do-mpc: Towards FAIR nonlinear and robust model predictive control

Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further improved in recent years with advanced MPC schemes for nonlinear systems under uncertainty including economic control objectives. These recent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Control engineering practice Ročník 140; s. 105676
Hlavní autori: Fiedler, Felix, Karg, Benjamin, Lüken, Lukas, Brandner, Dean, Heinlein, Moritz, Brabender, Felix, Lucia, Sergio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2023
Predmet:
ISSN:0967-0661, 1873-6939
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further improved in recent years with advanced MPC schemes for nonlinear systems under uncertainty including economic control objectives. These recent improvements often fail to bridge the gap between MPC researchers and control practitioners in academia and industry, where classical control approaches and traditional linear MPC still dominate most applications. This is despite the fact that advanced MPC controllers can lead to significant energy savings, yield improvements, safer operation and other benefits. In this work, we identify four main obstacles hindering the widespread adoption of advanced MPC methods. These are the unavailability of models, the challenges associated with deploying complex controllers on physical systems, the scarcity of rapid prototyping tools for advanced methods and the limited reproducibility and reusability of advanced MPC controllers and their results. We find that the FAIR principles (findable, accessible, interoperable, reusable) for scientific data-management and research software can play an important role in tackling these obstacles. Following these guidelines, we discuss FAIR solutions and present the open-source software do-mpc as a concrete implementation. The presented solutions include interoperability with neural network toolboxes to simplify nonlinear system identification, interoperability with the OPC UA communication protocol for deployment, and a reproducible data-sampling framework for transparent controller validation, system identification and approximate MPC. The potential of the proposed solutions is illustrated with several simulation studies. •Analysis of obstacles hindering the widespread adoption of advanced MPC.•Discussion of solutions to overcome these obstacles considering the FAIR principles.•Introduction of do-mpc, an advanced MPC software, implementing the FAIR solutions.•Comparison of do-mpc with other tools under consideration of the FAIR principles.•Demonstration of FAIR solutions in several simulation studies.
AbstractList Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further improved in recent years with advanced MPC schemes for nonlinear systems under uncertainty including economic control objectives. These recent improvements often fail to bridge the gap between MPC researchers and control practitioners in academia and industry, where classical control approaches and traditional linear MPC still dominate most applications. This is despite the fact that advanced MPC controllers can lead to significant energy savings, yield improvements, safer operation and other benefits. In this work, we identify four main obstacles hindering the widespread adoption of advanced MPC methods. These are the unavailability of models, the challenges associated with deploying complex controllers on physical systems, the scarcity of rapid prototyping tools for advanced methods and the limited reproducibility and reusability of advanced MPC controllers and their results. We find that the FAIR principles (findable, accessible, interoperable, reusable) for scientific data-management and research software can play an important role in tackling these obstacles. Following these guidelines, we discuss FAIR solutions and present the open-source software do-mpc as a concrete implementation. The presented solutions include interoperability with neural network toolboxes to simplify nonlinear system identification, interoperability with the OPC UA communication protocol for deployment, and a reproducible data-sampling framework for transparent controller validation, system identification and approximate MPC. The potential of the proposed solutions is illustrated with several simulation studies. •Analysis of obstacles hindering the widespread adoption of advanced MPC.•Discussion of solutions to overcome these obstacles considering the FAIR principles.•Introduction of do-mpc, an advanced MPC software, implementing the FAIR solutions.•Comparison of do-mpc with other tools under consideration of the FAIR principles.•Demonstration of FAIR solutions in several simulation studies.
ArticleNumber 105676
Author Heinlein, Moritz
Lucia, Sergio
Fiedler, Felix
Karg, Benjamin
Brabender, Felix
Brandner, Dean
Lüken, Lukas
Author_xml – sequence: 1
  givenname: Felix
  orcidid: 0000-0003-3490-1256
  surname: Fiedler
  fullname: Fiedler, Felix
  email: felix.fiedler@tu-dortmund.de
– sequence: 2
  givenname: Benjamin
  orcidid: 0000-0002-9779-3101
  surname: Karg
  fullname: Karg, Benjamin
– sequence: 3
  givenname: Lukas
  orcidid: 0009-0004-5599-8282
  surname: Lüken
  fullname: Lüken, Lukas
– sequence: 4
  givenname: Dean
  orcidid: 0000-0003-1500-7064
  surname: Brandner
  fullname: Brandner, Dean
– sequence: 5
  givenname: Moritz
  orcidid: 0000-0002-2476-5919
  surname: Heinlein
  fullname: Heinlein, Moritz
– sequence: 6
  givenname: Felix
  orcidid: 0009-0007-0737-5998
  surname: Brabender
  fullname: Brabender, Felix
– sequence: 7
  givenname: Sergio
  orcidid: 0000-0002-3347-5593
  surname: Lucia
  fullname: Lucia, Sergio
BookMark eNqNkN1KAzEQRoNUsK2-Q15ga366sxsvhLZYLRQEqdchnSSSst2UZK349m6pIHijVwMD3_lmzogM2tg6QihnE8443O4m2C_at0MyOBFMyH5dQgUXZMjrShagpBqQIVNQFQyAX5FRzjvWR5XiQzK3sdgf8I5u4odJNtPlbPVC-44mtM4kalpLU9y-547uo3UNPSRnA3bh6Ghf3KXYXJNLb5rsbr7nmLwuHzaLp2L9_LhazNYFSqi7wgPWIMCjFwwdKLC1FUZVJdv6mpdQSjCMV0KVtXUehRBQCVTTCr2cbqWXY3J_5mKKOSfnNYbOdOF0hQmN5kyfjOid_jGiT0b02UgPqH8BDinsTfr8T3R-jrr-wWNwSWcMrsXeRXLYaRvD35AvD0ODzg
CitedBy_id crossref_primary_10_1016_j_coche_2024_101035
crossref_primary_10_1016_j_cherd_2025_06_038
crossref_primary_10_3389_fnbot_2024_1428358
crossref_primary_10_3390_su16156347
crossref_primary_10_1007_s12273_025_1275_1
crossref_primary_10_1016_j_apenergy_2025_125496
crossref_primary_10_1002_oca_3234
crossref_primary_10_1016_j_compchemeng_2025_109396
crossref_primary_10_3390_en17205117
crossref_primary_10_1016_j_ifacol_2025_07_115
crossref_primary_10_1109_ACCESS_2025_3556980
crossref_primary_10_1109_LCSYS_2024_3407635
crossref_primary_10_1016_j_ifacol_2024_08_382
crossref_primary_10_1038_s41598_024_66104_y
crossref_primary_10_1515_nleng_2025_0099
crossref_primary_10_1109_TAC_2025_3558137
crossref_primary_10_3390_en18123027
crossref_primary_10_1016_j_enbuild_2025_115299
crossref_primary_10_1016_j_jss_2024_112166
crossref_primary_10_1016_j_ifacol_2025_07_112
crossref_primary_10_1063_5_0215502
crossref_primary_10_1016_j_apenergy_2024_124328
crossref_primary_10_1016_j_compchemeng_2025_109344
crossref_primary_10_1088_1748_3190_ad8e25
crossref_primary_10_1016_j_asoc_2024_111802
crossref_primary_10_3390_math13060961
crossref_primary_10_1109_ACCESS_2023_3326344
crossref_primary_10_1109_TASE_2024_3519012
crossref_primary_10_1016_j_ifacol_2025_08_054
crossref_primary_10_1088_1741_2552_ad731f
crossref_primary_10_3390_machines11121050
crossref_primary_10_1016_j_ifacol_2024_09_037
crossref_primary_10_3390_app15020880
crossref_primary_10_1016_j_compchemeng_2025_109363
crossref_primary_10_1109_ACCESS_2024_3444899
crossref_primary_10_3389_frai_2025_1569395
crossref_primary_10_3390_app14125213
crossref_primary_10_1016_j_sysconle_2024_105991
crossref_primary_10_1016_j_compchemeng_2025_109114
crossref_primary_10_1109_TCYB_2025_3536606
crossref_primary_10_1109_LRA_2024_3518096
crossref_primary_10_1371_journal_pcbi_1012603
Cites_doi 10.1109/TAC.2014.2304371
10.1002/rnc.5696
10.1016/j.apenergy.2022.119104
10.1007/s12532-021-00208-8
10.1016/S0098-1354(98)00301-9
10.1007/s10107-004-0559-y
10.1016/j.arcontrol.2009.12.001
10.1016/j.ifacol.2021.08.326
10.1007/BF02055196
10.1016/j.ifacol.2015.09.022
10.1038/s41557-021-00716-z
10.1109/LCSYS.2020.2980479
10.1016/S0005-1098(01)00174-1
10.1109/MIE.2015.2478920
10.1109/MCS.2016.2602087
10.1016/j.automatica.2012.02.021
10.1016/j.jprocont.2013.08.008
10.1016/j.conengprac.2016.12.009
10.3390/s21124193
10.1016/j.ifacol.2021.08.417
10.1109/CVPR.2016.90
10.1016/j.compchemeng.2021.107291
10.1080/19401493.2022.2058091
10.1109/ACCESS.2022.3183746
10.1080/00207179.2017.1316017
10.1016/j.drudis.2019.01.008
10.1007/s11081-018-9417-2
10.1016/S0098-1354(97)00261-5
10.1109/MIE.2013.2290138
10.1038/s41592-019-0686-2
10.1002/rnc.5686
10.1016/j.procir.2016.11.055
10.1016/j.buildenv.2021.107952
10.1016/0893-6080(89)90020-8
10.1109/TAC.2021.3124983
10.1038/sdata.2016.18
10.1002/rnc.1758
10.1016/j.ifacol.2020.12.071
10.1109/TCYB.2020.2999556
10.1016/j.automatica.2021.109571
10.1007/s12532-018-0139-4
10.1515/auto-2018-0083
10.1016/j.ifacol.2020.12.1329
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.conengprac.2023.105676
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
ExternalDocumentID 10_1016_j_conengprac_2023_105676
S0967066123002459
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c368t-f6c8626fcf20ce696d8d2a9750bf8156536a0172958defc222672c947cf34b3f3
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074772500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0967-0661
IngestDate Tue Nov 18 22:17:15 EST 2025
Sat Nov 29 07:08:05 EST 2025
Fri Feb 23 02:35:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Learning-based control
Robust control
Nonlinear model predictive control
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-f6c8626fcf20ce696d8d2a9750bf8156536a0172958defc222672c947cf34b3f3
ORCID 0000-0003-3490-1256
0000-0003-1500-7064
0000-0002-2476-5919
0000-0002-9779-3101
0009-0004-5599-8282
0009-0007-0737-5998
0000-0002-3347-5593
OpenAccessLink https://dx.doi.org/10.1016/j.conengprac.2023.105676
ParticipantIDs crossref_citationtrail_10_1016_j_conengprac_2023_105676
crossref_primary_10_1016_j_conengprac_2023_105676
elsevier_sciencedirect_doi_10_1016_j_conengprac_2023_105676
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Control engineering practice
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ljung, Andersson, Tiels, Schön (b34) 2020; 53
Forbes, Patwardhan, Hamadah, Gopaluni (b20) 2015; 48
Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak (b58) 2016; 3
Klatt, Engell (b28) 1998; 22
Lucia (b35) 2015
Chen, Bruschetta, Picotti, Beghi (b11) 2019
Pfrommer, Sojoudi (b47) 2022
Risbeck, Rawlings (b49) 2016
Goel, Hassibi (b22) 2022
Mesbah (b42) 2016; 36
Förster (b21) 2015
Chen, Saulnier, Atanasov, Lee, Kumar, Pappas (b12) 2018
Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b44) 2019; 32
Mayne, Kerrigan, van Wyk, Falugi (b41) 2011; 21
Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu (b15) 2017
Marzullo, Dey, Long, Leiva Vilaplana, Henze (b40) 2022; 15
Karg, Lucia (b27) 2020; 50
Kouvaritakis, Cannon (b30) 2016
Morari, H. Lee (b43) 1999; 23
Wächter, Biegler (b56) 2006; 106
Zeilinger, Morari, Jones (b63) 2014; 59
Bemporad, Morari, Dua, Pistikopoulos (b6) 2002; 38
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Guillén, Fiedler, Sarnago, Lucía, Lucía (b23) 2022; 10
Sopasakis, Fresk, Patrinos (b52) 2020; 53
Vazquez, Leon, Franquelo, Rodriguez, Young, Marquez (b53) 2014; 8
Lucia, Finkler, Engell (b36) 2013; 23
Zanelli, Domahidi, Jerez, Morari (b62) 2020; 93
Blondel, Berthet, Cuturi, Frostig, Hoyer, Llinares-Lopez (b8) 2022; 35
Bonassi, Farina, Scattolini (b10) 2021; 54
Patria, Rossi, Fernandez, Dominguez (b45) 2021; 21
Chue Hong, Katz, Barker, Lamprecht, Martinez, Psomopoulos (b13) 2021
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau (b55) 2020; 17
(b2) 2006
Hornik, Stinchcombe, White (b25) 1989; 2
Andersson, Gillis, Horn, Rawlings, Diehl (b3) 2019; 11
Kouro, Perez, Rodriguez, Llor, Young (b29) 2015; 9
Lucia, Tătulea-Codrean, Schoppmeyer, Engell (b38) 2017; 60
Paulson, Mesbah (b46) 2020; 4
Abadi, Agarwal, Barham, Brevdo, Chen, Citro (b1) 2016
Rawlings, Angeli, Bates (b48) 2012
Winqvist, Venkitaraman, Wahlberg (b59) 2021; 54
Baldacchino, Anderson, Kadirkamanathan (b5) 2012; 48
(pp. 770–778).
Schleipen, Gilani, Bischoff, Pfrommer (b51) 2016; 57
Cocola, Hand (b14) 2020
Krishnamoorthy (b31) 2022; 67
Elokda, Coulson, Beuchat, Lygeros, Dörfler (b16) 2021; 31
Lüken, Brandner, Lucia (b39) 2023
Wise, de Barron, Splendiani, Balali-Mood, Vasant, Little (b60) 2019; 24
Englert, Völz, Mesmer, Rhein, Graichen (b17) 2019; 20
Karg, Alamo, Lucia (b26) 2021; 31
Artrith, Butler, Coudert, Han, Isayev, Jain (b4) 2021; 13
Findeisen, Graichen, Mönnigmann (b19) 2018; 66
Blum, Wang, Weyandt, Kim, Wetter, Hong (b9) 2022; 318
Ljung (b33) 2010; 34
Scampicchio, Aravkin, Pillonetto (b50) 2021; 129
Verschueren, Frison, Kouzoupis, Frey, van Duijkeren, Zanelli (b54) 2022; 14
Yao, Shekhar (b61) 2021; 200
Biegler (b7) 2010
Lucia, Paulen, Engell (b37) 2014
Kumar, Rawlings, Wright (b32) 2021; 150
Wang (b57) 2017
Fiacco, Ishizuka (b18) 1990; 27
Andersson (10.1016/j.conengprac.2023.105676_b3) 2019; 11
Biegler (10.1016/j.conengprac.2023.105676_b7) 2010
Lucia (10.1016/j.conengprac.2023.105676_b37) 2014
Mayne (10.1016/j.conengprac.2023.105676_b41) 2011; 21
Chen (10.1016/j.conengprac.2023.105676_b12) 2018
Zanelli (10.1016/j.conengprac.2023.105676_b62) 2020; 93
Goel (10.1016/j.conengprac.2023.105676_b22) 2022
Lüken (10.1016/j.conengprac.2023.105676_b39) 2023
Wächter (10.1016/j.conengprac.2023.105676_b56) 2006; 106
Kouro (10.1016/j.conengprac.2023.105676_b29) 2015; 9
Blondel (10.1016/j.conengprac.2023.105676_b8) 2022; 35
Schleipen (10.1016/j.conengprac.2023.105676_b51) 2016; 57
Vazquez (10.1016/j.conengprac.2023.105676_b53) 2014; 8
Karg (10.1016/j.conengprac.2023.105676_b26) 2021; 31
Krishnamoorthy (10.1016/j.conengprac.2023.105676_b31) 2022; 67
Kouvaritakis (10.1016/j.conengprac.2023.105676_b30) 2016
Artrith (10.1016/j.conengprac.2023.105676_b4) 2021; 13
Winqvist (10.1016/j.conengprac.2023.105676_b59) 2021; 54
Verschueren (10.1016/j.conengprac.2023.105676_b54) 2022; 14
Bemporad (10.1016/j.conengprac.2023.105676_b6) 2002; 38
Karg (10.1016/j.conengprac.2023.105676_b27) 2020; 50
Zeilinger (10.1016/j.conengprac.2023.105676_b63) 2014; 59
Bonassi (10.1016/j.conengprac.2023.105676_b10) 2021; 54
Englert (10.1016/j.conengprac.2023.105676_b17) 2019; 20
Paszke (10.1016/j.conengprac.2023.105676_b44) 2019; 32
Patria (10.1016/j.conengprac.2023.105676_b45) 2021; 21
Wilkinson (10.1016/j.conengprac.2023.105676_b58) 2016; 3
Czarnecki (10.1016/j.conengprac.2023.105676_b15) 2017
Förster (10.1016/j.conengprac.2023.105676_b21) 2015
Lucia (10.1016/j.conengprac.2023.105676_b38) 2017; 60
Mesbah (10.1016/j.conengprac.2023.105676_b42) 2016; 36
Chue Hong (10.1016/j.conengprac.2023.105676_b13) 2021
10.1016/j.conengprac.2023.105676_b24
Risbeck (10.1016/j.conengprac.2023.105676_b49) 2016
Sopasakis (10.1016/j.conengprac.2023.105676_b52) 2020; 53
Findeisen (10.1016/j.conengprac.2023.105676_b19) 2018; 66
Lucia (10.1016/j.conengprac.2023.105676_b36) 2013; 23
Marzullo (10.1016/j.conengprac.2023.105676_b40) 2022; 15
(10.1016/j.conengprac.2023.105676_b2) 2006
Klatt (10.1016/j.conengprac.2023.105676_b28) 1998; 22
Virtanen (10.1016/j.conengprac.2023.105676_b55) 2020; 17
Fiacco (10.1016/j.conengprac.2023.105676_b18) 1990; 27
Elokda (10.1016/j.conengprac.2023.105676_b16) 2021; 31
Lucia (10.1016/j.conengprac.2023.105676_b35) 2015
Hornik (10.1016/j.conengprac.2023.105676_b25) 1989; 2
Morari (10.1016/j.conengprac.2023.105676_b43) 1999; 23
Ljung (10.1016/j.conengprac.2023.105676_b34) 2020; 53
Abadi (10.1016/j.conengprac.2023.105676_b1) 2016
Rawlings (10.1016/j.conengprac.2023.105676_b48) 2012
Ljung (10.1016/j.conengprac.2023.105676_b33) 2010; 34
Scampicchio (10.1016/j.conengprac.2023.105676_b50) 2021; 129
Guillén (10.1016/j.conengprac.2023.105676_b23) 2022; 10
Yao (10.1016/j.conengprac.2023.105676_b61) 2021; 200
Wang (10.1016/j.conengprac.2023.105676_b57) 2017
Wise (10.1016/j.conengprac.2023.105676_b60) 2019; 24
Cocola (10.1016/j.conengprac.2023.105676_b14) 2020
Paulson (10.1016/j.conengprac.2023.105676_b46) 2020; 4
Chen (10.1016/j.conengprac.2023.105676_b11) 2019
Blum (10.1016/j.conengprac.2023.105676_b9) 2022; 318
Kumar (10.1016/j.conengprac.2023.105676_b32) 2021; 150
Pfrommer (10.1016/j.conengprac.2023.105676_b47) 2022
Baldacchino (10.1016/j.conengprac.2023.105676_b5) 2012; 48
Forbes (10.1016/j.conengprac.2023.105676_b20) 2015; 48
References_xml – start-page: 6652
  year: 2022
  end-page: 6657
  ident: b22
  article-title: The power of linear controllers in LQR control
  publication-title: IEEE 61st conference on decision and control
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b25
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– start-page: 5324
  year: 2017
  end-page: 5329
  ident: b57
  article-title: A new concept using LSTM neural networks for dynamic system identification
  publication-title: American control conference
– volume: 35
  start-page: 5230
  year: 2022
  end-page: 5242
  ident: b8
  article-title: Efficient and modular implicit differentiation
  publication-title: Advances in Neural Information Processing Systems
– volume: 67
  start-page: 6090
  year: 2022
  end-page: 6097
  ident: b31
  article-title: A sensitivity-based data augmentation framework for model predictive control policy approximation
  publication-title: IEEE Transactions on Automatic Control
– volume: 57
  start-page: 315
  year: 2016
  end-page: 320
  ident: b51
  article-title: OPC UA & industrie 4.0 - enabling technology with high diversity and variability
  publication-title: Procedia CIRP
– volume: 200
  year: 2021
  ident: b61
  article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field
  publication-title: Building and Environment
– volume: 60
  start-page: 51
  year: 2017
  end-page: 62
  ident: b38
  article-title: Rapid development of modular and sustainable nonlinear model predictive control solutions
  publication-title: Control Engineering Practice
– volume: 54
  start-page: 7
  year: 2021
  end-page: 12
  ident: b59
  article-title: Learning models of model predictive controllers using gradient data
  publication-title: IFAC-PapersOnLine
– volume: 20
  start-page: 769
  year: 2019
  end-page: 809
  ident: b17
  article-title: A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)
  publication-title: Optimization and Engineering
– volume: 31
  start-page: 8855
  year: 2021
  end-page: 8876
  ident: b26
  article-title: Probabilistic performance validation of deep learning-based robust NMPC controllers
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 23
  start-page: 1306
  year: 2013
  end-page: 1319
  ident: b36
  article-title: Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty
  publication-title: Journal of Process Control
– start-page: 2346
  year: 2022
  end-page: 2353
  ident: b47
  article-title: LQR control with sparse adversarial disturbances
  publication-title: IEEE 61st conference on decision and control
– volume: 50
  start-page: 3866
  year: 2020
  end-page: 3878
  ident: b27
  article-title: Efficient representation and approximation of model predictive control laws via deep learning
  publication-title: IEEE Transactions on Cybernetics
– year: 2015
  ident: b35
  article-title: Robust multi-stage nonlinear model predictive control
– year: 2016
  ident: b30
  publication-title: Model predictive control
– volume: 24
  start-page: 933
  year: 2019
  end-page: 938
  ident: b60
  article-title: Implementation and relevance of FAIR data principles in biopharmaceutical R&D
  publication-title: Drug Discovery Today
– volume: 14
  start-page: 147
  year: 2022
  end-page: 183
  ident: b54
  article-title: Acados—a modular open-source framework for fast embedded optimal control
  publication-title: Mathematical Programming Computation
– year: 2010
  ident: b7
  article-title: Nonlinear programming: concepts, algorithms, and applications to chemical processes, vol. 10
– volume: 9
  start-page: 8
  year: 2015
  end-page: 21
  ident: b29
  article-title: Model predictive control: MPC’s role in the evolution of power electronics
  publication-title: IEEE Industrial Electronics Magazine
– year: 2016
  ident: b49
  article-title: MPCTools: Nonlinear model predictive control tools for CasADi
– volume: 11
  start-page: 1
  year: 2019
  end-page: 36
  ident: b3
  article-title: CasADi: A software framework for nonlinear optimization and optimal control
  publication-title: Mathematical Programming Computation
– volume: 36
  start-page: 30
  year: 2016
  end-page: 44
  ident: b42
  article-title: Stochastic model predictive control: An overview and perspectives for future research
  publication-title: IEEE Control Systems
– volume: 3
  year: 2016
  ident: b58
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Scientific Data
– volume: 54
  start-page: 547
  year: 2021
  end-page: 552
  ident: b10
  article-title: Stability of discrete-time feed-forward neural networks in NARX configuration
  publication-title: IFAC-PapersOnLine
– volume: 13
  start-page: 505
  year: 2021
  end-page: 508
  ident: b4
  article-title: Best practices in machine learning for chemistry
  publication-title: Nature Chemistry
– volume: 59
  start-page: 1190
  year: 2014
  end-page: 1202
  ident: b63
  article-title: Soft constrained model predictive control with robust stability guarantees
  publication-title: IEEE Transactions on Automatic Control
– volume: 4
  start-page: 719
  year: 2020
  end-page: 724
  ident: b46
  article-title: Approximate closed-loop robust model predictive control with guaranteed stability and constraint satisfaction
  publication-title: IEEE Control Systems Letters
– volume: 22
  start-page: 491
  year: 1998
  end-page: 502
  ident: b28
  article-title: Gain-scheduling trajectory control of a continuous stirred tank reactor
  publication-title: Computers & Chemical Engineering
– volume: 318
  year: 2022
  ident: b9
  article-title: Field demonstration and implementation analysis of model predictive control in an office HVAC system
  publication-title: Applied Energy
– start-page: 3365
  year: 2019
  end-page: 3370
  ident: b11
  article-title: MATMPC - A MATLAB based toolbox for real-time nonlinear model predictive control
  publication-title: 18th European control conference
– year: 2015
  ident: b21
  article-title: System identification of the crazyflie 2.0 nano quadrocopter
– year: 2023
  ident: b39
  article-title: Sobolev training for data-efficient approximate nonlinear MPC
  publication-title: 22nd IFAC world congress
– year: 2017
  ident: b15
  article-title: Sobolev training for neural networks
  publication-title: Advances in neural information processing systems, vol. 30
– volume: 53
  start-page: 1175
  year: 2020
  end-page: 1181
  ident: b34
  article-title: Deep learning and system identification
  publication-title: IFAC-PapersOnLine
– year: 2021
  ident: b13
  article-title: FAIR principles for research software (FAIR4RS principles), research data alliance
  publication-title: Research Data Alliance
– volume: 150
  year: 2021
  ident: b32
  article-title: Industrial, large-scale model predictive control with structured neural networks
  publication-title: Computers & Chemical Engineering
– volume: 38
  start-page: 3
  year: 2002
  end-page: 20
  ident: b6
  article-title: The explicit linear quadratic regulator for constrained systems
  publication-title: Automatica
– volume: 48
  start-page: 531
  year: 2015
  end-page: 538
  ident: b20
  article-title: Model predictive control in industry: Challenges and opportunities
  publication-title: IFAC-PapersOnLine
– volume: 66
  start-page: 877
  year: 2018
  end-page: 902
  ident: b19
  article-title: Eingebettete Optimierung in der Regelungstechnik – Grundlagen und Herausforderungen
  publication-title: at - Automatisierungstechnik
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b55
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature methods
– start-page: 1520
  year: 2018
  end-page: 1527
  ident: b12
  article-title: Approximating explicit model predictive control using constrained neural networks
  publication-title: American control conference
– volume: 23
  start-page: 667
  year: 1999
  end-page: 682
  ident: b43
  article-title: Model predictive control: Past, present and future
  publication-title: Computers & Chemical Engineering
– year: 2016
  ident: b1
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– volume: 129
  year: 2021
  ident: b50
  article-title: Stable and robust LQR design via scenario approach
  publication-title: Automatica
– volume: 34
  start-page: 1
  year: 2010
  end-page: 12
  ident: b33
  article-title: Perspectives on system identification
  publication-title: Annual Reviews in Control
– volume: 8
  start-page: 16
  year: 2014
  end-page: 31
  ident: b53
  article-title: Model predictive control: A review of its applications in power electronics
  publication-title: IEEE Industrial Electronics Magazine
– start-page: 3851
  year: 2012
  end-page: 3861
  ident: b48
  article-title: Fundamentals of economic model predictive control
  publication-title: 51st IEEE conference on decision and control
– start-page: 295
  year: 2006
  end-page: 318
  ident: b2
  article-title: Rapid control prototyping
  publication-title: Rapid control prototyping: methoden und anwendungen
– volume: 21
  start-page: 1341
  year: 2011
  end-page: 1353
  ident: b41
  article-title: Tube-based robust nonlinear model predictive control
  publication-title: International Journal of Robust and Nonlinear Control
– start-page: 2816
  year: 2014
  end-page: 2821
  ident: b37
  article-title: Multi-stage nonlinear model predictive control with verified robust constraint satisfaction
  publication-title: 53rd IEEE conference on decision and control
– volume: 27
  start-page: 215
  year: 1990
  end-page: 235
  ident: b18
  article-title: Sensitivity and stability analysis for nonlinear programming
  publication-title: Annals of Operations Research
– reference: (pp. 770–778).
– volume: 53
  start-page: 6548
  year: 2020
  end-page: 6554
  ident: b52
  article-title: OpEn: code generation for embedded nonconvex optimization
  publication-title: IFAC-PapersOnLine
– volume: 21
  start-page: 4193
  year: 2021
  ident: b45
  article-title: Nonlinear control strategies for an autonomous wing-in-ground-effect vehicle
  publication-title: Sensors
– volume: 93
  start-page: 13
  year: 2020
  end-page: 29
  ident: b62
  article-title: FORCES NLP: An efficient implementation of interior-point methods for multistage nonlinear nonconvex programs
  publication-title: International Journal of Control
– volume: 32
  year: 2019
  ident: b44
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in neural information processing systems
– volume: 31
  start-page: 8916
  year: 2021
  end-page: 8936
  ident: b16
  article-title: Data-enabled predictive control for quadcopters
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 15
  start-page: 379
  year: 2022
  end-page: 397
  ident: b40
  article-title: A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls
  publication-title: Journal of Building Performance Simulation
– start-page: 574
  year: 2020
  end-page: 586
  ident: b14
  article-title: Global convergence of Sobolev training for overparameterized neural networks
  publication-title: Machine learning, optimization, and data science, vol. 12565
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  ident: b56
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Mathematical Programming
– volume: 10
  start-page: 65228
  year: 2022
  end-page: 65237
  ident: b23
  article-title: Deep learning implementation of model predictive control for multioutput resonant converters
  publication-title: IEEE Access
– volume: 48
  start-page: 857
  year: 2012
  end-page: 865
  ident: b5
  article-title: Structure detection and parameter estimation for NARX models in a unified EM framework
  publication-title: Automatica
– start-page: 1520
  year: 2018
  ident: 10.1016/j.conengprac.2023.105676_b12
  article-title: Approximating explicit model predictive control using constrained neural networks
– volume: 59
  start-page: 1190
  issue: 5
  year: 2014
  ident: 10.1016/j.conengprac.2023.105676_b63
  article-title: Soft constrained model predictive control with robust stability guarantees
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2304371
– volume: 31
  start-page: 8855
  issue: 18
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b26
  article-title: Probabilistic performance validation of deep learning-based robust NMPC controllers
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5696
– year: 2015
  ident: 10.1016/j.conengprac.2023.105676_b21
– volume: 318
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b9
  article-title: Field demonstration and implementation analysis of model predictive control in an office HVAC system
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2022.119104
– year: 2016
  ident: 10.1016/j.conengprac.2023.105676_b49
– volume: 14
  start-page: 147
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b54
  article-title: Acados—a modular open-source framework for fast embedded optimal control
  publication-title: Mathematical Programming Computation
  doi: 10.1007/s12532-021-00208-8
– volume: 23
  start-page: 667
  issue: 4
  year: 1999
  ident: 10.1016/j.conengprac.2023.105676_b43
  article-title: Model predictive control: Past, present and future
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/S0098-1354(98)00301-9
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.conengprac.2023.105676_b56
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-004-0559-y
– start-page: 2346
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b47
  article-title: LQR control with sparse adversarial disturbances
– year: 2016
  ident: 10.1016/j.conengprac.2023.105676_b1
– volume: 34
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.conengprac.2023.105676_b33
  article-title: Perspectives on system identification
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2009.12.001
– volume: 54
  start-page: 7
  issue: 7
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b59
  article-title: Learning models of model predictive controllers using gradient data
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.08.326
– volume: 27
  start-page: 215
  issue: 1
  year: 1990
  ident: 10.1016/j.conengprac.2023.105676_b18
  article-title: Sensitivity and stability analysis for nonlinear programming
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02055196
– year: 2016
  ident: 10.1016/j.conengprac.2023.105676_b30
– volume: 48
  start-page: 531
  issue: 8
  year: 2015
  ident: 10.1016/j.conengprac.2023.105676_b20
  article-title: Model predictive control in industry: Challenges and opportunities
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.022
– volume: 13
  start-page: 505
  issue: 6
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b4
  article-title: Best practices in machine learning for chemistry
  publication-title: Nature Chemistry
  doi: 10.1038/s41557-021-00716-z
– start-page: 574
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b14
  article-title: Global convergence of Sobolev training for overparameterized neural networks
– year: 2010
  ident: 10.1016/j.conengprac.2023.105676_b7
– volume: 32
  year: 2019
  ident: 10.1016/j.conengprac.2023.105676_b44
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in neural information processing systems
– volume: 4
  start-page: 719
  issue: 3
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b46
  article-title: Approximate closed-loop robust model predictive control with guaranteed stability and constraint satisfaction
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2020.2980479
– start-page: 3851
  year: 2012
  ident: 10.1016/j.conengprac.2023.105676_b48
  article-title: Fundamentals of economic model predictive control
– volume: 38
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.conengprac.2023.105676_b6
  article-title: The explicit linear quadratic regulator for constrained systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00174-1
– start-page: 6652
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b22
  article-title: The power of linear controllers in LQR control
– volume: 9
  start-page: 8
  issue: 4
  year: 2015
  ident: 10.1016/j.conengprac.2023.105676_b29
  article-title: Model predictive control: MPC’s role in the evolution of power electronics
  publication-title: IEEE Industrial Electronics Magazine
  doi: 10.1109/MIE.2015.2478920
– volume: 36
  start-page: 30
  issue: 6
  year: 2016
  ident: 10.1016/j.conengprac.2023.105676_b42
  article-title: Stochastic model predictive control: An overview and perspectives for future research
  publication-title: IEEE Control Systems
  doi: 10.1109/MCS.2016.2602087
– volume: 48
  start-page: 857
  issue: 5
  year: 2012
  ident: 10.1016/j.conengprac.2023.105676_b5
  article-title: Structure detection and parameter estimation for NARX models in a unified EM framework
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.02.021
– volume: 23
  start-page: 1306
  issue: 9
  year: 2013
  ident: 10.1016/j.conengprac.2023.105676_b36
  article-title: Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2013.08.008
– year: 2023
  ident: 10.1016/j.conengprac.2023.105676_b39
  article-title: Sobolev training for data-efficient approximate nonlinear MPC
– year: 2017
  ident: 10.1016/j.conengprac.2023.105676_b15
  article-title: Sobolev training for neural networks
– volume: 60
  start-page: 51
  year: 2017
  ident: 10.1016/j.conengprac.2023.105676_b38
  article-title: Rapid development of modular and sustainable nonlinear model predictive control solutions
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2016.12.009
– volume: 21
  start-page: 4193
  issue: 12
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b45
  article-title: Nonlinear control strategies for an autonomous wing-in-ground-effect vehicle
  publication-title: Sensors
  doi: 10.3390/s21124193
– start-page: 5324
  year: 2017
  ident: 10.1016/j.conengprac.2023.105676_b57
  article-title: A new concept using LSTM neural networks for dynamic system identification
– volume: 54
  start-page: 547
  issue: 7
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b10
  article-title: Stability of discrete-time feed-forward neural networks in NARX configuration
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.08.417
– ident: 10.1016/j.conengprac.2023.105676_b24
  doi: 10.1109/CVPR.2016.90
– volume: 150
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b32
  article-title: Industrial, large-scale model predictive control with structured neural networks
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2021.107291
– start-page: 3365
  year: 2019
  ident: 10.1016/j.conengprac.2023.105676_b11
  article-title: MATMPC - A MATLAB based toolbox for real-time nonlinear model predictive control
– year: 2015
  ident: 10.1016/j.conengprac.2023.105676_b35
– volume: 15
  start-page: 379
  issue: 3
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b40
  article-title: A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls
  publication-title: Journal of Building Performance Simulation
  doi: 10.1080/19401493.2022.2058091
– volume: 10
  start-page: 65228
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b23
  article-title: Deep learning implementation of model predictive control for multioutput resonant converters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3183746
– volume: 93
  start-page: 13
  issue: 1
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b62
  article-title: FORCES NLP: An efficient implementation of interior-point methods for multistage nonlinear nonconvex programs
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2017.1316017
– volume: 24
  start-page: 933
  issue: 4
  year: 2019
  ident: 10.1016/j.conengprac.2023.105676_b60
  article-title: Implementation and relevance of FAIR data principles in biopharmaceutical R&D
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2019.01.008
– volume: 20
  start-page: 769
  issue: 3
  year: 2019
  ident: 10.1016/j.conengprac.2023.105676_b17
  article-title: A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)
  publication-title: Optimization and Engineering
  doi: 10.1007/s11081-018-9417-2
– volume: 22
  start-page: 491
  issue: 4
  year: 1998
  ident: 10.1016/j.conengprac.2023.105676_b28
  article-title: Gain-scheduling trajectory control of a continuous stirred tank reactor
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/S0098-1354(97)00261-5
– volume: 8
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.conengprac.2023.105676_b53
  article-title: Model predictive control: A review of its applications in power electronics
  publication-title: IEEE Industrial Electronics Magazine
  doi: 10.1109/MIE.2013.2290138
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b55
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature methods
  doi: 10.1038/s41592-019-0686-2
– volume: 31
  start-page: 8916
  issue: 18
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b16
  article-title: Data-enabled predictive control for quadcopters
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5686
– start-page: 2816
  year: 2014
  ident: 10.1016/j.conengprac.2023.105676_b37
  article-title: Multi-stage nonlinear model predictive control with verified robust constraint satisfaction
– volume: 57
  start-page: 315
  year: 2016
  ident: 10.1016/j.conengprac.2023.105676_b51
  article-title: OPC UA & industrie 4.0 - enabling technology with high diversity and variability
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.055
– volume: 200
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b61
  article-title: State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2021.107952
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.conengprac.2023.105676_b25
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 67
  start-page: 6090
  issue: 11
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b31
  article-title: A sensitivity-based data augmentation framework for model predictive control policy approximation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2021.3124983
– year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b13
  article-title: FAIR principles for research software (FAIR4RS principles), research data alliance
  publication-title: Research Data Alliance
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.conengprac.2023.105676_b58
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.18
– volume: 35
  start-page: 5230
  year: 2022
  ident: 10.1016/j.conengprac.2023.105676_b8
  article-title: Efficient and modular implicit differentiation
  publication-title: Advances in Neural Information Processing Systems
– volume: 21
  start-page: 1341
  issue: 11
  year: 2011
  ident: 10.1016/j.conengprac.2023.105676_b41
  article-title: Tube-based robust nonlinear model predictive control
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.1758
– volume: 53
  start-page: 6548
  issue: 2
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b52
  article-title: OpEn: code generation for embedded nonconvex optimization
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.071
– volume: 50
  start-page: 3866
  issue: 9
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b27
  article-title: Efficient representation and approximation of model predictive control laws via deep learning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2999556
– volume: 129
  year: 2021
  ident: 10.1016/j.conengprac.2023.105676_b50
  article-title: Stable and robust LQR design via scenario approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109571
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.conengprac.2023.105676_b3
  article-title: CasADi: A software framework for nonlinear optimization and optimal control
  publication-title: Mathematical Programming Computation
  doi: 10.1007/s12532-018-0139-4
– start-page: 295
  year: 2006
  ident: 10.1016/j.conengprac.2023.105676_b2
  article-title: Rapid control prototyping
– volume: 66
  start-page: 877
  issue: 11
  year: 2018
  ident: 10.1016/j.conengprac.2023.105676_b19
  article-title: Eingebettete Optimierung in der Regelungstechnik – Grundlagen und Herausforderungen
  publication-title: at - Automatisierungstechnik
  doi: 10.1515/auto-2018-0083
– volume: 53
  start-page: 1175
  issue: 2
  year: 2020
  ident: 10.1016/j.conengprac.2023.105676_b34
  article-title: Deep learning and system identification
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.1329
SSID ssj0016991
Score 2.59797
Snippet Over the last decades, model predictive control (MPC) has shown outstanding performance for control tasks from various domains. This performance has further...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105676
SubjectTerms Learning-based control
Nonlinear model predictive control
Robust control
Title do-mpc: Towards FAIR nonlinear and robust model predictive control
URI https://dx.doi.org/10.1016/j.conengprac.2023.105676
Volume 140
WOSCitedRecordID wos001074772500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016991
  issn: 0967-0661
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4ftYexKuxt62FtxiaVYsrqnJGtYRyljdCNvRpIlSJq6IZc2P39HlixnW6HdYC_GGCRbPh9Hx8ff-Q5CHxQRSmSlSijsH0mPdEUiqBaJ0pazTFOj6jruH6f87Cwfj8XXTuemqYW5nvGqyjcbMf-vpoZrYGxXOvsX5o6TwgU4B6PDEcwOx3sZvrxKLue6TpvXlNjlwah_8u2g8poY0nMmF1dqvVz5PjhOJ6Cc1H6vYa5vh6zDQGY3rXJhrK2K1odANpQUjsxssoluXHry2MBUU3k5aek_7v_8YHjhfd7p-kK22XrYPMtQhfPJBOyGtAShoT5vK7_IHK_OK61HV-ulmYKzhNCO-eYvf_hxn1KYghkqWJ1b1KG7yWE75Ffp7N-2tEg0bDhs06KdqXAzFX6mB2iX8EyAO9ztnxyPv8QfUEz4ZovNKgIJzFMDb3-q2yObrWjl_Cl6Ej4zcN_D4xnqmOo5erwlPvkCDTxQjnCACXYwwREmGMyAPUxwDRPcwgQHmLxE30fH58PPSeiokWjK8lVimXZfsFZb0tWGCVbmJZECokZlnWxQRpl0SQGR5aWxGmJHxokWPa4t7Slq6Su0A89h9hDOrKFWEi4Zl720q2QmGdFp16a5SmXK9hFv3kahg9y863oyK-6yyT5K48i5l1y5x5iPzQsvQujoQ8ICEHXn6Nf_cMc36FEL-7doZ7VYm3foob5eTZaL9wFOPwEdu5Qi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=do-mpc%3A+Towards+FAIR+nonlinear+and+robust+model+predictive+control&rft.jtitle=Control+engineering+practice&rft.au=Fiedler%2C+Felix&rft.au=Karg%2C+Benjamin&rft.au=L%C3%BCken%2C+Lukas&rft.au=Brandner%2C+Dean&rft.date=2023-11-01&rft.issn=0967-0661&rft.volume=140&rft.spage=105676&rft_id=info:doi/10.1016%2Fj.conengprac.2023.105676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conengprac_2023_105676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon