Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment
This paper solves an accurate fixed-time attitude and position control problems of a quadrotor UAV system. The aircraft system is subject to nonlinearities, parameter uncertainties, unmodeled dynamics, and external time-varying disturbances. To deal with the under-actuation problem of the quadrotor’...
Saved in:
| Published in: | Control engineering practice Vol. 111; p. 104806 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2021
|
| Subjects: | |
| ISSN: | 0967-0661, 1873-6939 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper solves an accurate fixed-time attitude and position control problems of a quadrotor UAV system. The aircraft system is subject to nonlinearities, parameter uncertainties, unmodeled dynamics, and external time-varying disturbances. To deal with the under-actuation problem of the quadrotor’s dynamics, a hierarchical control structure with an inner–outer loop framework is adopted for the flight control system design. Robust nonlinear control strategies for attitude and position control are innovatively proposed based on a new continuous nonsingular terminal sliding mode control (CNTSMC) scheme. A full-order homogeneous terminal sliding surface is designed for the attitude and position states in such a way that the sliding motion is fixed-time stable independently of the system’s initial condition. Hence, this contributes to enhancing the control system robustness. A disturbance observer-based control (DOBC) approach is developed to stabilize the inner rotational subsystem (attitude-loop). This compounded control structure integrates a finite-time observer (FTO) and the CNTSMC scheme. The FTO observer is incorporated into the control framework to cope with the strong perturbations. An output-feedback control approach is adopted for the outer translational subsystem (position-loop) to ensure a velocity-free control. In this context, the CNTSMC scheme is combined with a fixed-time extended state observer (FXESO) to achieve an active disturbance rejection control (ADRC) by estimating and canceling the lumped disturbances. Therefore, within the developed control approach including the robust CNTSMC scheme, DOBC, and ADRC strategies, robust and accurate trajectory tracking control can be achieved despite uncertainties and disturbances. Stability analysis of the closed-loop system is rigorously investigated by using the Lyapunov theorem, bi-limit homogeneous theory, and the notion of input-to-state stability (ISS). Extensive experimental tests under the influence of various disturbances are conducted to corroborate the theoretical findings. To this end, an effective model-based design (MBD) framework is established to implement the developed control algorithms in real autopilot hardware. Furthermore, processor-in-the-loop (PIL) experiments are also carried out within the MBD framework. A comparative study is made involving our control algorithms and other control strategies. Overall, the obtained results show that the synthesized control system yields performance improvement regarding fixed-time tracking stability featuring fast transient, strong robustness, and high steady-state precision. Besides, the chattering effect of regular linear sliding mode control (LSMC) is significantly alleviated. Moreover, unlike conventional TSMC, the control input shows no singularity.
[Display omitted]
•Asymptotic control methods have a slow convergence rate and less robustness.•Convergence time of finite-time control grows unboundedly along with the deviation of initial conditions from the equilibrium point.•CNTSMC control algorithm is adopted within DOBC and ADRC approaches to design a robust flight control system to achieve fast fixed-time stability for the quadrotor system despite multiple disturbances.•Experiments have been conducted on a real quadrotor aircraft.•Control system performance is improved compared to some existing robust controllers. |
|---|---|
| AbstractList | This paper solves an accurate fixed-time attitude and position control problems of a quadrotor UAV system. The aircraft system is subject to nonlinearities, parameter uncertainties, unmodeled dynamics, and external time-varying disturbances. To deal with the under-actuation problem of the quadrotor’s dynamics, a hierarchical control structure with an inner–outer loop framework is adopted for the flight control system design. Robust nonlinear control strategies for attitude and position control are innovatively proposed based on a new continuous nonsingular terminal sliding mode control (CNTSMC) scheme. A full-order homogeneous terminal sliding surface is designed for the attitude and position states in such a way that the sliding motion is fixed-time stable independently of the system’s initial condition. Hence, this contributes to enhancing the control system robustness. A disturbance observer-based control (DOBC) approach is developed to stabilize the inner rotational subsystem (attitude-loop). This compounded control structure integrates a finite-time observer (FTO) and the CNTSMC scheme. The FTO observer is incorporated into the control framework to cope with the strong perturbations. An output-feedback control approach is adopted for the outer translational subsystem (position-loop) to ensure a velocity-free control. In this context, the CNTSMC scheme is combined with a fixed-time extended state observer (FXESO) to achieve an active disturbance rejection control (ADRC) by estimating and canceling the lumped disturbances. Therefore, within the developed control approach including the robust CNTSMC scheme, DOBC, and ADRC strategies, robust and accurate trajectory tracking control can be achieved despite uncertainties and disturbances. Stability analysis of the closed-loop system is rigorously investigated by using the Lyapunov theorem, bi-limit homogeneous theory, and the notion of input-to-state stability (ISS). Extensive experimental tests under the influence of various disturbances are conducted to corroborate the theoretical findings. To this end, an effective model-based design (MBD) framework is established to implement the developed control algorithms in real autopilot hardware. Furthermore, processor-in-the-loop (PIL) experiments are also carried out within the MBD framework. A comparative study is made involving our control algorithms and other control strategies. Overall, the obtained results show that the synthesized control system yields performance improvement regarding fixed-time tracking stability featuring fast transient, strong robustness, and high steady-state precision. Besides, the chattering effect of regular linear sliding mode control (LSMC) is significantly alleviated. Moreover, unlike conventional TSMC, the control input shows no singularity.
[Display omitted]
•Asymptotic control methods have a slow convergence rate and less robustness.•Convergence time of finite-time control grows unboundedly along with the deviation of initial conditions from the equilibrium point.•CNTSMC control algorithm is adopted within DOBC and ADRC approaches to design a robust flight control system to achieve fast fixed-time stability for the quadrotor system despite multiple disturbances.•Experiments have been conducted on a real quadrotor aircraft.•Control system performance is improved compared to some existing robust controllers. |
| ArticleNumber | 104806 |
| Author | Shi, Mengji Huang, Ya Mechali, Omar Xie, Xiaomei Xu, Limei |
| Author_xml | – sequence: 1 givenname: Omar surname: Mechali fullname: Mechali, Omar organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 2 givenname: Limei surname: Xu fullname: Xu, Limei email: xulimei@uestc.edu.cn organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 3 givenname: Ya orcidid: 0000-0003-1929-4531 surname: Huang fullname: Huang, Ya organization: School of Mechanical and Design Engineering, University of Portsmouth PO1 3DJ Portsmouth, UK – sequence: 4 givenname: Mengji surname: Shi fullname: Shi, Mengji organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 5 givenname: Xiaomei surname: Xie fullname: Xie, Xiaomei organization: School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, China |
| BookMark | eNqNkd1q3DAQhUVJoZu076AX8FayHFvuRaEN_QkEcpNem7FmlGrjtbYjOSRP11erzAYCuUlvJHGk841mzqk4meNMQkittlrp9uNu64ow3x4Y3LZWtS5yY1X7Rmy07UzV9qY_ERvVt12l2la_E6cp7VSx9r3eiL_XYyK-J65GSITShwfCKoc9ycLNYV7ikmSpmcJ8u0zAMhPvwwyTTFPAIsp9xONjjpOMXv5ZADnmyBICOwaf5TIjcVkdcYZQsJQkzCgxpLzwCOUiSV8cHMclZZkZduQK4nE9urtS5pO8-U2rsPro4UBc_jjn9-KthynRh6f9TPz6_u3m4md1df3j8uLLVeVMa3Plz1HVxiKMBlrVdWgsode9JWh623fno1WojUMz9rZVHmyDrva-aRDB1Y05E5-PXMcxJSY_uJAhh7VtCNOg1bDGMeyG5ziGNY7hGEcB2BeAQ-kA-PF_rF-PVioN3gfiIblAZWYYuExpwBheh_wDjcW2KQ |
| CitedBy_id | crossref_primary_10_1016_j_ast_2023_108541 crossref_primary_10_1016_j_conengprac_2025_106564 crossref_primary_10_1016_j_conengprac_2022_105150 crossref_primary_10_1016_j_ast_2024_109596 crossref_primary_10_1002_asjc_3531 crossref_primary_10_1177_00202940231216139 crossref_primary_10_3390_drones8030095 crossref_primary_10_1016_j_ast_2023_108668 crossref_primary_10_3390_math11040994 crossref_primary_10_1088_2631_8695_ae0090 crossref_primary_10_1016_j_asr_2022_09_016 crossref_primary_10_1109_ACCESS_2024_3360333 crossref_primary_10_3390_drones9040232 crossref_primary_10_1109_ACCESS_2023_3265957 crossref_primary_10_1007_s11071_024_10030_1 crossref_primary_10_1002_asjc_3779 crossref_primary_10_1016_j_engappai_2023_106052 crossref_primary_10_1371_journal_pone_0291042 crossref_primary_10_1016_j_jfranklin_2022_01_010 crossref_primary_10_1109_ACCESS_2024_3439414 crossref_primary_10_15446_ing_investig_109708 crossref_primary_10_1016_j_prime_2024_100830 crossref_primary_10_1080_00207721_2025_2505714 crossref_primary_10_2514_1_G008215 crossref_primary_10_1145_3617652 crossref_primary_10_1080_00207721_2024_2427852 crossref_primary_10_1177_10775463251329834 crossref_primary_10_3390_aerospace11070567 crossref_primary_10_1108_IR_11_2022_0277 crossref_primary_10_1016_j_eswa_2022_118215 crossref_primary_10_1177_09596518251326975 crossref_primary_10_1016_j_jfranklin_2022_03_018 crossref_primary_10_1177_09544062231167026 crossref_primary_10_1177_09544100251350354 crossref_primary_10_1007_s11071_025_11201_4 crossref_primary_10_1177_01423312241265529 crossref_primary_10_1016_j_robot_2024_104682 crossref_primary_10_1080_00207721_2025_2512208 crossref_primary_10_1007_s12555_022_0235_0 crossref_primary_10_1016_j_conengprac_2024_105894 crossref_primary_10_1109_ACCESS_2023_3252539 crossref_primary_10_1016_j_ast_2023_108322 crossref_primary_10_1016_j_ast_2022_107639 crossref_primary_10_1007_s40435_022_01004_5 crossref_primary_10_1080_00207721_2024_2429802 crossref_primary_10_1016_j_compeleceng_2024_109699 crossref_primary_10_1080_00207179_2023_2285412 crossref_primary_10_1109_TRO_2025_3600157 crossref_primary_10_1177_10775463231161848 crossref_primary_10_1109_TIV_2024_3401068 crossref_primary_10_1109_TAES_2024_3456760 crossref_primary_10_1155_2021_5522379 crossref_primary_10_3390_e25091335 crossref_primary_10_1109_ACCESS_2024_3507086 crossref_primary_10_3390_drones7120700 crossref_primary_10_1177_09596518241273990 crossref_primary_10_1155_2024_8820378 crossref_primary_10_1016_j_conengprac_2022_105284 crossref_primary_10_1177_10775463251346070 crossref_primary_10_1016_j_ast_2021_107128 crossref_primary_10_1109_ACCESS_2024_3400322 crossref_primary_10_1016_j_oceaneng_2024_116682 crossref_primary_10_1177_09544070221140938 crossref_primary_10_1016_j_ast_2022_107749 crossref_primary_10_1016_j_conengprac_2023_105745 crossref_primary_10_1016_j_conengprac_2025_106316 crossref_primary_10_1109_TIM_2024_3373081 crossref_primary_10_3390_math11040991 crossref_primary_10_1177_10775463241240641 crossref_primary_10_1007_s40435_023_01295_2 crossref_primary_10_1016_j_asr_2022_12_037 crossref_primary_10_1109_LRA_2022_3151157 crossref_primary_10_1016_j_isatra_2023_06_017 crossref_primary_10_1016_j_isatra_2023_08_008 crossref_primary_10_1016_j_ins_2023_119110 crossref_primary_10_1088_1361_6501_ad4627 |
| Cites_doi | 10.1109/ACCESS.2019.2962722 10.1109/81.641769 10.1016/j.conengprac.2018.09.016 10.1109/ICRA.2011.5980229 10.1016/j.automatica.2019.108792 10.1016/j.ifacol.2017.08.497 10.1016/j.comcom.2019.10.007 10.1016/j.isatra.2015.07.012 10.1016/j.automatica.2009.10.018 10.1016/j.ymssp.2017.11.034 10.1016/j.oceaneng.2017.09.062 10.1109/TAC.2010.2041973 10.1016/j.oceaneng.2019.05.078 10.1109/CYBER46603.2019.9066691 10.1016/j.conengprac.2020.104560 10.1016/j.isatra.2019.07.003 10.1109/ICMA49215.2020.9233586 10.1109/TIE.2019.2931517 10.1016/j.automatica.2007.01.008 10.1016/j.automatica.2019.108515 10.1007/s12555-019-0302-3 10.1109/IECON.2014.7048498 10.2514/3.11437 10.1016/S0005-1098(02)00147-4 10.1016/j.ast.2017.05.022 10.1109/ACCESS.2019.2941373 10.1016/j.ast.2020.105716 10.1016/j.ast.2018.12.013 10.1016/j.automatica.2017.02.035 10.1016/j.ast.2019.03.059 10.1016/j.neucom.2016.07.033 10.1016/j.isatra.2018.12.042 10.1016/j.conengprac.2019.06.013 10.1109/TIE.2018.2831191 10.1007/s10846-018-0898-1 10.1016/j.conengprac.2019.05.022 10.1137/060675861 10.1007/s11071-018-4532-3 10.1109/TMECH.2014.2323897 10.1016/j.isatra.2019.10.012 10.1016/j.ast.2020.105968 10.1109/TAC.2011.2179869 10.1049/iet-cta.2019.0623 10.1016/j.automatica.2013.03.026 10.1109/IROS.2016.7759784 10.1109/9.362847 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2021.104806 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| ExternalDocumentID | 10_1016_j_conengprac_2021_104806 S0967066121000836 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c368t-f5d0238dab3a6077d38edf198ea498975b80d13cd3b9860fa84dc2ff44ddac243 |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642472900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Sat Nov 29 07:02:56 EST 2025 Tue Nov 18 20:40:39 EST 2025 Fri Feb 23 02:46:29 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | continuous nonsingular terminal sliding mode control Disturbance observer-based control Quadrotor UAV Trajectory tracking control Fixed-time stability Output-feedback control Active disturbance rejection control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-f5d0238dab3a6077d38edf198ea498975b80d13cd3b9860fa84dc2ff44ddac243 |
| ORCID | 0000-0003-1929-4531 |
| OpenAccessLink | https://researchportal.port.ac.uk/portal/en/publications/observerbased-fixedtime-continuous-nonsingular-terminal-sliding-mode-control-of-quadrotor-aircraft-under-uncertainties-and-disturbances-for-robust-trajectory-tracking-theory-and-experiment(de50ef52-5dd3-4c36-861c-d84dffd980f0).html |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conengprac_2021_104806 crossref_primary_10_1016_j_conengprac_2021_104806 elsevier_sciencedirect_doi_10_1016_j_conengprac_2021_104806 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zou, Kumar, Ruiter (b65) 2020; 113 Guo, Yu, Guo, Xie (b17) 2020; 102 Li, Wang, Tan, Zheng (b25) 2016; 216 Tian, Lu, Zuo, Wang (b47) 2018; 94 Quan, Q. (2020). Reliable Flight Control Group, Department of Automatic Control, School of Automation Science and Electrical Engineering, Beihang University. [Online]. Available Wang, Lv, Zhang, Liu, Er (b55) 2017; 145 Quan (b34) 2017 Fridman, Moreno, Bandyopadhyay, Kamal, Chalanga (b16) 2015 Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart, R., & Galceran, E. (2016). Continuous-time trajectory optimization for online UAV replanning, In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea. Chen, Jiang, Zhang, Jiang, Member, Tao (b10) 2016; 63 Raffo, Ortega, Rubio (b36) 2010; 46 Ammar, Bouallègue, Haggège, Vaidyanathan (b4) 2017 Wanga, Deng, Xie, Pan (b57) 2019; 90 Xiong, Wang, Liu, Chen, Wang (b58) 2015; 58 Wang, Y., Han, F., Feng, Y., & Xia, H. (2014). Hybrid continuous nonsingular terminal sliding mode control of uncertain flexible manipulators, In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA. Wang, Li, Li (b54) 2019 Wang, Su, Zhang (b56) 2020; 14 Rodolfo, Carrillo, López, Lozano, Pégard (b39) 2013 Edwards, Spurgeon (b12) 1998 Labbadi, Cherkaoui (b23) 2020; 99 Zolotas (b64) 2014 Plesha, Gray, Costanzo (b31) 2012 Zhihong, Paplinski, Wu (b62) 1994; 39 Mechali (b26) 2019 Beal (b6) 1993; 16 Falcón, Ríos, Dzul (b14) 2019; 90 Du, Fang, Liu (b11) 2019; 7 Zhang, Gu, Ren, Wen (b60) 2019; 85 . Rabiee, Ataei, Ekramian (b35) 2019; 109 Sampedro, Rodriguez-Ramos, Bavle (b41) 2019; 95 Yang, Li, Su, Yu (b59) 2013; 49 Mechali, O., Xu, L., Senouci, A., Xie, X., Xin, C., & Mechali, A. (2020). Finite-time observer-based robust continuous twisting control for the attitude of an uncertain quadrotor UAV subjected to disturbances, In 2020 IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2020), Beijing, China. Bouzid, Siguerdidjane, Bestaoui (b8) 2018 Andrieu, Praly, Astolfi (b5) 2008; 47 Sudhakar, Vijayakumar, Kumar, Priya (b45) 2020; 149 Meier, L., Tanskanen, P., Fraundorfer, F., & Pollefeys, M. (2011). Pixhawk: System for autonomous flight using onboard computer vision, In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. Utkin (b50) 1992 Habeck, Seiler (b18) 2016 Almakhles (b3) 2020; 8 Levant (b24) 2010; 55 Torres-González, Sanchez, Fridman, Morenob (b48) 2017; 80 Wang, Hua, Chen, Cai (b52) 2019 Shtessela, Shkolnikovb, Levant (b44) 2007; 43 Shtessel, Edwards, Fridman, Levant (b43) 2014 Zhang, Yu, Yan (b61) 2019; 186 Jia, Yu, Mei, Chen, Shen, Ai (b21) 2017; 68 Polyakov (b32) 2012; 57 Mechali, O., Limei, X., Mingzhu, W., Fan, G., & Senouci, A. (2019). Rectified RRT* path planning with efficient obstacles avoidance method for UAV, In 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China. Ullah, Mehmood, Khan, Rehman, Iqbal (b49) 2020; 18 Aboudonia, El-Badawy, Rashad (b1) 2016; 230 Hou, Yu, Xu, Rsetam, Cao (b20) 2020; 67 Hou, Lu, Tu (b19) 2020; 98 Zuo, Han, Ning (b66) 2019 Wang, Li (b53) 2018 Ríos, Falcón, González, Dzul (b38) 2019; 66 Ai, Yu (b2) 2019; 89 Castillo, Sanz, Garcia, Qiu, Wang, Xu (b9) 2019; 82 Emran, Najjaran (b13) 2020 Rousseau, Maniu, Tebbani, Babel, Martin (b40) 2019; 89 Feng, Yu, Man (b15) 2002; 38 Shao, Liu, Wan (b42) 2018; 104 Zhihong, Yu (b63) 1997; 44 Tang, Lin, Zheng, Fan, Ye (b46) 2020; 104 Boukattaya, Gassara, Damak (b7) 2020; 97 Jin, Lee, d. K. K. Ahn (b22) 2015; 20 Reichhartinger, M., Spurgeon, S. K., Forstinger, M., & Wipfler, M. (2017). A robust exact differentiator toolbox for Matlab/Simulink, In IFAC World Congress, Toulouse. Boukattaya (10.1016/j.conengprac.2021.104806_b7) 2020; 97 Zou (10.1016/j.conengprac.2021.104806_b65) 2020; 113 Wanga (10.1016/j.conengprac.2021.104806_b57) 2019; 90 Emran (10.1016/j.conengprac.2021.104806_b13) 2020 Shtessel (10.1016/j.conengprac.2021.104806_b43) 2014 Jia (10.1016/j.conengprac.2021.104806_b21) 2017; 68 Torres-González (10.1016/j.conengprac.2021.104806_b48) 2017; 80 Sudhakar (10.1016/j.conengprac.2021.104806_b45) 2020; 149 Aboudonia (10.1016/j.conengprac.2021.104806_b1) 2016; 230 Levant (10.1016/j.conengprac.2021.104806_b24) 2010; 55 Edwards (10.1016/j.conengprac.2021.104806_b12) 1998 Yang (10.1016/j.conengprac.2021.104806_b59) 2013; 49 Fridman (10.1016/j.conengprac.2021.104806_b16) 2015 Zuo (10.1016/j.conengprac.2021.104806_b66) 2019 Zhang (10.1016/j.conengprac.2021.104806_b61) 2019; 186 Quan (10.1016/j.conengprac.2021.104806_b34) 2017 Raffo (10.1016/j.conengprac.2021.104806_b36) 2010; 46 10.1016/j.conengprac.2021.104806_b51 Ríos (10.1016/j.conengprac.2021.104806_b38) 2019; 66 Feng (10.1016/j.conengprac.2021.104806_b15) 2002; 38 Mechali (10.1016/j.conengprac.2021.104806_b26) 2019 Wang (10.1016/j.conengprac.2021.104806_b55) 2017; 145 Sampedro (10.1016/j.conengprac.2021.104806_b41) 2019; 95 Shtessela (10.1016/j.conengprac.2021.104806_b44) 2007; 43 Du (10.1016/j.conengprac.2021.104806_b11) 2019; 7 Wang (10.1016/j.conengprac.2021.104806_b54) 2019 Hou (10.1016/j.conengprac.2021.104806_b19) 2020; 98 Bouzid (10.1016/j.conengprac.2021.104806_b8) 2018 Rousseau (10.1016/j.conengprac.2021.104806_b40) 2019; 89 Ullah (10.1016/j.conengprac.2021.104806_b49) 2020; 18 Rodolfo (10.1016/j.conengprac.2021.104806_b39) 2013 Beal (10.1016/j.conengprac.2021.104806_b6) 1993; 16 Zolotas (10.1016/j.conengprac.2021.104806_b64) 2014 Shao (10.1016/j.conengprac.2021.104806_b42) 2018; 104 Wang (10.1016/j.conengprac.2021.104806_b52) 2019 Zhang (10.1016/j.conengprac.2021.104806_b60) 2019; 85 Zhihong (10.1016/j.conengprac.2021.104806_b63) 1997; 44 Guo (10.1016/j.conengprac.2021.104806_b17) 2020; 102 10.1016/j.conengprac.2021.104806_b29 Labbadi (10.1016/j.conengprac.2021.104806_b23) 2020; 99 10.1016/j.conengprac.2021.104806_b27 Andrieu (10.1016/j.conengprac.2021.104806_b5) 2008; 47 Castillo (10.1016/j.conengprac.2021.104806_b9) 2019; 82 10.1016/j.conengprac.2021.104806_b28 Xiong (10.1016/j.conengprac.2021.104806_b58) 2015; 58 10.1016/j.conengprac.2021.104806_b33 10.1016/j.conengprac.2021.104806_b30 Zhihong (10.1016/j.conengprac.2021.104806_b62) 1994; 39 Hou (10.1016/j.conengprac.2021.104806_b20) 2020; 67 Tian (10.1016/j.conengprac.2021.104806_b47) 2018; 94 Falcón (10.1016/j.conengprac.2021.104806_b14) 2019; 90 Wang (10.1016/j.conengprac.2021.104806_b53) 2018 Habeck (10.1016/j.conengprac.2021.104806_b18) 2016 Jin (10.1016/j.conengprac.2021.104806_b22) 2015; 20 Li (10.1016/j.conengprac.2021.104806_b25) 2016; 216 Polyakov (10.1016/j.conengprac.2021.104806_b32) 2012; 57 Rabiee (10.1016/j.conengprac.2021.104806_b35) 2019; 109 Ai (10.1016/j.conengprac.2021.104806_b2) 2019; 89 Almakhles (10.1016/j.conengprac.2021.104806_b3) 2020; 8 Ammar (10.1016/j.conengprac.2021.104806_b4) 2017 Plesha (10.1016/j.conengprac.2021.104806_b31) 2012 Tang (10.1016/j.conengprac.2021.104806_b46) 2020; 104 Wang (10.1016/j.conengprac.2021.104806_b56) 2020; 14 Chen (10.1016/j.conengprac.2021.104806_b10) 2016; 63 10.1016/j.conengprac.2021.104806_b37 Utkin (10.1016/j.conengprac.2021.104806_b50) 1992 |
| References_xml | – reference: Mechali, O., Limei, X., Mingzhu, W., Fan, G., & Senouci, A. (2019). Rectified RRT* path planning with efficient obstacles avoidance method for UAV, In 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China. – year: 1992 ident: b50 article-title: Sliding modes in control and optimization – volume: 97 start-page: 155 year: 2020 end-page: 170 ident: b7 article-title: A global time-varying sliding-mode control for the tracking problem of uncertain dynamical systems publication-title: ISA Transactions – reference: Meier, L., Tanskanen, P., Fraundorfer, F., & Pollefeys, M. (2011). Pixhawk: System for autonomous flight using onboard computer vision, In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. – start-page: 1 year: 2019 end-page: 5 ident: b54 article-title: Continuous nonsingular terminal sliding mode control of DC-DC boost converters subject to time-varying disturbances publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 67 start-page: 5647 year: 2020 end-page: 5656 ident: b20 article-title: Finite-time continuous terminal sliding mode control of servo motor systems publication-title: IEEE Transactions on Industrial Electronics – volume: 109 start-page: 1 year: 2019 end-page: 7 ident: b35 article-title: Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems publication-title: Automatica – volume: 43 start-page: 1470 year: 2007 end-page: 1476 ident: b44 article-title: Smooth second-order sliding modes: Missile guidance application publication-title: Automatica – volume: 95 start-page: 601 year: 2019 end-page: 627 ident: b41 article-title: A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques publication-title: Journal of Intelligent and Robotic Systems – reference: Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart, R., & Galceran, E. (2016). Continuous-time trajectory optimization for online UAV replanning, In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea. – reference: Wang, Y., Han, F., Feng, Y., & Xia, H. (2014). Hybrid continuous nonsingular terminal sliding mode control of uncertain flexible manipulators, In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA. – volume: 89 start-page: 190 year: 2019 end-page: 203 ident: b40 article-title: Minimum-time B-spline trajectories with corridor constraints. Application to cinematographic quadrotor flight plans publication-title: Control Engineering Practice – volume: 90 start-page: 241 year: 2019 end-page: 256 ident: b14 article-title: Comparative analysis of continuous sliding-modes control strategies for quad-rotor robust tracking publication-title: Control Engineering Practice – year: 2013 ident: b39 article-title: Quad rotorcraft control – volume: 46 start-page: 29 year: 2010 end-page: 39 ident: b36 article-title: An integral predictive/nonlinear H- publication-title: Automatica – reference: Reichhartinger, M., Spurgeon, S. K., Forstinger, M., & Wipfler, M. (2017). A robust exact differentiator toolbox for Matlab/Simulink, In IFAC World Congress, Toulouse. – volume: 145 start-page: 406 year: 2017 end-page: 415 ident: b55 article-title: Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns publication-title: Ocean Engineering – volume: 89 start-page: 58 year: 2019 end-page: 76 ident: b2 article-title: Fixed-time trajectory tracking for a quadrotor with external disturbances: A flatness-based sliding mode control approach publication-title: Aerospace Science and Technology – volume: 104 start-page: 1 year: 2020 end-page: 16 ident: b46 article-title: Observer based finite-time fault tolerant quadrotor attitude control with actuator faults publication-title: Aerospace Science and Technology – volume: 63 start-page: 5044 year: 2016 end-page: 5056 ident: b10 article-title: Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV publication-title: IEEE Transactions on Industrial Electronics – year: 2012 ident: b31 article-title: Engineering mechanics: Statics and dynamics – volume: 8 start-page: 5515 year: 2020 end-page: 5525 ident: b3 article-title: Robust backstepping sliding mode control for a quadrotor trajectory tracking application publication-title: IEEE Access – volume: 47 start-page: 1814 year: 2008 end-page: 1850 ident: b5 article-title: Homogeneous approximation recursive observer design output feedback publication-title: SIAM Journal on Control and Optimization – volume: 104 start-page: 631 year: 2018 end-page: 741 ident: b42 article-title: Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator publication-title: Mechanical Systems and Signal Processing – volume: 14 start-page: 790 year: 2020 end-page: 799 ident: b56 article-title: Fixed-time attitude tracking control for rigid spacecraft publication-title: IET Control Theory & Applications – volume: 94 start-page: 2889 year: 2018 end-page: 2899 ident: b47 article-title: Fixed-time stabilization of high-order integrator systems with mismatched disturbances publication-title: Nonlinear Dynamics – year: 2017 ident: b34 article-title: Introduction to multicopter design and control – volume: 186 start-page: 1 year: 2019 end-page: 9 ident: b61 article-title: Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances publication-title: Ocean Engineering – start-page: 1 year: 2020 end-page: 17 ident: b13 article-title: Global tracking control of quadrotor based on adaptive dynamic surface control publication-title: International Journal of Dynamics and Control – volume: 85 start-page: 199 year: 2019 end-page: 215 ident: b60 article-title: Robust trajectory tracking controller for quadrotor helicopter based on a novel composite control scheme publication-title: Aerospace Science and Technology – volume: 68 start-page: 299 year: 2017 end-page: 307 ident: b21 article-title: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances publication-title: Aerospace Science and Technology – volume: 18 start-page: 1671 year: 2020 end-page: 1678 ident: b49 article-title: Robust integral sliding mode control design for stability enhancement of under-actuated quadcopter publication-title: International Journal of Control, Automation and Systems – year: 2019 ident: b66 article-title: Fixed-time cooperative control of multi-agent systems – year: 2014 ident: b64 article-title: Disturbance observer-based control: Methods and applications – volume: 66 start-page: 1264 year: 2019 end-page: 1272 ident: b38 article-title: Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application publication-title: IEEE Transactions on Industrial Electronics – start-page: 1 year: 2018 end-page: 19 ident: b8 article-title: Flight control boosters for three-dimensional trajectory tracking of quadrotor: Theory and experiment publication-title: Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering – volume: 49 start-page: 2287 year: 2013 end-page: 2291 ident: b59 article-title: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbance publication-title: Automatica – year: 2016 ident: b18 article-title: Moment of inertia estimation using a bifilar pendulum – volume: 149 start-page: 1 year: 2020 end-page: 16 ident: b45 article-title: Unmanned aerial vehicle (UAV) based forest fire detection and monitoring for reducing false alarms in forest-fires publication-title: Computer Communications – volume: 7 year: 2019 ident: b11 article-title: Continuous full-order nonsingular terminal sliding mode control for systems with matched and mismatched disturbances publication-title: IEEE Access – volume: 80 start-page: 119 year: 2017 end-page: 126 ident: b48 article-title: Design of continuous twisting algorithm publication-title: Automatica – volume: 102 start-page: 1 year: 2020 end-page: 11 ident: b17 article-title: Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances publication-title: Control Engineering Practice – start-page: 203 year: 2019 end-page: 216 ident: b52 article-title: Dual-loop integral sliding mode control for robust trajectory tracking of a quadrotor publication-title: International Journal of Systems Science – year: 2019 ident: b26 article-title: Commande non-linéaire robuste sans capteur de la machine MSAP – volume: 82 start-page: 14 year: 2019 end-page: 23 ident: b9 article-title: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers publication-title: Control Engineering Practice – volume: 216 start-page: 126 year: 2016 end-page: 134 ident: b25 article-title: Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft publication-title: Neurocomputing – reference: Quan, Q. (2020). Reliable Flight Control Group, Department of Automatic Control, School of Automation Science and Electrical Engineering, Beihang University. [Online]. Available: – start-page: 269 year: 2018 end-page: 287 ident: b53 article-title: Finite-time consensus for disturbed multi-agent systems with unmeasured states via nonsingular terminal sliding-mode control publication-title: Advances in Variable Structure Systems and Slliding Mode Control-Theory and Applications – volume: 99 start-page: 290 year: 2020 end-page: 304 ident: b23 article-title: Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances publication-title: ISA Transaction – year: 2014 ident: b43 article-title: Sliding Mode Control and Observation – volume: 113 start-page: 1 year: 2020 end-page: 8 ident: b65 article-title: Fixed-time attitude tracking control for rigid spacecraft publication-title: Automatica – year: 1998 ident: b12 article-title: Sliding mode control: Theory and applications – volume: 38 start-page: 2159 year: 2002 end-page: 2167 ident: b15 article-title: Non-singular terminal sliding mode control of rigid manipulators publication-title: Automatica – volume: 39 start-page: 2464 year: 1994 end-page: 2469 ident: b62 article-title: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators publication-title: IEEE Transactions on Automatic Control – volume: 90 start-page: 278 year: 2019 end-page: 286 ident: b57 article-title: Hybrid finite-time trajectory tracking control of a quadrotor publication-title: ISA Transactions – volume: 57 start-page: 2106 year: 2012 end-page: 2110 ident: b32 article-title: Nonlinear feedback design for fixed-time stabilization of linear control systems publication-title: IEEE Transactions on Automatic Control – volume: 98 start-page: 1 year: 2020 end-page: 18 ident: b19 article-title: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure publication-title: Aerospace Science and Technology – reference: . – start-page: 61 year: 2017 end-page: 79 ident: b4 article-title: Chattering free sliding mode controller design for a quadrotor unmanned aerial vehicle publication-title: Applications of Sliding Mode Control in Science and Engineering – volume: 55 start-page: 1380 year: 2010 end-page: 1389 ident: b24 article-title: Chattering analysis publication-title: IEEE Transactions on Automatic Control – volume: 20 start-page: 899 year: 2015 end-page: 909 ident: b22 article-title: Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation publication-title: IEEE/ASME Transactions on Mechatronics – volume: 58 start-page: 309 year: 2015 end-page: 317 ident: b58 article-title: A novel extended state observer publication-title: ISA Transactions – reference: Mechali, O., Xu, L., Senouci, A., Xie, X., Xin, C., & Mechali, A. (2020). Finite-time observer-based robust continuous twisting control for the attitude of an uncertain quadrotor UAV subjected to disturbances, In 2020 IEEE International Conference on Mechatronics and Automation (IEEE ICMA 2020), Beijing, China. – volume: 44 start-page: 1065 year: 1997 end-page: 1070 ident: b63 article-title: Terminal sliding mode control of MIMO linear systems publication-title: IEEE Transactions on Circuits and Systems I – volume: 16 start-page: 132 year: 1993 end-page: 138 ident: b6 article-title: Digital simulation of atmospheric turbulence for dryden and von karman models publication-title: Journal of guidance, control and dynamics – volume: 230 start-page: 877 year: 2016 end-page: 891 ident: b1 article-title: Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter publication-title: Proc. Inst. Mech. Eng. Part I, J. Syst. Control Eng – start-page: 5 year: 2015 end-page: 35 ident: b16 article-title: Continuous nested algorithms : The fifth generation of sliding mode controllers publication-title: Recent Advances in Sliding Modes: From Control To Intelligent Mechatronics – volume: 8 start-page: 5515 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b3 article-title: Robust backstepping sliding mode control for a quadrotor trajectory tracking application publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962722 – volume: 44 start-page: 1065 issue: 11 year: 1997 ident: 10.1016/j.conengprac.2021.104806_b63 article-title: Terminal sliding mode control of MIMO linear systems publication-title: IEEE Transactions on Circuits and Systems I doi: 10.1109/81.641769 – volume: 82 start-page: 14 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b9 article-title: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2018.09.016 – ident: 10.1016/j.conengprac.2021.104806_b29 doi: 10.1109/ICRA.2011.5980229 – volume: 113 start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b65 article-title: Fixed-time attitude tracking control for rigid spacecraft publication-title: Automatica doi: 10.1016/j.automatica.2019.108792 – ident: 10.1016/j.conengprac.2021.104806_b37 doi: 10.1016/j.ifacol.2017.08.497 – volume: 149 start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b45 article-title: Unmanned aerial vehicle (UAV) based forest fire detection and monitoring for reducing false alarms in forest-fires publication-title: Computer Communications doi: 10.1016/j.comcom.2019.10.007 – volume: 58 start-page: 309 year: 2015 ident: 10.1016/j.conengprac.2021.104806_b58 article-title: A novel extended state observer publication-title: ISA Transactions doi: 10.1016/j.isatra.2015.07.012 – start-page: 203 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b52 article-title: Dual-loop integral sliding mode control for robust trajectory tracking of a quadrotor publication-title: International Journal of Systems Science – volume: 46 start-page: 29 year: 2010 ident: 10.1016/j.conengprac.2021.104806_b36 article-title: An integral predictive/nonlinear H-∞ control structure for a quadrotor helicopter publication-title: Automatica doi: 10.1016/j.automatica.2009.10.018 – volume: 104 start-page: 631 year: 2018 ident: 10.1016/j.conengprac.2021.104806_b42 article-title: Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.11.034 – year: 1992 ident: 10.1016/j.conengprac.2021.104806_b50 – volume: 145 start-page: 406 year: 2017 ident: 10.1016/j.conengprac.2021.104806_b55 article-title: Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2017.09.062 – volume: 55 start-page: 1380 issue: 6 year: 2010 ident: 10.1016/j.conengprac.2021.104806_b24 article-title: Chattering analysis publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2010.2041973 – volume: 186 start-page: 1 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b61 article-title: Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.05.078 – ident: 10.1016/j.conengprac.2021.104806_b27 doi: 10.1109/CYBER46603.2019.9066691 – volume: 102 start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b17 article-title: Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2020.104560 – start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b13 article-title: Global tracking control of quadrotor based on adaptive dynamic surface control publication-title: International Journal of Dynamics and Control – year: 2019 ident: 10.1016/j.conengprac.2021.104806_b66 – volume: 97 start-page: 155 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b7 article-title: A global time-varying sliding-mode control for the tracking problem of uncertain dynamical systems publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.07.003 – ident: 10.1016/j.conengprac.2021.104806_b28 doi: 10.1109/ICMA49215.2020.9233586 – volume: 67 start-page: 5647 issue: 7 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b20 article-title: Finite-time continuous terminal sliding mode control of servo motor systems publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2931517 – volume: 43 start-page: 1470 year: 2007 ident: 10.1016/j.conengprac.2021.104806_b44 article-title: Smooth second-order sliding modes: Missile guidance application publication-title: Automatica doi: 10.1016/j.automatica.2007.01.008 – year: 2012 ident: 10.1016/j.conengprac.2021.104806_b31 – volume: 109 start-page: 1 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b35 article-title: Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2019.108515 – volume: 18 start-page: 1671 issue: 7 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b49 article-title: Robust integral sliding mode control design for stability enhancement of under-actuated quadcopter publication-title: International Journal of Control, Automation and Systems doi: 10.1007/s12555-019-0302-3 – ident: 10.1016/j.conengprac.2021.104806_b51 doi: 10.1109/IECON.2014.7048498 – volume: 16 start-page: 132 year: 1993 ident: 10.1016/j.conengprac.2021.104806_b6 article-title: Digital simulation of atmospheric turbulence for dryden and von karman models publication-title: Journal of guidance, control and dynamics doi: 10.2514/3.11437 – volume: 38 start-page: 2159 issue: 12 year: 2002 ident: 10.1016/j.conengprac.2021.104806_b15 article-title: Non-singular terminal sliding mode control of rigid manipulators publication-title: Automatica doi: 10.1016/S0005-1098(02)00147-4 – volume: 68 start-page: 299 year: 2017 ident: 10.1016/j.conengprac.2021.104806_b21 article-title: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2017.05.022 – volume: 7 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b11 article-title: Continuous full-order nonsingular terminal sliding mode control for systems with matched and mismatched disturbances publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941373 – year: 2014 ident: 10.1016/j.conengprac.2021.104806_b64 – volume: 98 start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b19 article-title: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2020.105716 – start-page: 1 year: 2018 ident: 10.1016/j.conengprac.2021.104806_b8 article-title: Flight control boosters for three-dimensional trajectory tracking of quadrotor: Theory and experiment publication-title: Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering – year: 2017 ident: 10.1016/j.conengprac.2021.104806_b34 – start-page: 61 year: 2017 ident: 10.1016/j.conengprac.2021.104806_b4 article-title: Chattering free sliding mode controller design for a quadrotor unmanned aerial vehicle – volume: 85 start-page: 199 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b60 article-title: Robust trajectory tracking controller for quadrotor helicopter based on a novel composite control scheme publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2018.12.013 – year: 2019 ident: 10.1016/j.conengprac.2021.104806_b26 – year: 2013 ident: 10.1016/j.conengprac.2021.104806_b39 – volume: 80 start-page: 119 year: 2017 ident: 10.1016/j.conengprac.2021.104806_b48 article-title: Design of continuous twisting algorithm publication-title: Automatica doi: 10.1016/j.automatica.2017.02.035 – year: 2016 ident: 10.1016/j.conengprac.2021.104806_b18 – volume: 89 start-page: 58 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b2 article-title: Fixed-time trajectory tracking for a quadrotor with external disturbances: A flatness-based sliding mode control approach publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2019.03.059 – start-page: 5 year: 2015 ident: 10.1016/j.conengprac.2021.104806_b16 article-title: Continuous nested algorithms : The fifth generation of sliding mode controllers – volume: 216 start-page: 126 year: 2016 ident: 10.1016/j.conengprac.2021.104806_b25 article-title: Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.033 – volume: 90 start-page: 278 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b57 article-title: Hybrid finite-time trajectory tracking control of a quadrotor publication-title: ISA Transactions doi: 10.1016/j.isatra.2018.12.042 – volume: 90 start-page: 241 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b14 article-title: Comparative analysis of continuous sliding-modes control strategies for quad-rotor robust tracking publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2019.06.013 – volume: 66 start-page: 1264 issue: 2 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b38 article-title: Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2831191 – volume: 95 start-page: 601 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b41 article-title: A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques publication-title: Journal of Intelligent and Robotic Systems doi: 10.1007/s10846-018-0898-1 – volume: 89 start-page: 190 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b40 article-title: Minimum-time B-spline trajectories with corridor constraints. Application to cinematographic quadrotor flight plans publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2019.05.022 – start-page: 269 year: 2018 ident: 10.1016/j.conengprac.2021.104806_b53 article-title: Finite-time consensus for disturbed multi-agent systems with unmeasured states via nonsingular terminal sliding-mode control – volume: 47 start-page: 1814 year: 2008 ident: 10.1016/j.conengprac.2021.104806_b5 article-title: Homogeneous approximation recursive observer design output feedback publication-title: SIAM Journal on Control and Optimization doi: 10.1137/060675861 – volume: 63 start-page: 5044 year: 2016 ident: 10.1016/j.conengprac.2021.104806_b10 article-title: Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV publication-title: IEEE Transactions on Industrial Electronics – volume: 94 start-page: 2889 year: 2018 ident: 10.1016/j.conengprac.2021.104806_b47 article-title: Fixed-time stabilization of high-order integrator systems with mismatched disturbances publication-title: Nonlinear Dynamics doi: 10.1007/s11071-018-4532-3 – volume: 20 start-page: 899 issue: 2 year: 2015 ident: 10.1016/j.conengprac.2021.104806_b22 article-title: Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2014.2323897 – year: 1998 ident: 10.1016/j.conengprac.2021.104806_b12 – ident: 10.1016/j.conengprac.2021.104806_b33 – volume: 99 start-page: 290 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b23 article-title: Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances publication-title: ISA Transaction doi: 10.1016/j.isatra.2019.10.012 – year: 2014 ident: 10.1016/j.conengprac.2021.104806_b43 – volume: 230 start-page: 877 issue: 9 year: 2016 ident: 10.1016/j.conengprac.2021.104806_b1 article-title: Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter publication-title: Proc. Inst. Mech. Eng. Part I, J. Syst. Control Eng – volume: 104 start-page: 1 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b46 article-title: Observer based finite-time fault tolerant quadrotor attitude control with actuator faults publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2020.105968 – volume: 57 start-page: 2106 issue: 8 year: 2012 ident: 10.1016/j.conengprac.2021.104806_b32 article-title: Nonlinear feedback design for fixed-time stabilization of linear control systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2011.2179869 – volume: 14 start-page: 790 issue: 5 year: 2020 ident: 10.1016/j.conengprac.2021.104806_b56 article-title: Fixed-time attitude tracking control for rigid spacecraft publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2019.0623 – start-page: 1 year: 2019 ident: 10.1016/j.conengprac.2021.104806_b54 article-title: Continuous nonsingular terminal sliding mode control of DC-DC boost converters subject to time-varying disturbances publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 49 start-page: 2287 issue: 7 year: 2013 ident: 10.1016/j.conengprac.2021.104806_b59 article-title: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbance publication-title: Automatica doi: 10.1016/j.automatica.2013.03.026 – ident: 10.1016/j.conengprac.2021.104806_b30 doi: 10.1109/IROS.2016.7759784 – volume: 39 start-page: 2464 issue: 12 year: 1994 ident: 10.1016/j.conengprac.2021.104806_b62 article-title: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.362847 |
| SSID | ssj0016991 |
| Score | 2.6147234 |
| Snippet | This paper solves an accurate fixed-time attitude and position control problems of a quadrotor UAV system. The aircraft system is subject to nonlinearities,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104806 |
| SubjectTerms | Active disturbance rejection control continuous nonsingular terminal sliding mode control Disturbance observer-based control Fixed-time stability Output-feedback control Quadrotor UAV Trajectory tracking control |
| Title | Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment |
| URI | https://dx.doi.org/10.1016/j.conengprac.2021.104806 |
| Volume | 111 |
| WOSCitedRecordID | wos000642472900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEMetpeUAB8RTlJd84LZKtXnbcKqqIkCoRWpByylybKdk2WZLmlTLp-NT8H2YsZ1HoRJFiEsURfI6yfzWntj_mSHkeZDmcQ6usQdzXwgfKNz3eKyVxwRPAy01Zybjzcd36f4-m8_5-8nkRxcLc75Mq4qt1_z0v5oaroGxMXT2L8zd_yhcgHMwOhzB7HC8kuEPclxo1bWHE5SaFuUaXgqWkDey9LJqTU5W1MVWx0aD6vQwyym4nCbEBavj9Bp2cCa_tkLVqwbllmUta1E0pnpuDUdpFQWYldVsQyigpq1zRMkkepjWq7w9a7ASxcLsD3zDU_nFhVnbzACm5VBqYOwv77q70EPaxD6wq2dFy8_CRnkfnIhebDxv7ZrDiS4Hdt3q-Kd-Mjo0RY2NuHdRjpdAgpFUy67LdbE5gxDKLHAmKOyzqd63tR3eWRp6Cbfpk_rx3472v80ldlljAShUcA_4bNvYOe6Ks9kv6buNQ3CIXWKPgW9c2-Qa2QzSmMNgu7nzZm_-tt_eSrgt5djdopOYWeHh5f1d7jeNfKGj2-SW-4ihOxa-O2Siq7vk5ii15T3y_SKGdMCQDhjSEYa0w5A6DCliSB2GdFXQHkPaYUgNhvQChhRgomMMKWBILYZ0wJB2GL6gFkLTboDwPvnwau9o97XnioV4MkxY4xWxQvdTiTwUySxNVci0KnzOtIg442mcs5nyQ6nCnLNkVggWKRkURRQpJWQQhQ_IBjy0fkioCFOmk0IHDGW3RcS4jPA7JxBF7kudb5G0M0UmXSZ9LOiyzDrJ5CIbjJihETNrxC3i9y1PbTaZK7R52Vk7c16x9XYzAPWPrR_9U-vH5Mbwf3tCNpq61U_JdXnelGf1M0f1T5Kx8NY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer-based+fixed-time+continuous+nonsingular+terminal+sliding+mode+control+of+quadrotor+aircraft+under+uncertainties+and+disturbances+for+robust+trajectory+tracking%3A+Theory+and+experiment&rft.jtitle=Control+engineering+practice&rft.au=Mechali%2C+Omar&rft.au=Xu%2C+Limei&rft.au=Huang%2C+Ya&rft.au=Shi%2C+Mengji&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=111&rft_id=info:doi/10.1016%2Fj.conengprac.2021.104806&rft.externalDocID=S0967066121000836 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |