Novel slow-sound lattice absorbers based on the sonic black hole

[Display omitted] •The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat photopolymerization technique.•Sound absorption performances of the proposed lattices outweigh the truss lattices.•The proposed lattices exhibit both...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures Vol. 304; p. 116434
Main Authors: Chua, Jun Wei, Li, Xinwei, Yu, Xiang, Zhai, Wei
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.01.2023
Subjects:
ISSN:0263-8223, 1879-1085
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat photopolymerization technique.•Sound absorption performances of the proposed lattices outweigh the truss lattices.•The proposed lattices exhibit both resonance and sound speed reduction mechanisms. The advent of additive manufacturing enabled rapid progress in the research of lattice structures, such as truss lattices, for sound absorption applications. Thus far, the sound absorption coefficient curves of truss lattices are typically characterized by alternating regions of high and low coefficients, reminiscent to that of Helmholtz resonators. The relatively poor sound absorption performances of such lattices prompt a need for an alternative sound absorption mechanism to improve their performances. In this work, we propose to incorporate a series of thin parallel plates with circular holes resembling the profile of a sonic black hole (SBH) into truss lattices for the design of a novel class of slow-sound lattice absorbers (SSLA). Four truss lattices, based on the mimicry of Bravais lattices, are considered. Samples were manufactured using stereolithography and the sound absorption properties were measured using an impedance tube. A significant increase in the sound absorption coefficients throughout a broadband frequency range from 1000 to 6300 Hz was observed with the addition of SBH plates. Finite element modelling reveals that the SSLA exhibits both the frequency-dependent resonant cell mechanisms of the lattice absorber and the time-dependent sound speed retardation effects of the SBH. Compression tests also reveal significant improvements to the specific energy absorption and absorption efficiency for some of the structures. Overall, this work demonstrates the potential and a conceptual advance with the adoption of additional plates to induce the sound speed reduction mechanism in the design of sound-absorbing lattices.
AbstractList [Display omitted] •The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat photopolymerization technique.•Sound absorption performances of the proposed lattices outweigh the truss lattices.•The proposed lattices exhibit both resonance and sound speed reduction mechanisms. The advent of additive manufacturing enabled rapid progress in the research of lattice structures, such as truss lattices, for sound absorption applications. Thus far, the sound absorption coefficient curves of truss lattices are typically characterized by alternating regions of high and low coefficients, reminiscent to that of Helmholtz resonators. The relatively poor sound absorption performances of such lattices prompt a need for an alternative sound absorption mechanism to improve their performances. In this work, we propose to incorporate a series of thin parallel plates with circular holes resembling the profile of a sonic black hole (SBH) into truss lattices for the design of a novel class of slow-sound lattice absorbers (SSLA). Four truss lattices, based on the mimicry of Bravais lattices, are considered. Samples were manufactured using stereolithography and the sound absorption properties were measured using an impedance tube. A significant increase in the sound absorption coefficients throughout a broadband frequency range from 1000 to 6300 Hz was observed with the addition of SBH plates. Finite element modelling reveals that the SSLA exhibits both the frequency-dependent resonant cell mechanisms of the lattice absorber and the time-dependent sound speed retardation effects of the SBH. Compression tests also reveal significant improvements to the specific energy absorption and absorption efficiency for some of the structures. Overall, this work demonstrates the potential and a conceptual advance with the adoption of additional plates to induce the sound speed reduction mechanism in the design of sound-absorbing lattices.
ArticleNumber 116434
Author Chua, Jun Wei
Yu, Xiang
Li, Xinwei
Zhai, Wei
Author_xml – sequence: 1
  givenname: Jun Wei
  surname: Chua
  fullname: Chua, Jun Wei
  organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
– sequence: 2
  givenname: Xinwei
  surname: Li
  fullname: Li, Xinwei
  organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-9514-9515
  surname: Yu
  fullname: Yu, Xiang
  email: lucien.yu@polyu.edu.hk
  organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-2307-5243
  surname: Zhai
  fullname: Zhai, Wei
  email: mpezwei@nus.edu.sg
  organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
BookMark eNqNkN1KAzEQRoNUsK2-Q15g10yy3WZvRC3-QdEbvQ7Z2Vmaut2UJK349m6pIHijVwMf8x1mzoSNet8TYxxEDgLKy3WOfrONKeww5VJImQOUhSpO2Bj0vMpA6NmIjYUsVaalVGdsEuNaCKELgDG7fvZ76njs_EcW_a5veGdTckjc1tGHmkLktY3UcN_ztCIefe-Q153Fd77yHZ2z09Z2kS6-55S93d-9Lh6z5cvD0-JmmaEqdcra4RioGolYFaAUWYB53UKFurE4s4LKoqBWQqVrWVMtqiHRCqHUupTYWjVl-sjF4GMM1JptcBsbPg0IczBh1ubHhDmYMEcTQ_XqVxVdssn5PgXruv8Abo8AGh7cOwomoqMeqXGBht3Gu78hX8QehEY
CitedBy_id crossref_primary_10_1002_advs_202405835
crossref_primary_10_1038_s41427_024_00565_5
crossref_primary_10_1016_j_oceaneng_2023_114376
crossref_primary_10_1088_1402_4896_ad478a
crossref_primary_10_1016_j_compstruct_2024_118046
crossref_primary_10_1002_adfm_202402068
crossref_primary_10_1016_j_compstruct_2025_119437
crossref_primary_10_1016_j_smmf_2025_100073
crossref_primary_10_3397_1_377337
crossref_primary_10_1016_j_apacoust_2024_110388
crossref_primary_10_1007_s42417_025_01909_3
crossref_primary_10_1103_PhysRevApplied_20_010501
crossref_primary_10_1016_j_apacoust_2025_110681
crossref_primary_10_1007_s12613_023_2684_8
crossref_primary_10_1080_17452759_2024_2435562
crossref_primary_10_1016_j_apacoust_2023_109817
crossref_primary_10_1002_adem_202402910
crossref_primary_10_1016_j_matdes_2025_113852
crossref_primary_10_1007_s40435_024_01542_0
crossref_primary_10_1002_advs_202305232
crossref_primary_10_1016_j_jsv_2024_118765
crossref_primary_10_1016_j_apacoust_2025_110813
crossref_primary_10_1121_10_0024470
crossref_primary_10_1016_j_tws_2023_110988
crossref_primary_10_1002_adfm_202420207
crossref_primary_10_1002_admt_202400517
crossref_primary_10_1016_j_apacoust_2025_110754
crossref_primary_10_1016_j_mattod_2025_06_029
crossref_primary_10_1080_17452759_2024_2412198
crossref_primary_10_1177_14644207231200729
crossref_primary_10_1016_j_compstruct_2023_117149
crossref_primary_10_1016_j_apacoust_2024_110196
crossref_primary_10_5050_KSNVE_2025_35_4_373
crossref_primary_10_1016_j_ijmecsci_2024_109071
crossref_primary_10_1016_j_matdes_2023_112354
crossref_primary_10_1016_j_tws_2025_113465
crossref_primary_10_1002_admt_202500118
Cites_doi 10.1016/j.matdes.2019.107830
10.1038/s41467-020-17533-6
10.1016/j.apacoust.2018.12.030
10.1002/adma.202005647
10.1103/PhysRevApplied.10.054060
10.1016/j.jsv.2019.115035
10.1063/5.0042514
10.1002/smll.201902842
10.1016/j.jmst.2021.07.056
10.1134/1.1478121
10.1080/17452759.2020.1740747
10.1016/j.jsv.2019.03.004
10.1016/j.apacoust.2020.107244
10.1016/j.jsv.2017.02.007
10.1126/science.1252291
10.1016/j.matdes.2019.107881
10.1016/j.euromechsol.2021.104304
10.1016/j.apacoust.2016.08.001
10.1126/science.1211649
10.3390/acoustics1030035
10.3390/met10010111
10.1016/j.matdes.2017.10.016
10.1016/j.mser.2021.100606
10.1007/s00339-016-0674-7
10.1002/smll.202100336
10.1016/j.actamat.2018.10.034
10.1038/srep43340
10.1039/C7MH00129K
10.1007/978-981-15-4481-1_8
10.1109/COA50123.2021.9519953
10.1002/adma.202104552
10.1073/pnas.1817309116
10.1016/j.jsv.2020.115316
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compstruct.2022.116434
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1085
ExternalDocumentID 10_1016_j_compstruct_2022_116434
S0263822322011667
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
WUQ
~HD
ID FETCH-LOGICAL-c368t-f18719d2cc94133ea117bf19c8dac5a0e644ef2198b2beb090e683c168862cfa3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881698600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8223
IngestDate Tue Nov 18 21:35:15 EST 2025
Sat Nov 29 07:16:39 EST 2025
Fri Feb 23 02:38:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Acoustic black hole
Finite element modelling
Lattice structures
Sound absorption
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-f18719d2cc94133ea117bf19c8dac5a0e644ef2198b2beb090e683c168862cfa3
ORCID 0000-0003-2307-5243
0000-0002-9514-9515
OpenAccessLink http://hdl.handle.net/10397/99428
ParticipantIDs crossref_primary_10_1016_j_compstruct_2022_116434
crossref_citationtrail_10_1016_j_compstruct_2022_116434
elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_116434
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Composite structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhai, Yu, Song, Ang, Cui, Lee (b0050) 2018; 137
Schaedler, Jacobsen, Torrents, Sorensen, Lian, Greer (b0065) 2011; 334
Jia, Li, Liu, Fang, Ding, Song (b0010) 2020; 11
Pelat, Gautier, Conlon, Semperlotti (b0155) 2020; 476
Kumar, Lee (b0005) 2019; 1
Cheng, Cheng, Chung, Kam (b0135) 2017; 123
Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy (b0140) 2020; 36
Guasch, Arnela, Sánchez-Martín (b0175) 2017; 395
Yang, Lee, Kim (b0185) 2017; 50
Chua, Li, Li, Chua, Yu, Zhai (b0215) 2022; 108
Yang M, Chen S, Fu C, Sheng P. Optimal sound-absorbing structures. Materials Horizons. 2017;4:673-80.
Johnston, Sharma (b0015) 2021
Bonatti, Mohr (b0190) 2019; 164
Deshmukh, Ronge, Ramamoorthy (b0205) 2019; 175
Guo, Ding, Li, Qu, Song, Fuh (b0095) 2021; 106977
Tang, Ren, Meng, Xin, Huang, Chen (b0025) 2017; 7
Benedetti, Du Plessis, Ritchie, Dallago, Razavi, Berto (b0060) 2021; 144
Plocher, Panesar (b0085) 2020; 33
Mironov, Pislyakov (b0165) 2002; 48
Deshmukh, Ronge, Ramamoorthy (b0125) 2019; 175
Li, Touzé, Pelat, Gautier, Kong (b0160) 2019; 450
Gautier, Krylov (b0045) 2020
Khosravani, Reinicke (b0030) 2021; 89
Mi Y, Zhai W, Cheng L, Xi C, Yu X. Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission. Applied Physics Letters. 2021;118.
Fotsing, Dubourg, Ross, Mardjono (b0220) 2019; 148
Zhang X, Vyatskikh A, Gao H, Greer JR, Li X. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences. 2019;116:6665-72.
Li, Tan, Willy, Wang, Lu, Cagirici (b0195) 2019; 178
Kassim DH, Putra A, Hamid MFSC, Alkahari MR. Sound Absorption of BCC Lattice Structures. In: Sabino U, Imaduddin F, Prabowo AR, editors.: Springer; 2020. p. 69-79.
Monkova, Vasina, Monka, Kozak, Vanca (b0145) 2020
Mironov M. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. 1988;34:318-9.
Boulvert, Costa-Baptista, Cavalieri, Perna, Fotsing, Romero-García (b0225) 2020; 164
Sun, Jiang, Wang (b0120) 2020; 10
Zhang, Wang, Ding, Li (b0055) 2020; 16
Li, Yu, Chua, Lee, Ding, Zhai (b0110) 2021; 17
Yang, An, Chua, Zhou (b0130) 2020; 15
Hollkamp, Semperlotti (b0180) 2020; 465
Saleh, Hu, Brenneman, Al Mutairi, Panat (b0090) 2021
Wang (b0200) 2020; 10
Wang X, Wang J, Chen Y. Research on Ultrabroadband Acoustic Absorbers Based on Slow-wave Metamaterials. 2021 OES China Ocean Acoustics (COA)2021. p. 219-23.
Gai, Xing, Li, Zhang, Wang (b0020) 2016; 114
Zheng, Lee, Weisgraber, Shusteff, DeOtte, Duoss (b0070) 2014; 344
Jam, du Plessis, Lora, Raghavendra, Pellizzari, Benedetti (b0100) 2022; 50
Bauer, Kraus, Crook, Rimoli, Valdevit (b0080) 2021; 33
Li, Yu, Zhai (b0210) 2021; 33
Bilal, Ballagi, Daraio (b0230) 2018; 10
Askari, Hutchins, Thomas, Astolfi, Watson, Abdi (b0105) 2020
Johnston (10.1016/j.compstruct.2022.116434_b0015) 2021
Monkova (10.1016/j.compstruct.2022.116434_b0145) 2020
Plocher (10.1016/j.compstruct.2022.116434_b0085) 2020; 33
10.1016/j.compstruct.2022.116434_b0115
10.1016/j.compstruct.2022.116434_b0035
Sun (10.1016/j.compstruct.2022.116434_b0120) 2020; 10
Wang (10.1016/j.compstruct.2022.116434_b0200) 2020; 10
10.1016/j.compstruct.2022.116434_b0075
Li (10.1016/j.compstruct.2022.116434_b0160) 2019; 450
Zhai (10.1016/j.compstruct.2022.116434_b0050) 2018; 137
Mironov (10.1016/j.compstruct.2022.116434_b0165) 2002; 48
10.1016/j.compstruct.2022.116434_b0150
Gai (10.1016/j.compstruct.2022.116434_b0020) 2016; 114
10.1016/j.compstruct.2022.116434_b0170
Fotsing (10.1016/j.compstruct.2022.116434_b0220) 2019; 148
Jam (10.1016/j.compstruct.2022.116434_b0100) 2022; 50
Tang (10.1016/j.compstruct.2022.116434_b0025) 2017; 7
Gautier (10.1016/j.compstruct.2022.116434_b0045) 2020
Yang (10.1016/j.compstruct.2022.116434_b0185) 2017; 50
Schaedler (10.1016/j.compstruct.2022.116434_b0065) 2011; 334
Li (10.1016/j.compstruct.2022.116434_b0210) 2021; 33
Khosravani (10.1016/j.compstruct.2022.116434_b0030) 2021; 89
Hollkamp (10.1016/j.compstruct.2022.116434_b0180) 2020; 465
Zheng (10.1016/j.compstruct.2022.116434_b0070) 2014; 344
Deshmukh (10.1016/j.compstruct.2022.116434_b0125) 2019; 175
Pelat (10.1016/j.compstruct.2022.116434_b0155) 2020; 476
Cheng (10.1016/j.compstruct.2022.116434_b0135) 2017; 123
Bauer (10.1016/j.compstruct.2022.116434_b0080) 2021; 33
Guasch (10.1016/j.compstruct.2022.116434_b0175) 2017; 395
Li (10.1016/j.compstruct.2022.116434_b0110) 2021; 17
Li (10.1016/j.compstruct.2022.116434_b0195) 2019; 178
Deshmukh (10.1016/j.compstruct.2022.116434_b0205) 2019; 175
Benedetti (10.1016/j.compstruct.2022.116434_b0060) 2021; 144
Askari (10.1016/j.compstruct.2022.116434_b0105) 2020
Zieliński (10.1016/j.compstruct.2022.116434_b0140) 2020; 36
10.1016/j.compstruct.2022.116434_b0040
Guo (10.1016/j.compstruct.2022.116434_b0095) 2021; 106977
Bonatti (10.1016/j.compstruct.2022.116434_b0190) 2019; 164
Jia (10.1016/j.compstruct.2022.116434_b0010) 2020; 11
Boulvert (10.1016/j.compstruct.2022.116434_b0225) 2020; 164
Zhang (10.1016/j.compstruct.2022.116434_b0055) 2020; 16
Saleh (10.1016/j.compstruct.2022.116434_b0090) 2021
Yang (10.1016/j.compstruct.2022.116434_b0130) 2020; 15
Kumar (10.1016/j.compstruct.2022.116434_b0005) 2019; 1
Bilal (10.1016/j.compstruct.2022.116434_b0230) 2018; 10
Chua (10.1016/j.compstruct.2022.116434_b0215) 2022; 108
References_xml – volume: 148
  start-page: 322
  year: 2019
  end-page: 331
  ident: b0220
  article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing
  publication-title: Appl Acoust
– volume: 10
  year: 2018
  ident: b0230
  article-title: Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions
  publication-title: Phys Rev Appl
– volume: 17
  start-page: e2100336
  year: 2021
  ident: b0110
  article-title: Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption
  publication-title: Small
– volume: 106977
  year: 2021
  ident: b0095
  article-title: Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design
  publication-title: Int J Mech Sci
– volume: 450
  start-page: 28
  year: 2019
  end-page: 46
  ident: b0160
  article-title: A vibro-impact acoustic black hole for passive damping of flexural beam vibrations
  publication-title: J Sound Vib
– volume: 16
  start-page: 1902842
  year: 2020
  ident: b0055
  article-title: Design, fabrication, and mechanics of 3D micro-/nanolattices
  publication-title: Small
– volume: 144
  year: 2021
  ident: b0060
  article-title: Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication
  publication-title: Mater Sci Eng: R: Reports
– reference: Mi Y, Zhai W, Cheng L, Xi C, Yu X. Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission. Applied Physics Letters. 2021;118.
– reference: Zhang X, Vyatskikh A, Gao H, Greer JR, Li X. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences. 2019;116:6665-72.
– volume: 48
  start-page: 347
  year: 2002
  end-page: 352
  ident: b0165
  article-title: One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero
  publication-title: Acoust Phys
– volume: 137
  start-page: 108
  year: 2018
  end-page: 116
  ident: b0050
  article-title: Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique
  publication-title: Mater Des
– volume: 476
  year: 2020
  ident: b0155
  article-title: The acoustic black hole: a review of theory and applications
  publication-title: J Sound Vib
– volume: 10
  year: 2020
  ident: b0200
  article-title: Sound absorption of face-centered cubic sandwich structure with micro-perforations
  publication-title: Mater Des
– volume: 36
  year: 2020
  ident: b0140
  article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study
  publication-title: Addit Manuf
– start-page: 13
  year: 2020
  ident: b0145
  article-title: Effect of the pore shape and size of 3d-printed open-porous ABS materials on sound absorption performance
  publication-title: Materials (Basel)
– volume: 344
  start-page: 1373
  year: 2014
  end-page: 1377
  ident: b0070
  article-title: Ultralight, ultrastiff mechanical metamaterials
  publication-title: Science
– volume: 89
  year: 2021
  ident: b0030
  article-title: Experimental characterization of 3D-printed sound absorber
  publication-title: Eur J Mech A Solids
– reference: Wang X, Wang J, Chen Y. Research on Ultrabroadband Acoustic Absorbers Based on Slow-wave Metamaterials. 2021 OES China Ocean Acoustics (COA)2021. p. 219-23.
– volume: 10
  start-page: 111
  year: 2020
  ident: b0120
  article-title: Acoustic properties of 316L stainless steel lattice structures fabricated via selective laser melting
  publication-title: Metals
– volume: 50
  year: 2017
  ident: b0185
  article-title: Multiple slow waves in metaporous layers for broadband sound absorption
  publication-title: J Phys D Appl Phys
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0010
  article-title: Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances
  publication-title: Nat Commun
– volume: 15
  start-page: 242
  year: 2020
  end-page: 249
  ident: b0130
  article-title: Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography
  publication-title: Virtual Phys. Prototyp.
– volume: 334
  start-page: 962
  year: 2011
  end-page: 965
  ident: b0065
  article-title: Ultralight metallic microlattices
  publication-title: Science
– volume: 175
  year: 2019
  ident: b0205
  article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation
  publication-title: Mater Des
– start-page: 41
  year: 2021
  ident: b0015
  article-title: Additive manufacturing of fibrous sound absorbers
  publication-title: Addit Manuf
– volume: 164
  year: 2020
  ident: b0225
  article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing
  publication-title: Appl Acoust
– volume: 7
  start-page: 43340
  year: 2017
  ident: b0025
  article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
  publication-title: Sci Rep
– volume: 33
  start-page: 2005647
  year: 2021
  ident: b0080
  article-title: Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation
  publication-title: Adv Mater
– volume: 123
  start-page: 37
  year: 2017
  ident: b0135
  article-title: Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
  publication-title: Appl Phys A
– volume: 1
  start-page: 590
  year: 2019
  end-page: 607
  ident: b0005
  article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations
  publication-title: Acoustics
– reference: Mironov M. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. 1988;34:318-9.
– volume: 114
  start-page: 260
  year: 2016
  end-page: 265
  ident: b0020
  article-title: Sound absorption of microperforated panel mounted with helmholtz resonators
  publication-title: Appl Acoust
– volume: 33
  year: 2020
  ident: b0085
  article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures
  publication-title: Addit Manuf
– volume: 108
  start-page: 196
  year: 2022
  end-page: 207
  ident: b0215
  article-title: Customisable sound absorption properties of functionally graded metallic foams
  publication-title: J Mater Sci Technol
– volume: 395
  start-page: 65
  year: 2017
  end-page: 79
  ident: b0175
  article-title: Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations
  publication-title: J Sound Vib
– volume: 33
  start-page: e2104552
  year: 2021
  ident: b0210
  article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels
  publication-title: Adv Mater
– reference: Kassim DH, Putra A, Hamid MFSC, Alkahari MR. Sound Absorption of BCC Lattice Structures. In: Sabino U, Imaduddin F, Prabowo AR, editors.: Springer; 2020. p. 69-79.
– year: 2020:
  ident: b0105
  article-title: Additive manufacturing of metamaterials: a review
  publication-title: Addit Manuf
– volume: 175
  year: 2019
  ident: b0125
  article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation
  publication-title: Mater Des
– start-page: 476
  year: 2020
  ident: b0045
  article-title: Special issue: recent advances in acoustic black hole research
  publication-title: J Sound Vib
– reference: Yang M, Chen S, Fu C, Sheng P. Optimal sound-absorbing structures. Materials Horizons. 2017;4:673-80.
– volume: 178
  year: 2019
  ident: b0195
  article-title: Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: Processing, microstructure, superior performance and mechanisms
  publication-title: Mater Des
– volume: 50
  year: 2022
  ident: b0100
  article-title: Manufacturability of lattice structures fabricated by laser powder bed fusion: a novel biomedical application of the beta Ti-21S alloy
  publication-title: Addit Manuf
– volume: 164
  start-page: 301
  year: 2019
  end-page: 321
  ident: b0190
  article-title: Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption
  publication-title: Acta Mater
– volume: 465
  year: 2020
  ident: b0180
  article-title: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations
  publication-title: J Sound Vib
– start-page: 39
  year: 2021
  ident: b0090
  article-title: 3D printed three-dimensional metallic microlattices with controlled and tunable mechanical properties
  publication-title: Addit Manuf
– volume: 175
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0205
  article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107830
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0010
  article-title: Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17533-6
– volume: 148
  start-page: 322
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0220
  article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2018.12.030
– year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0105
  article-title: Additive manufacturing of metamaterials: a review
  publication-title: Addit Manuf
– volume: 33
  start-page: 2005647
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0080
  article-title: Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation
  publication-title: Adv Mater
  doi: 10.1002/adma.202005647
– volume: 36
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0140
  article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study
  publication-title: Addit Manuf
– volume: 10
  year: 2018
  ident: 10.1016/j.compstruct.2022.116434_b0230
  article-title: Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.10.054060
– volume: 175
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0125
  article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107830
– volume: 465
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0180
  article-title: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115035
– ident: 10.1016/j.compstruct.2022.116434_b0040
  doi: 10.1063/5.0042514
– volume: 16
  start-page: 1902842
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0055
  article-title: Design, fabrication, and mechanics of 3D micro-/nanolattices
  publication-title: Small
  doi: 10.1002/smll.201902842
– volume: 108
  start-page: 196
  year: 2022
  ident: 10.1016/j.compstruct.2022.116434_b0215
  article-title: Customisable sound absorption properties of functionally graded metallic foams
  publication-title: J Mater Sci Technol
  doi: 10.1016/j.jmst.2021.07.056
– volume: 48
  start-page: 347
  year: 2002
  ident: 10.1016/j.compstruct.2022.116434_b0165
  article-title: One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero
  publication-title: Acoust Phys
  doi: 10.1134/1.1478121
– volume: 106977
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0095
  article-title: Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design
  publication-title: Int J Mech Sci
– volume: 50
  year: 2022
  ident: 10.1016/j.compstruct.2022.116434_b0100
  article-title: Manufacturability of lattice structures fabricated by laser powder bed fusion: a novel biomedical application of the beta Ti-21S alloy
  publication-title: Addit Manuf
– volume: 15
  start-page: 242
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0130
  article-title: Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2020.1740747
– volume: 450
  start-page: 28
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0160
  article-title: A vibro-impact acoustic black hole for passive damping of flexural beam vibrations
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.03.004
– volume: 164
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0225
  article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107244
– start-page: 476
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0045
  article-title: Special issue: recent advances in acoustic black hole research
  publication-title: J Sound Vib
– start-page: 13
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0145
  article-title: Effect of the pore shape and size of 3d-printed open-porous ABS materials on sound absorption performance
  publication-title: Materials (Basel)
– start-page: 41
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0015
  article-title: Additive manufacturing of fibrous sound absorbers
  publication-title: Addit Manuf
– volume: 395
  start-page: 65
  year: 2017
  ident: 10.1016/j.compstruct.2022.116434_b0175
  article-title: Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.02.007
– volume: 344
  start-page: 1373
  year: 2014
  ident: 10.1016/j.compstruct.2022.116434_b0070
  article-title: Ultralight, ultrastiff mechanical metamaterials
  publication-title: Science
  doi: 10.1126/science.1252291
– ident: 10.1016/j.compstruct.2022.116434_b0150
– volume: 33
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0085
  article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures
  publication-title: Addit Manuf
– volume: 178
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0195
  article-title: Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: Processing, microstructure, superior performance and mechanisms
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2019.107881
– volume: 10
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0200
  article-title: Sound absorption of face-centered cubic sandwich structure with micro-perforations
  publication-title: Mater Des
– volume: 89
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0030
  article-title: Experimental characterization of 3D-printed sound absorber
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2021.104304
– volume: 114
  start-page: 260
  year: 2016
  ident: 10.1016/j.compstruct.2022.116434_b0020
  article-title: Sound absorption of microperforated panel mounted with helmholtz resonators
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2016.08.001
– volume: 334
  start-page: 962
  year: 2011
  ident: 10.1016/j.compstruct.2022.116434_b0065
  article-title: Ultralight metallic microlattices
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 1
  start-page: 590
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0005
  article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations
  publication-title: Acoustics
  doi: 10.3390/acoustics1030035
– start-page: 39
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0090
  article-title: 3D printed three-dimensional metallic microlattices with controlled and tunable mechanical properties
  publication-title: Addit Manuf
– volume: 10
  start-page: 111
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0120
  article-title: Acoustic properties of 316L stainless steel lattice structures fabricated via selective laser melting
  publication-title: Metals
  doi: 10.3390/met10010111
– volume: 137
  start-page: 108
  year: 2018
  ident: 10.1016/j.compstruct.2022.116434_b0050
  article-title: Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.10.016
– volume: 50
  year: 2017
  ident: 10.1016/j.compstruct.2022.116434_b0185
  article-title: Multiple slow waves in metaporous layers for broadband sound absorption
  publication-title: J Phys D Appl Phys
– volume: 144
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0060
  article-title: Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication
  publication-title: Mater Sci Eng: R: Reports
  doi: 10.1016/j.mser.2021.100606
– volume: 123
  start-page: 37
  year: 2017
  ident: 10.1016/j.compstruct.2022.116434_b0135
  article-title: Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
  publication-title: Appl Phys A
  doi: 10.1007/s00339-016-0674-7
– volume: 17
  start-page: e2100336
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0110
  article-title: Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption
  publication-title: Small
  doi: 10.1002/smll.202100336
– volume: 164
  start-page: 301
  year: 2019
  ident: 10.1016/j.compstruct.2022.116434_b0190
  article-title: Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.10.034
– volume: 7
  start-page: 43340
  year: 2017
  ident: 10.1016/j.compstruct.2022.116434_b0025
  article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
  publication-title: Sci Rep
  doi: 10.1038/srep43340
– ident: 10.1016/j.compstruct.2022.116434_b0035
  doi: 10.1039/C7MH00129K
– ident: 10.1016/j.compstruct.2022.116434_b0115
  doi: 10.1007/978-981-15-4481-1_8
– ident: 10.1016/j.compstruct.2022.116434_b0170
  doi: 10.1109/COA50123.2021.9519953
– volume: 33
  start-page: e2104552
  year: 2021
  ident: 10.1016/j.compstruct.2022.116434_b0210
  article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels
  publication-title: Adv Mater
  doi: 10.1002/adma.202104552
– ident: 10.1016/j.compstruct.2022.116434_b0075
  doi: 10.1073/pnas.1817309116
– volume: 476
  year: 2020
  ident: 10.1016/j.compstruct.2022.116434_b0155
  article-title: The acoustic black hole: a review of theory and applications
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2020.115316
SSID ssj0008411
Score 2.5576806
Snippet [Display omitted] •The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116434
SubjectTerms Acoustic black hole
Finite element modelling
Lattice structures
Sound absorption
Title Novel slow-sound lattice absorbers based on the sonic black hole
URI https://dx.doi.org/10.1016/j.compstruct.2022.116434
Volume 304
WOSCitedRecordID wos000881698600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008411
  issn: 0263-8223
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4f1YXRftPtCD3szAst2bIm9rJSOdRthsG7LnowlyzTF2CFO0v75u5NkO7DCOsZeTBCWldxPvjtdfndHyJtCSjCyRcXiVIQsUYIzIVXIuAmVgeNBmthuDd8_Z7OZmM_ll8nkU58Ls62zphE3N3L5X6GGMQAbU2f_Au7hoTAAnwF0uALscL0T8LN2a-qgq9tr1mHPpKAu1shwCwrVtSuFCbtoukr_N0HQ2R44CgN5ATbL3XVXUVsgqwvL0GKd2c1qpByeXm4cz3bTBD_MYmD2WHrAfNFcj2M_N26s8GbSBartjf1MH3iIkHbFXOqli4b1GTEj_aizhVxjBk6HU1rGKVWRSYZZDrtaN3Zdh3_T4C6YcIUALN1Pg0N8FIFqB98pGa3WwCX8ikviihH6Mmma3SP7UTaVoOL2T87P5h8HwywS2455-Iqe2OXofrevd7u3suOBXBySh_7oQE8c5I_IxDSPycFOQckn5J0Fn47gUw8-HcCnFnzaNhTApxZ8asGnCP5T8u392cXpB-Z7ZDANb9eaVSBcLstIawnuSGwKzjNVcalFWehpERrwd00FZkmoSBkVShgRseapgKOsror4Gdlr2sYcERqlMtRJOuWZrhKjQ1mmRmacl9Ok1GCMjknWyyLXvoA89jGp854peJWPUsxRirmT4jHhw8ylK6Jyhzlve3Hn3hl0Tl4OO-WPs5__0-wX5MG44V-SPbjBvCL39Xa96Fav_bb6BX4jiHU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+slow-sound+lattice+absorbers+based+on+the+sonic+black+hole&rft.jtitle=Composite+structures&rft.au=Chua%2C+Jun+Wei&rft.au=Li%2C+Xinwei&rft.au=Yu%2C+Xiang&rft.au=Zhai%2C+Wei&rft.date=2023-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=304&rft_id=info:doi/10.1016%2Fj.compstruct.2022.116434&rft.externalDocID=S0263822322011667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon