Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence

Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Mathematical Modelling Ročník 77; s. 788
Hlavní autoři: Cheng, HY, Bai, XR, Long, XP, Ji, B, Peng, XX, Farhat, M
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier BV 01.01.2020
Témata:
ISSN:1088-8691, 0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity.
AbstractList Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity.
Author Long, XP
Peng, XX
Cheng, HY
Ji, B
Bai, XR
Farhat, M
Author_xml – sequence: 1
  givenname: HY
  surname: Cheng
  fullname: Cheng, HY
– sequence: 2
  givenname: XR
  surname: Bai
  fullname: Bai, XR
– sequence: 3
  givenname: XP
  surname: Long
  fullname: Long, XP
– sequence: 4
  givenname: B
  surname: Ji
  fullname: Ji, B
– sequence: 5
  givenname: XX
  surname: Peng
  fullname: Peng, XX
– sequence: 6
  givenname: M
  surname: Farhat
  fullname: Farhat, M
BookMark eNo1jctKAzEYhYNUsK0-gLuA6xn_JGMuSyneoOBGwV3JZJJO6jSpk0xLNz67U9TVgfOdywxNQgwWoWsCJQHCbzel3m1LCkSVIEuAuzM0BQaiUFB9TNCUgJSF5IpcoFlKGwBCJYcp-l7qfm2xbZojTn47dDr7GHB0OLcWZ78rOqs_9Rgxeu_zSMMauy4e8MHnFuuAfUh-3WY8ttrR_o_FE3HdYIOxCe9jn73x-Tg2GpyHvh66E7lE5053yV796Ry9Pz68LZ6L5evTy-J-WRjGZS4cE1QZ4rgQIB1jlAouGsOVZa6urTPcaMpraxxRFVTKEcsdN8xWnALTms3Rze_uro9fg015tYlDH8bLFWWMcVCsEuwHRoRmEQ
CitedBy_id crossref_primary_10_1007_s10409_021_09026_x
crossref_primary_10_1016_j_renene_2020_11_123
crossref_primary_10_1007_s40868_021_00097_5
crossref_primary_10_1016_j_oceaneng_2023_114499
crossref_primary_10_1063_5_0216114
crossref_primary_10_1007_s12206_020_0818_8
crossref_primary_10_1007_s42241_021_0022_z
crossref_primary_10_1016_j_oceaneng_2021_108811
crossref_primary_10_32604_fdmp_2023_024259
crossref_primary_10_1007_s42241_024_0086_7
crossref_primary_10_1007_s42241_023_0006_2
crossref_primary_10_1016_j_oceaneng_2024_117599
crossref_primary_10_1016_j_fuel_2023_128386
crossref_primary_10_1088_1742_6596_2217_1_012018
crossref_primary_10_1063_5_0286453
crossref_primary_10_1007_s13344_021_0033_0
crossref_primary_10_3390_pr7090625
crossref_primary_10_1007_s42241_024_0014_x
crossref_primary_10_1063_5_0278274
crossref_primary_10_3390_jmse9070775
crossref_primary_10_1016_j_apm_2020_08_011
crossref_primary_10_1016_j_applthermaleng_2021_116870
crossref_primary_10_1016_j_oceaneng_2024_117948
crossref_primary_10_3390_su142315902
crossref_primary_10_1016_j_euromechflu_2023_08_005
crossref_primary_10_1016_j_oceaneng_2022_113304
crossref_primary_10_1016_j_oceaneng_2024_117943
crossref_primary_10_1016_j_wear_2025_206214
crossref_primary_10_1016_j_icheatmasstransfer_2025_109307
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105108
crossref_primary_10_3390_e25030545
crossref_primary_10_1007_s40997_023_00735_w
crossref_primary_10_1016_j_heliyon_2022_e12636
crossref_primary_10_1016_j_oceaneng_2020_107349
crossref_primary_10_1088_1755_1315_668_1_012043
crossref_primary_10_3390_en15176330
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104818
crossref_primary_10_1007_s10409_025_25186_x
crossref_primary_10_1016_j_renene_2020_11_143
crossref_primary_10_1177_16878132241293622
crossref_primary_10_3390_en16186592
crossref_primary_10_1080_00221686_2023_2236981
crossref_primary_10_1016_j_oceaneng_2022_112442
crossref_primary_10_1016_j_oceaneng_2023_116547
crossref_primary_10_1016_j_energy_2024_130261
crossref_primary_10_1016_j_anucene_2023_109935
crossref_primary_10_3390_machines11040489
crossref_primary_10_1007_s42241_024_0063_1
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104066
crossref_primary_10_1080_14685248_2024_2350070
crossref_primary_10_1016_j_energy_2020_119005
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820
crossref_primary_10_1016_j_oceaneng_2020_107218
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122707
crossref_primary_10_1016_j_oceaneng_2020_107450
crossref_primary_10_1007_s42241_023_0011_5
crossref_primary_10_1007_s00348_020_02996_6
crossref_primary_10_1007_s42241_024_0030_x
crossref_primary_10_1007_s42241_022_0073_9
crossref_primary_10_1016_j_oceaneng_2022_113125
crossref_primary_10_1177_09544062211032989
crossref_primary_10_1108_EC_04_2020_0227
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104633
crossref_primary_10_1007_s42241_022_0047_y
crossref_primary_10_1007_s42241_021_0004_1
crossref_primary_10_1016_j_oceaneng_2024_119597
crossref_primary_10_2478_pomr_2020_0063
crossref_primary_10_1016_j_oceaneng_2022_111734
crossref_primary_10_1007_s42241_023_0023_1
crossref_primary_10_1016_j_energy_2023_129778
crossref_primary_10_1007_s42241_023_0046_7
crossref_primary_10_1007_s10409_020_01008_4
crossref_primary_10_1007_s42241_022_0062_z
crossref_primary_10_1016_j_oceaneng_2022_112704
crossref_primary_10_3390_pr9091481
crossref_primary_10_1007_s42241_022_0060_1
crossref_primary_10_1016_j_apm_2022_01_017
crossref_primary_10_1080_14685248_2022_2046762
crossref_primary_10_1016_j_renene_2020_09_002
crossref_primary_10_1016_j_renene_2020_09_001
crossref_primary_10_1007_s42241_022_0057_9
crossref_primary_10_1155_2020_8409231
crossref_primary_10_1007_s42241_023_0012_4
crossref_primary_10_1016_j_apm_2021_03_018
crossref_primary_10_1016_j_oceaneng_2024_118836
crossref_primary_10_1016_j_ultsonch_2020_105225
crossref_primary_10_1155_2021_5577517
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834
crossref_primary_10_1016_j_renene_2020_11_108
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835
crossref_primary_10_1016_j_oceaneng_2020_107305
crossref_primary_10_1016_j_renene_2020_01_023
crossref_primary_10_1007_s42241_022_0045_0
crossref_primary_10_1016_j_oceaneng_2020_107661
crossref_primary_10_1007_s42241_023_0086_z
crossref_primary_10_3390_mi11080728
crossref_primary_10_1007_s42241_020_0009_1
crossref_primary_10_1016_j_apm_2021_08_001
crossref_primary_10_1051_e3sconf_202123304036
crossref_primary_10_1016_j_oceaneng_2025_120868
crossref_primary_10_3390_machines10010041
crossref_primary_10_1016_j_oceaneng_2023_115010
crossref_primary_10_1016_j_powtec_2020_03_047
crossref_primary_10_1515_tjj_2024_0031
crossref_primary_10_1016_j_apor_2020_102285
crossref_primary_10_1016_j_oceaneng_2025_122138
crossref_primary_10_1017_jfm_2025_314
crossref_primary_10_1016_j_apor_2020_102167
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120808
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105183
crossref_primary_10_1108_EC_07_2020_0414
crossref_primary_10_1063_5_0273520
crossref_primary_10_1007_s42241_022_0079_3
crossref_primary_10_1016_j_energy_2020_118084
crossref_primary_10_1080_17445302_2024_2393788
crossref_primary_10_1016_j_oceaneng_2022_111661
crossref_primary_10_3390_w17010042
crossref_primary_10_3390_en15196916
crossref_primary_10_1016_j_renene_2025_123997
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103215
crossref_primary_10_1016_j_rser_2022_112786
crossref_primary_10_1007_s40544_021_0529_x
crossref_primary_10_1049_rpg2_12096
crossref_primary_10_1063_5_0252173
crossref_primary_10_1016_j_oceaneng_2021_109193
crossref_primary_10_3390_app10238721
crossref_primary_10_1016_j_oceaneng_2023_114544
crossref_primary_10_1016_j_energy_2022_123490
crossref_primary_10_3390_en12214162
crossref_primary_10_3390_ijtpp8020017
crossref_primary_10_1016_j_apor_2024_103993
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103441
crossref_primary_10_1177_16878140211015879
crossref_primary_10_1007_s42241_025_0014_5
crossref_primary_10_1016_j_oceaneng_2022_111888
crossref_primary_10_1007_s42241_020_0070_9
crossref_primary_10_1007_s42241_024_0078_7
crossref_primary_10_1140_epjp_s13360_021_01793_2
crossref_primary_10_1016_j_renene_2020_11_095
crossref_primary_10_1016_j_oceaneng_2022_111407
crossref_primary_10_1016_j_oceaneng_2019_106831
crossref_primary_10_1016_j_ultsonch_2023_106715
crossref_primary_10_1016_j_fuel_2020_119535
crossref_primary_10_1007_s42241_023_0090_3
crossref_primary_10_1007_s42241_024_0010_1
crossref_primary_10_3390_pr8080997
crossref_primary_10_3390_pr9081385
crossref_primary_10_1016_j_ijhydene_2020_01_192
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104899
crossref_primary_10_1016_j_renene_2020_03_182
crossref_primary_10_1016_j_oceaneng_2021_109647
crossref_primary_10_1016_j_oceaneng_2021_108798
crossref_primary_10_1063_5_0254379
crossref_primary_10_1016_j_oceaneng_2024_119936
crossref_primary_10_1016_j_flowmeasinst_2020_101779
crossref_primary_10_1016_j_icheatmasstransfer_2024_108144
crossref_primary_10_1016_j_expthermflusci_2022_110648
crossref_primary_10_1016_j_oceaneng_2021_110087
crossref_primary_10_1002_ese3_608
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104484
crossref_primary_10_3390_fluids5040218
crossref_primary_10_3390_en15020502
crossref_primary_10_1007_s12206_019_1135_y
crossref_primary_10_3390_en12214066
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103880
crossref_primary_10_1016_j_renene_2020_08_101
crossref_primary_10_1016_j_enconman_2021_115193
crossref_primary_10_1016_j_flowmeasinst_2025_102811
crossref_primary_10_1016_j_oceaneng_2021_109650
crossref_primary_10_1016_j_powtec_2020_01_022
crossref_primary_10_1007_s42241_022_0053_0
crossref_primary_10_3390_jmse9101045
crossref_primary_10_1063_5_0215864
crossref_primary_10_3389_fenrg_2023_1235277
crossref_primary_10_1016_j_wear_2021_203917
crossref_primary_10_1016_j_ultsonch_2025_107466
crossref_primary_10_1016_j_oceaneng_2025_121430
crossref_primary_10_1016_j_oceaneng_2021_110005
crossref_primary_10_3390_app10175897
crossref_primary_10_1007_s42241_022_0065_9
crossref_primary_10_1080_19942060_2022_2122570
crossref_primary_10_1016_j_scitotenv_2022_154856
crossref_primary_10_1080_17445302_2021_1893458
crossref_primary_10_1016_j_oceaneng_2019_106547
crossref_primary_10_1016_j_oceaneng_2023_114588
crossref_primary_10_1016_j_oceaneng_2022_111333
crossref_primary_10_1007_s42241_020_0041_1
crossref_primary_10_1016_j_oceaneng_2024_119081
crossref_primary_10_1016_j_renene_2019_10_175
crossref_primary_10_1007_s42241_025_0101_7
crossref_primary_10_1016_j_renene_2020_08_163
crossref_primary_10_1016_j_oceaneng_2025_120693
crossref_primary_10_1016_j_expthermflusci_2019_110016
crossref_primary_10_1016_j_oceaneng_2025_122756
crossref_primary_10_1080_17445302_2022_2093505
crossref_primary_10_1007_s40430_023_04259_x
crossref_primary_10_1016_j_oceaneng_2022_113069
crossref_primary_10_1016_j_apm_2019_10_050
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104251
crossref_primary_10_3390_jmse9111193
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105020
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104252
crossref_primary_10_1016_j_oceaneng_2022_111685
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104254
crossref_primary_10_1016_j_oceaneng_2023_116176
crossref_primary_10_1016_j_biosystemseng_2019_12_014
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105346
crossref_primary_10_1063_5_0285114
crossref_primary_10_3390_jmse8050341
crossref_primary_10_3390_jmse10020136
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103276
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103671
crossref_primary_10_1115_1_4068461
crossref_primary_10_1007_s42241_020_0081_6
crossref_primary_10_1007_s42241_024_0001_2
crossref_primary_10_1080_17445302_2024_2309433
crossref_primary_10_1088_1742_6596_2752_1_012195
crossref_primary_10_1007_s42241_020_0005_5
crossref_primary_10_1186_s10033_023_00842_4
crossref_primary_10_1016_j_apm_2020_04_004
crossref_primary_10_1007_s11804_024_00480_9
crossref_primary_10_1016_j_oceaneng_2022_111313
crossref_primary_10_1007_s42241_024_0061_3
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104445
crossref_primary_10_1063_5_0210957
crossref_primary_10_1016_j_oceaneng_2025_120349
crossref_primary_10_1016_j_apor_2020_102449
crossref_primary_10_1007_s42241_022_0014_7
crossref_primary_10_1016_j_fuel_2022_126843
crossref_primary_10_1007_s42241_023_0018_y
crossref_primary_10_1007_s42241_024_0059_x
crossref_primary_10_1016_j_apor_2020_102322
crossref_primary_10_1016_j_renene_2020_05_081
crossref_primary_10_1016_j_oceaneng_2020_107373
crossref_primary_10_1016_j_oceaneng_2021_109058
crossref_primary_10_1007_s10409_022_22158_x
crossref_primary_10_1007_s42241_023_0055_6
ContentType Journal Article
Copyright Copyright Elsevier BV Jan 2020
Copyright_xml – notice: Copyright Elsevier BV Jan 2020
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.08.005
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3
ISICitedReferencesCount 306
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503316200047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Sun Nov 09 06:28:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/166742
PQID 2333609347
PQPubID 2045280
ParticipantIDs proquest_journals_2333609347
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2020
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.6611962
Snippet Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict...
SourceID proquest
SourceType Aggregation Database
StartPage 788
SubjectTerms Cavitation
Computational fluid dynamics
Computer simulation
Energy dissipation
Evolution
Fluid flow
Hydrofoils
Kinetic energy
Large eddy simulation
Leakage
Local flow
Mathematical models
Stretching
Transport equations
Turbulence
Vortices
Vorticity
Title Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
URI https://www.proquest.com/docview/2333609347
Volume 77
WOSCitedRecordID wos000503316200047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4LAdEAwQPwbyAXGpMsVxasdHhlZNqBQOGfRWJY4tOkraLVnZLvwf_Lc8_0qqTUJw4GJVaVylfV_fe_b7nj-EXouUF5DV60hlVRmlhHMj8wIDKXUK-W0pZGXFJvh0ms1m4tNg8Cv0wmyWvK6zqyux_q-mhmtgbNM6-w_m7j4ULsBrMDqMYHYY_8rwE8PtHqqquh42i-9enStQAdrFOlqq4pth6shiYw_oNlTK5epHaHMz9HSzYjdlhK9wOdxmOZFe0aQZblaWj92645sgbpWXtn1pO9kNGe6H7mhY0whspHeWIWBaYoFy_uaky6qPnEb2rKtCTTxxeNZ1o723dxxtb1ok8Y1Ni76b5vOW7wWHF2XMiXcdKt_UBbgRsSNxBoftdV-cx-VOFfBWJHCbEmeHxdqcN0CEPag1HvVhL5T6px_n49PJZJ4fz_I36_PICJKZwr1XZ7mD7iZ8JIzDzMdfevaQMMtYX61KMteNHr5AqJ5bHuGNB7gV820ikz9A9_0KBL91yHmIBqreR3u9jZp9tNuFxetH6KcFFDaAwj2g8EpjmIG3AIV7QGEDKGwAhYsae0BhmAWAwj2gcA8o3AEKZlS4B9RjdDo-zt-dRF61I5KUZW2kTSFYEs04jzNNIWBwxivJhKK6LJWWTBYJA9ehiUhhfaqJYppJqlKWxLQo6BO0U69q9RRhBckSqRg1uqIpL3VJSUG4TOhIllUak2foIPyWc_8PbOYJpZTFgqb8-Z_ffoF2e2geoJ324lK9RPfkpl00F6-suX8DgJeEZA
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+the+tip-leakage+cavitating+flow+with+an+insight+on+how+cavitation+influences+vorticity+and+turbulence&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Cheng%2C+HY&rft.au=Bai%2C+XR&rft.au=Long%2C+XP&rft.au=Ji%2C+B&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=77&rft.spage=788&rft_id=info:doi/10.1016%2Fj.apm.2019.08.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon