American control conference – volume: 23 start-page: 667 year: 1999 end-page: 682 ident: b43 article-title: Model predictive control: Past, present and future publication-title: Computers & Chemical Engineering – year: 2016 ident: b1 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems – volume: 129 year: 2021 ident: b50 article-title: Stable and robust LQR design via scenario approach publication-title: Automatica – volume: 34 start-page: 1 year: 2010 end-page: 12 ident: b33 article-title: Perspectives on system identification publication-title: Annual Reviews in Control – volume: 8 start-page: 16 year: 2014 end-page: 31 ident: b53 article-title: Model predictive control: A review of its applications in power electronics publication-title: IEEE Industrial Electronics Magazine – start-page: 3851 year: 2012 end-page: 3861 ident: b48 article-title: Fundamentals of economic model predictive control publication-title: 51st IEEE conference on decision and control – start-page: 295 year: 2006 end-page: 318 ident: b2 article-title: Rapid control prototyping publication-title: Rapid control prototyping: methoden und anwendungen – volume: 21 start-page: 1341 year: 2011 end-page: 1353 ident: b41 article-title: Tube-based robust nonlinear model predictive control publication-title: International Journal of Robust and Nonlinear Control – start-page: 2816 year: 2014 end-page: 2821 ident: b37 article-title: Multi-stage nonlinear model predictive control with verified robust constraint satisfaction publication-title: 53rd IEEE conference on decision and control – volume: 27 start-page: 215 year: 1990 end-page: 235 ident: b18 article-title: Sensitivity and stability analysis for nonlinear programming publication-title: Annals of Operations Research – reference: (pp. 770–778). – volume: 53 start-page: 6548 year: 2020 end-page: 6554 ident: b52 article-title: OpEn: code generation for embedded nonconvex optimization publication-title: IFAC-PapersOnLine – volume: 21 start-page: 4193 year: 2021 ident: b45 article-title: Nonlinear control strategies for an autonomous wing-in-ground-effect vehicle publication-title: Sensors – volume: 93 start-page: 13 year: 2020 end-page: 29 ident: b62 article-title: FORCES NLP: An efficient implementation of interior-point methods for multistage nonlinear nonconvex programs publication-title: International Journal of Control – volume: 32 year: 2019 ident: b44 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Advances in neural information processing systems – volume: 31 start-page: 8916 year: 2021 end-page: 8936 ident: b16 article-title: Data-enabled predictive control for quadcopters publication-title: International Journal of Robust and Nonlinear Control – volume: 15 start-page: 379 year: 2022 end-page: 397 ident: b40 article-title: A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls publication-title: Journal of Building Performance Simulation – start-page: 574 year: 2020 end-page: 586 ident: b14 article-title: Global convergence of Sobolev training for overparameterized neural networks publication-title: Machine learning, optimization, and data science, vol. 12565 – volume: 106 start-page: 25 year: 2006 end-page: 57 ident: b56 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Mathematical Programming – volume: 10 start-page: 65228 year: 2022 end-page: 65237 ident: b23 article-title: Deep learning implementation of model predictive control for multioutput resonant converters publication-title: IEEE Access – volume: 48 start-page: 857 year: 2012 end-page: 865 ident: b5 article-title: Structure detection and parameter estimation for NARX models in a unified EM framework publication-title: Automatica – start-page: 1520 year: 2018 ident: 10.1016/j.conengprac.2023.105676_b12 article-title: Approximating explicit model predictive control using constrained neural networks – volume: 59 start-page: 1190 issue: 5 year: 2014 ident: 10.1016/j.conengprac.2023.105676_b63 article-title: Soft constrained model predictive control with robust stability guarantees publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2014.2304371 – volume: 31 start-page: 8855 issue: 18 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b26 article-title: Probabilistic performance validation of deep learning-based robust NMPC controllers publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.5696 – year: 2015 ident: 10.1016/j.conengprac.2023.105676_b21 – volume: 318 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b9 article-title: Field demonstration and implementation analysis of model predictive control in an office HVAC system publication-title: Applied Energy doi: 10.1016/j.apenergy.2022.119104 – year: 2016 ident: 10.1016/j.conengprac.2023.105676_b49 – volume: 14 start-page: 147 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b54 article-title: Acados—a modular open-source framework for fast embedded optimal control publication-title: Mathematical Programming Computation doi: 10.1007/s12532-021-00208-8 – volume: 23 start-page: 667 issue: 4 year: 1999 ident: 10.1016/j.conengprac.2023.105676_b43 article-title: Model predictive control: Past, present and future publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(98)00301-9 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 10.1016/j.conengprac.2023.105676_b56 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Mathematical Programming doi: 10.1007/s10107-004-0559-y – start-page: 2346 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b47 article-title: LQR control with sparse adversarial disturbances – year: 2016 ident: 10.1016/j.conengprac.2023.105676_b1 – volume: 34 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.conengprac.2023.105676_b33 article-title: Perspectives on system identification publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2009.12.001 – volume: 54 start-page: 7 issue: 7 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b59 article-title: Learning models of model predictive controllers using gradient data publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.08.326 – volume: 27 start-page: 215 issue: 1 year: 1990 ident: 10.1016/j.conengprac.2023.105676_b18 article-title: Sensitivity and stability analysis for nonlinear programming publication-title: Annals of Operations Research doi: 10.1007/BF02055196 – year: 2016 ident: 10.1016/j.conengprac.2023.105676_b30 – volume: 48 start-page: 531 issue: 8 year: 2015 ident: 10.1016/j.conengprac.2023.105676_b20 article-title: Model predictive control in industry: Challenges and opportunities publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.022 – volume: 13 start-page: 505 issue: 6 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b4 article-title: Best practices in machine learning for chemistry publication-title: Nature Chemistry doi: 10.1038/s41557-021-00716-z – start-page: 574 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b14 article-title: Global convergence of Sobolev training for overparameterized neural networks – year: 2010 ident: 10.1016/j.conengprac.2023.105676_b7 – volume: 32 year: 2019 ident: 10.1016/j.conengprac.2023.105676_b44 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Advances in neural information processing systems – volume: 4 start-page: 719 issue: 3 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b46 article-title: Approximate closed-loop robust model predictive control with guaranteed stability and constraint satisfaction publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2020.2980479 – start-page: 3851 year: 2012 ident: 10.1016/j.conengprac.2023.105676_b48 article-title: Fundamentals of economic model predictive control – volume: 38 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.conengprac.2023.105676_b6 article-title: The explicit linear quadratic regulator for constrained systems publication-title: Automatica doi: 10.1016/S0005-1098(01)00174-1 – start-page: 6652 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b22 article-title: The power of linear controllers in LQR control – volume: 9 start-page: 8 issue: 4 year: 2015 ident: 10.1016/j.conengprac.2023.105676_b29 article-title: Model predictive control: MPC’s role in the evolution of power electronics publication-title: IEEE Industrial Electronics Magazine doi: 10.1109/MIE.2015.2478920 – volume: 36 start-page: 30 issue: 6 year: 2016 ident: 10.1016/j.conengprac.2023.105676_b42 article-title: Stochastic model predictive control: An overview and perspectives for future research publication-title: IEEE Control Systems doi: 10.1109/MCS.2016.2602087 – volume: 48 start-page: 857 issue: 5 year: 2012 ident: 10.1016/j.conengprac.2023.105676_b5 article-title: Structure detection and parameter estimation for NARX models in a unified EM framework publication-title: Automatica doi: 10.1016/j.automatica.2012.02.021 – volume: 23 start-page: 1306 issue: 9 year: 2013 ident: 10.1016/j.conengprac.2023.105676_b36 article-title: Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2013.08.008 – year: 2023 ident: 10.1016/j.conengprac.2023.105676_b39 article-title: Sobolev training for data-efficient approximate nonlinear MPC – year: 2017 ident: 10.1016/j.conengprac.2023.105676_b15 article-title: Sobolev training for neural networks – volume: 60 start-page: 51 year: 2017 ident: 10.1016/j.conengprac.2023.105676_b38 article-title: Rapid development of modular and sustainable nonlinear model predictive control solutions publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2016.12.009 – volume: 21 start-page: 4193 issue: 12 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b45 article-title: Nonlinear control strategies for an autonomous wing-in-ground-effect vehicle publication-title: Sensors doi: 10.3390/s21124193 – start-page: 5324 year: 2017 ident: 10.1016/j.conengprac.2023.105676_b57 article-title: A new concept using LSTM neural networks for dynamic system identification – volume: 54 start-page: 547 issue: 7 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b10 article-title: Stability of discrete-time feed-forward neural networks in NARX configuration publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.08.417 – ident: 10.1016/j.conengprac.2023.105676_b24 doi: 10.1109/CVPR.2016.90 – volume: 150 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b32 article-title: Industrial, large-scale model predictive control with structured neural networks publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2021.107291 – start-page: 3365 year: 2019 ident: 10.1016/j.conengprac.2023.105676_b11 article-title: MATMPC - A MATLAB based toolbox for real-time nonlinear model predictive control – year: 2015 ident: 10.1016/j.conengprac.2023.105676_b35 – volume: 15 start-page: 379 issue: 3 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b40 article-title: A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls publication-title: Journal of Building Performance Simulation doi: 10.1080/19401493.2022.2058091 – volume: 10 start-page: 65228 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b23 article-title: Deep learning implementation of model predictive control for multioutput resonant converters publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3183746 – volume: 93 start-page: 13 issue: 1 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b62 article-title: FORCES NLP: An efficient implementation of interior-point methods for multistage nonlinear nonconvex programs publication-title: International Journal of Control doi: 10.1080/00207179.2017.1316017 – volume: 24 start-page: 933 issue: 4 year: 2019 ident: 10.1016/j.conengprac.2023.105676_b60 article-title: Implementation and relevance of FAIR data principles in biopharmaceutical R&D publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2019.01.008 – volume: 20 start-page: 769 issue: 3 year: 2019 ident: 10.1016/j.conengprac.2023.105676_b17 article-title: A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC) publication-title: Optimization and Engineering doi: 10.1007/s11081-018-9417-2 – volume: 22 start-page: 491 issue: 4 year: 1998 ident: 10.1016/j.conengprac.2023.105676_b28 article-title: Gain-scheduling trajectory control of a continuous stirred tank reactor publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(97)00261-5 – volume: 8 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.conengprac.2023.105676_b53 article-title: Model predictive control: A review of its applications in power electronics publication-title: IEEE Industrial Electronics Magazine doi: 10.1109/MIE.2013.2290138 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b55 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature methods doi: 10.1038/s41592-019-0686-2 – volume: 31 start-page: 8916 issue: 18 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b16 article-title: Data-enabled predictive control for quadcopters publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.5686 – start-page: 2816 year: 2014 ident: 10.1016/j.conengprac.2023.105676_b37 article-title: Multi-stage nonlinear model predictive control with verified robust constraint satisfaction – volume: 57 start-page: 315 year: 2016 ident: 10.1016/j.conengprac.2023.105676_b51 article-title: OPC UA & industrie 4.0 - enabling technology with high diversity and variability publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.055 – volume: 200 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b61 article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field publication-title: Building and Environment doi: 10.1016/j.buildenv.2021.107952 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.conengprac.2023.105676_b25 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 67 start-page: 6090 issue: 11 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b31 article-title: A sensitivity-based data augmentation framework for model predictive control policy approximation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2021.3124983 – year: 2021 ident: 10.1016/j.conengprac.2023.105676_b13 article-title: FAIR principles for research software (FAIR4RS principles), research data alliance publication-title: Research Data Alliance – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.conengprac.2023.105676_b58 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Scientific Data doi: 10.1038/sdata.2016.18 – volume: 35 start-page: 5230 year: 2022 ident: 10.1016/j.conengprac.2023.105676_b8 article-title: Efficient and modular implicit differentiation publication-title: Advances in Neural Information Processing Systems – volume: 21 start-page: 1341 issue: 11 year: 2011 ident: 10.1016/j.conengprac.2023.105676_b41 article-title: Tube-based robust nonlinear model predictive control publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.1758 – volume: 53 start-page: 6548 issue: 2 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b52 article-title: OpEn: code generation for embedded nonconvex optimization publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2020.12.071 – volume: 50 start-page: 3866 issue: 9 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b27 article-title: Efficient representation and approximation of model predictive control laws via deep learning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.2999556 – volume: 129 year: 2021 ident: 10.1016/j.conengprac.2023.105676_b50 article-title: Stable and robust LQR design via scenario approach publication-title: Automatica doi: 10.1016/j.automatica.2021.109571 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.conengprac.2023.105676_b3 article-title: CasADi: A software framework for nonlinear optimization and optimal control publication-title: Mathematical Programming Computation doi: 10.1007/s12532-018-0139-4 – start-page: 295 year: 2006 ident: 10.1016/j.conengprac.2023.105676_b2 article-title: Rapid control prototyping – volume: 66 start-page: 877 issue: 11 year: 2018 ident: 10.1016/j.conengprac.2023.105676_b19 article-title: Eingebettete Optimierung in der Regelungstechnik – Grundlagen und Herausforderungen publication-title: at - Automatisierungstechnik doi: 10.1515/auto-2018-0083 – volume: 53 start-page: 1175 issue: 2 year: 2020 ident: 10.1016/j.conengprac.2023.105676_b34 article-title: Deep learning and system identification publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2020.12.1329 |
| SSID | ssj0016991 |
| Score | 2.59797 |
| Snippet | Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105676 |
| SubjectTerms | Learning-based control Nonlinear model predictive control Robust control |
| Title | do-mpc: Towards FAIR nonlinear and robust model predictive control |
| URI | https://dx.doi.org/10.1016/j.conengprac.2023.105676 |
| Volume | 140 |
| WOSCitedRecordID | wos001074772500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftYexKuxt62FtxiaVYsrqnJGtYRyljdCNvRpIlSJq6IZc2P39HlixnW6HdYC_GGCRbPh9Hx8ff-Q5CHxQRSmSlSijsH0mPdEUiqBaJ0pazTFOj6jruH6f87Cwfj8XXTuemqYW5nvGqyjcbMf-vpoZrYGxXOvsX5o6TwgU4B6PDEcwOx3sZvrxKLue6TpvXlNjlwah_8u2g8poY0nMmF1dqvVz5PjhOJ6Cc1H6vYa5vh6zDQGY3rXJhrK2K1odANpQUjsxssoluXHry2MBUU3k5aek_7v_8YHjhfd7p-kK22XrYPMtQhfPJBOyGtAShoT5vK7_IHK_OK61HV-ulmYKzhNCO-eYvf_hxn1KYghkqWJ1b1KG7yWE75Ffp7N-2tEg0bDhs06KdqXAzFX6mB2iX8EyAO9ztnxyPv8QfUEz4ZovNKgIJzFMDb3-q2yObrWjl_Cl6Ej4zcN_D4xnqmOo5erwlPvkCDTxQjnCACXYwwREmGMyAPUxwDRPcwgQHmLxE30fH58PPSeiokWjK8lVimXZfsFZb0tWGCVbmJZECokZlnWxQRpl0SQGR5aWxGmJHxokWPa4t7Slq6Su0A89h9hDOrKFWEi4Zl720q2QmGdFp16a5SmXK9hFv3kahg9y863oyK-6yyT5K48i5l1y5x5iPzQsvQujoQ8ICEHXn6Nf_cMc36FEL-7doZ7VYm3foob5eTZaL9wFOPwEdu5Qi |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=do-mpc%3A+Towards+FAIR+nonlinear+and+robust+model+predictive+control&rft.jtitle=Control+engineering+practice&rft.au=Fiedler%2C+Felix&rft.au=Karg%2C+Benjamin&rft.au=L%C3%BCken%2C+Lukas&rft.au=Brandner%2C+Dean&rft.date=2023-11-01&rft.issn=0967-0661&rft.volume=140&rft.spage=105676&rft_id=info:doi/10.1016%2Fj.conengprac.2023.105676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2023_105676 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |