Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavi...
Uloženo v:
| Vydáno v: | Applied Mathematical Modelling Ročník 77; s. 788 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier BV
01.01.2020
|
| Témata: | |
| ISSN: | 1088-8691, 0307-904X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity. |
|---|---|
| AbstractList | Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity. |
| Author | Long, XP Peng, XX Cheng, HY Ji, B Bai, XR Farhat, M |
| Author_xml | – sequence: 1 givenname: HY surname: Cheng fullname: Cheng, HY – sequence: 2 givenname: XR surname: Bai fullname: Bai, XR – sequence: 3 givenname: XP surname: Long fullname: Long, XP – sequence: 4 givenname: B surname: Ji fullname: Ji, B – sequence: 5 givenname: XX surname: Peng fullname: Peng, XX – sequence: 6 givenname: M surname: Farhat fullname: Farhat, M |
| BookMark | eNo1jctKAzEYhYNUsK0-gLuA6xn_JGMuSyneoOBGwV3JZJJO6jSpk0xLNz67U9TVgfOdywxNQgwWoWsCJQHCbzel3m1LCkSVIEuAuzM0BQaiUFB9TNCUgJSF5IpcoFlKGwBCJYcp-l7qfm2xbZojTn47dDr7GHB0OLcWZ78rOqs_9Rgxeu_zSMMauy4e8MHnFuuAfUh-3WY8ttrR_o_FE3HdYIOxCe9jn73x-Tg2GpyHvh66E7lE5053yV796Ry9Pz68LZ6L5evTy-J-WRjGZS4cE1QZ4rgQIB1jlAouGsOVZa6urTPcaMpraxxRFVTKEcsdN8xWnALTms3Rze_uro9fg015tYlDH8bLFWWMcVCsEuwHRoRmEQ |
| CitedBy_id | crossref_primary_10_1007_s10409_021_09026_x crossref_primary_10_1016_j_renene_2020_11_123 crossref_primary_10_1007_s40868_021_00097_5 crossref_primary_10_1016_j_oceaneng_2023_114499 crossref_primary_10_1063_5_0216114 crossref_primary_10_1007_s12206_020_0818_8 crossref_primary_10_1007_s42241_021_0022_z crossref_primary_10_1016_j_oceaneng_2021_108811 crossref_primary_10_32604_fdmp_2023_024259 crossref_primary_10_1007_s42241_024_0086_7 crossref_primary_10_1007_s42241_023_0006_2 crossref_primary_10_1016_j_oceaneng_2024_117599 crossref_primary_10_1016_j_fuel_2023_128386 crossref_primary_10_1088_1742_6596_2217_1_012018 crossref_primary_10_1063_5_0286453 crossref_primary_10_1007_s13344_021_0033_0 crossref_primary_10_3390_pr7090625 crossref_primary_10_1007_s42241_024_0014_x crossref_primary_10_1063_5_0278274 crossref_primary_10_3390_jmse9070775 crossref_primary_10_1016_j_apm_2020_08_011 crossref_primary_10_1016_j_applthermaleng_2021_116870 crossref_primary_10_1016_j_oceaneng_2024_117948 crossref_primary_10_3390_su142315902 crossref_primary_10_1016_j_euromechflu_2023_08_005 crossref_primary_10_1016_j_oceaneng_2022_113304 crossref_primary_10_1016_j_oceaneng_2024_117943 crossref_primary_10_1016_j_wear_2025_206214 crossref_primary_10_1016_j_icheatmasstransfer_2025_109307 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105108 crossref_primary_10_3390_e25030545 crossref_primary_10_1007_s40997_023_00735_w crossref_primary_10_1016_j_heliyon_2022_e12636 crossref_primary_10_1016_j_oceaneng_2020_107349 crossref_primary_10_1088_1755_1315_668_1_012043 crossref_primary_10_3390_en15176330 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104818 crossref_primary_10_1007_s10409_025_25186_x crossref_primary_10_1016_j_renene_2020_11_143 crossref_primary_10_1177_16878132241293622 crossref_primary_10_3390_en16186592 crossref_primary_10_1080_00221686_2023_2236981 crossref_primary_10_1016_j_oceaneng_2022_112442 crossref_primary_10_1016_j_oceaneng_2023_116547 crossref_primary_10_1016_j_energy_2024_130261 crossref_primary_10_1016_j_anucene_2023_109935 crossref_primary_10_3390_machines11040489 crossref_primary_10_1007_s42241_024_0063_1 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104066 crossref_primary_10_1080_14685248_2024_2350070 crossref_primary_10_1016_j_energy_2020_119005 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820 crossref_primary_10_1016_j_oceaneng_2020_107218 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122707 crossref_primary_10_1016_j_oceaneng_2020_107450 crossref_primary_10_1007_s42241_023_0011_5 crossref_primary_10_1007_s00348_020_02996_6 crossref_primary_10_1007_s42241_024_0030_x crossref_primary_10_1007_s42241_022_0073_9 crossref_primary_10_1016_j_oceaneng_2022_113125 crossref_primary_10_1177_09544062211032989 crossref_primary_10_1108_EC_04_2020_0227 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104633 crossref_primary_10_1007_s42241_022_0047_y crossref_primary_10_1007_s42241_021_0004_1 crossref_primary_10_1016_j_oceaneng_2024_119597 crossref_primary_10_2478_pomr_2020_0063 crossref_primary_10_1016_j_oceaneng_2022_111734 crossref_primary_10_1007_s42241_023_0023_1 crossref_primary_10_1016_j_energy_2023_129778 crossref_primary_10_1007_s42241_023_0046_7 crossref_primary_10_1007_s10409_020_01008_4 crossref_primary_10_1007_s42241_022_0062_z crossref_primary_10_1016_j_oceaneng_2022_112704 crossref_primary_10_3390_pr9091481 crossref_primary_10_1007_s42241_022_0060_1 crossref_primary_10_1016_j_apm_2022_01_017 crossref_primary_10_1080_14685248_2022_2046762 crossref_primary_10_1016_j_renene_2020_09_002 crossref_primary_10_1016_j_renene_2020_09_001 crossref_primary_10_1007_s42241_022_0057_9 crossref_primary_10_1155_2020_8409231 crossref_primary_10_1007_s42241_023_0012_4 crossref_primary_10_1016_j_apm_2021_03_018 crossref_primary_10_1016_j_oceaneng_2024_118836 crossref_primary_10_1016_j_ultsonch_2020_105225 crossref_primary_10_1155_2021_5577517 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834 crossref_primary_10_1016_j_renene_2020_11_108 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835 crossref_primary_10_1016_j_oceaneng_2020_107305 crossref_primary_10_1016_j_renene_2020_01_023 crossref_primary_10_1007_s42241_022_0045_0 crossref_primary_10_1016_j_oceaneng_2020_107661 crossref_primary_10_1007_s42241_023_0086_z crossref_primary_10_3390_mi11080728 crossref_primary_10_1007_s42241_020_0009_1 crossref_primary_10_1016_j_apm_2021_08_001 crossref_primary_10_1051_e3sconf_202123304036 crossref_primary_10_1016_j_oceaneng_2025_120868 crossref_primary_10_3390_machines10010041 crossref_primary_10_1016_j_oceaneng_2023_115010 crossref_primary_10_1016_j_powtec_2020_03_047 crossref_primary_10_1515_tjj_2024_0031 crossref_primary_10_1016_j_apor_2020_102285 crossref_primary_10_1016_j_oceaneng_2025_122138 crossref_primary_10_1017_jfm_2025_314 crossref_primary_10_1016_j_apor_2020_102167 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120808 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105183 crossref_primary_10_1108_EC_07_2020_0414 crossref_primary_10_1063_5_0273520 crossref_primary_10_1007_s42241_022_0079_3 crossref_primary_10_1016_j_energy_2020_118084 crossref_primary_10_1080_17445302_2024_2393788 crossref_primary_10_1016_j_oceaneng_2022_111661 crossref_primary_10_3390_w17010042 crossref_primary_10_3390_en15196916 crossref_primary_10_1016_j_renene_2025_123997 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103215 crossref_primary_10_1016_j_rser_2022_112786 crossref_primary_10_1007_s40544_021_0529_x crossref_primary_10_1049_rpg2_12096 crossref_primary_10_1063_5_0252173 crossref_primary_10_1016_j_oceaneng_2021_109193 crossref_primary_10_3390_app10238721 crossref_primary_10_1016_j_oceaneng_2023_114544 crossref_primary_10_1016_j_energy_2022_123490 crossref_primary_10_3390_en12214162 crossref_primary_10_3390_ijtpp8020017 crossref_primary_10_1016_j_apor_2024_103993 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103441 crossref_primary_10_1177_16878140211015879 crossref_primary_10_1007_s42241_025_0014_5 crossref_primary_10_1016_j_oceaneng_2022_111888 crossref_primary_10_1007_s42241_020_0070_9 crossref_primary_10_1007_s42241_024_0078_7 crossref_primary_10_1140_epjp_s13360_021_01793_2 crossref_primary_10_1016_j_renene_2020_11_095 crossref_primary_10_1016_j_oceaneng_2022_111407 crossref_primary_10_1016_j_oceaneng_2019_106831 crossref_primary_10_1016_j_ultsonch_2023_106715 crossref_primary_10_1016_j_fuel_2020_119535 crossref_primary_10_1007_s42241_023_0090_3 crossref_primary_10_1007_s42241_024_0010_1 crossref_primary_10_3390_pr8080997 crossref_primary_10_3390_pr9081385 crossref_primary_10_1016_j_ijhydene_2020_01_192 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104899 crossref_primary_10_1016_j_renene_2020_03_182 crossref_primary_10_1016_j_oceaneng_2021_109647 crossref_primary_10_1016_j_oceaneng_2021_108798 crossref_primary_10_1063_5_0254379 crossref_primary_10_1016_j_oceaneng_2024_119936 crossref_primary_10_1016_j_flowmeasinst_2020_101779 crossref_primary_10_1016_j_icheatmasstransfer_2024_108144 crossref_primary_10_1016_j_expthermflusci_2022_110648 crossref_primary_10_1016_j_oceaneng_2021_110087 crossref_primary_10_1002_ese3_608 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104484 crossref_primary_10_3390_fluids5040218 crossref_primary_10_3390_en15020502 crossref_primary_10_1007_s12206_019_1135_y crossref_primary_10_3390_en12214066 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103880 crossref_primary_10_1016_j_renene_2020_08_101 crossref_primary_10_1016_j_enconman_2021_115193 crossref_primary_10_1016_j_flowmeasinst_2025_102811 crossref_primary_10_1016_j_oceaneng_2021_109650 crossref_primary_10_1016_j_powtec_2020_01_022 crossref_primary_10_1007_s42241_022_0053_0 crossref_primary_10_3390_jmse9101045 crossref_primary_10_1063_5_0215864 crossref_primary_10_3389_fenrg_2023_1235277 crossref_primary_10_1016_j_wear_2021_203917 crossref_primary_10_1016_j_ultsonch_2025_107466 crossref_primary_10_1016_j_oceaneng_2025_121430 crossref_primary_10_1016_j_oceaneng_2021_110005 crossref_primary_10_3390_app10175897 crossref_primary_10_1007_s42241_022_0065_9 crossref_primary_10_1080_19942060_2022_2122570 crossref_primary_10_1016_j_scitotenv_2022_154856 crossref_primary_10_1080_17445302_2021_1893458 crossref_primary_10_1016_j_oceaneng_2019_106547 crossref_primary_10_1016_j_oceaneng_2023_114588 crossref_primary_10_1016_j_oceaneng_2022_111333 crossref_primary_10_1007_s42241_020_0041_1 crossref_primary_10_1016_j_oceaneng_2024_119081 crossref_primary_10_1016_j_renene_2019_10_175 crossref_primary_10_1007_s42241_025_0101_7 crossref_primary_10_1016_j_renene_2020_08_163 crossref_primary_10_1016_j_oceaneng_2025_120693 crossref_primary_10_1016_j_expthermflusci_2019_110016 crossref_primary_10_1016_j_oceaneng_2025_122756 crossref_primary_10_1080_17445302_2022_2093505 crossref_primary_10_1007_s40430_023_04259_x crossref_primary_10_1016_j_oceaneng_2022_113069 crossref_primary_10_1016_j_apm_2019_10_050 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104251 crossref_primary_10_3390_jmse9111193 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105020 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104252 crossref_primary_10_1016_j_oceaneng_2022_111685 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104254 crossref_primary_10_1016_j_oceaneng_2023_116176 crossref_primary_10_1016_j_biosystemseng_2019_12_014 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105346 crossref_primary_10_1063_5_0285114 crossref_primary_10_3390_jmse8050341 crossref_primary_10_3390_jmse10020136 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103276 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103671 crossref_primary_10_1115_1_4068461 crossref_primary_10_1007_s42241_020_0081_6 crossref_primary_10_1007_s42241_024_0001_2 crossref_primary_10_1080_17445302_2024_2309433 crossref_primary_10_1088_1742_6596_2752_1_012195 crossref_primary_10_1007_s42241_020_0005_5 crossref_primary_10_1186_s10033_023_00842_4 crossref_primary_10_1016_j_apm_2020_04_004 crossref_primary_10_1007_s11804_024_00480_9 crossref_primary_10_1016_j_oceaneng_2022_111313 crossref_primary_10_1007_s42241_024_0061_3 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104445 crossref_primary_10_1063_5_0210957 crossref_primary_10_1016_j_oceaneng_2025_120349 crossref_primary_10_1016_j_apor_2020_102449 crossref_primary_10_1007_s42241_022_0014_7 crossref_primary_10_1016_j_fuel_2022_126843 crossref_primary_10_1007_s42241_023_0018_y crossref_primary_10_1007_s42241_024_0059_x crossref_primary_10_1016_j_apor_2020_102322 crossref_primary_10_1016_j_renene_2020_05_081 crossref_primary_10_1016_j_oceaneng_2020_107373 crossref_primary_10_1016_j_oceaneng_2021_109058 crossref_primary_10_1007_s10409_022_22158_x crossref_primary_10_1007_s42241_023_0055_6 |
| ContentType | Journal Article |
| Copyright | Copyright Elsevier BV Jan 2020 |
| Copyright_xml | – notice: Copyright Elsevier BV Jan 2020 |
| DBID | 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2019.08.005 |
| DatabaseName | Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Mathematics |
| EISSN | 0307-904X |
| GroupedDBID | -W8 -~X .7I .GO .QK 0BK 0R~ 23M 2DF 4.4 53G 5GY 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO EAP EBR EBS EBU EDJ EMK EPL EPS EST ESX E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HVGLF HZ~ IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
| ID | FETCH-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3 |
| ISICitedReferencesCount | 306 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503316200047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1088-8691 |
| IngestDate | Sun Nov 09 06:28:48 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/166742 |
| PQID | 2333609347 |
| PQPubID | 2045280 |
| ParticipantIDs | proquest_journals_2333609347 |
| PublicationCentury | 2000 |
| PublicationDate | 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationYear | 2020 |
| Publisher | Elsevier BV |
| Publisher_xml | – name: Elsevier BV |
| SSID | ssj0012860 ssj0005904 |
| Score | 2.6611962 |
| Snippet | Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 788 |
| SubjectTerms | Cavitation Computational fluid dynamics Computer simulation Energy dissipation Evolution Fluid flow Hydrofoils Kinetic energy Large eddy simulation Leakage Local flow Mathematical models Stretching Transport equations Turbulence Vortices Vorticity |
| Title | Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence |
| URI | https://www.proquest.com/docview/2333609347 |
| Volume | 77 |
| WOSCitedRecordID | wos000503316200047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 1088-8691 databaseCode: TFW dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4LAdEAwQPwbyAXGpMsVxasdHhlZNqBQOGfRWJY4tOkraLVnZLvwf_Lc8_0qqTUJw4GJVaVylfV_fe_b7nj-EXouUF5DV60hlVRmlhHMj8wIDKXUK-W0pZGXFJvh0ms1m4tNg8Cv0wmyWvK6zqyux_q-mhmtgbNM6-w_m7j4ULsBrMDqMYHYY_8rwE8PtHqqquh42i-9enStQAdrFOlqq4pth6shiYw_oNlTK5epHaHMz9HSzYjdlhK9wOdxmOZFe0aQZblaWj92645sgbpWXtn1pO9kNGe6H7mhY0whspHeWIWBaYoFy_uaky6qPnEb2rKtCTTxxeNZ1o723dxxtb1ok8Y1Ni76b5vOW7wWHF2XMiXcdKt_UBbgRsSNxBoftdV-cx-VOFfBWJHCbEmeHxdqcN0CEPag1HvVhL5T6px_n49PJZJ4fz_I36_PICJKZwr1XZ7mD7iZ8JIzDzMdfevaQMMtYX61KMteNHr5AqJ5bHuGNB7gV820ikz9A9_0KBL91yHmIBqreR3u9jZp9tNuFxetH6KcFFDaAwj2g8EpjmIG3AIV7QGEDKGwAhYsae0BhmAWAwj2gcA8o3AEKZlS4B9RjdDo-zt-dRF61I5KUZW2kTSFYEs04jzNNIWBwxivJhKK6LJWWTBYJA9ehiUhhfaqJYppJqlKWxLQo6BO0U69q9RRhBckSqRg1uqIpL3VJSUG4TOhIllUak2foIPyWc_8PbOYJpZTFgqb8-Z_ffoF2e2geoJ324lK9RPfkpl00F6-suX8DgJeEZA |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+the+tip-leakage+cavitating+flow+with+an+insight+on+how+cavitation+influences+vorticity+and+turbulence&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Cheng%2C+HY&rft.au=Bai%2C+XR&rft.au=Long%2C+XP&rft.au=Ji%2C+B&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=77&rft.spage=788&rft_id=info:doi/10.1016%2Fj.apm.2019.08.005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon |