Novel slow-sound lattice absorbers based on the sonic black hole
[Display omitted] •The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat photopolymerization technique.•Sound absorption performances of the proposed lattices outweigh the truss lattices.•The proposed lattices exhibit both...
Saved in:
| Published in: | Composite structures Vol. 304; p. 116434 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.01.2023
|
| Subjects: | |
| ISSN: | 0263-8223, 1879-1085 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat photopolymerization technique.•Sound absorption performances of the proposed lattices outweigh the truss lattices.•The proposed lattices exhibit both resonance and sound speed reduction mechanisms.
The advent of additive manufacturing enabled rapid progress in the research of lattice structures, such as truss lattices, for sound absorption applications. Thus far, the sound absorption coefficient curves of truss lattices are typically characterized by alternating regions of high and low coefficients, reminiscent to that of Helmholtz resonators. The relatively poor sound absorption performances of such lattices prompt a need for an alternative sound absorption mechanism to improve their performances. In this work, we propose to incorporate a series of thin parallel plates with circular holes resembling the profile of a sonic black hole (SBH) into truss lattices for the design of a novel class of slow-sound lattice absorbers (SSLA). Four truss lattices, based on the mimicry of Bravais lattices, are considered. Samples were manufactured using stereolithography and the sound absorption properties were measured using an impedance tube. A significant increase in the sound absorption coefficients throughout a broadband frequency range from 1000 to 6300 Hz was observed with the addition of SBH plates. Finite element modelling reveals that the SSLA exhibits both the frequency-dependent resonant cell mechanisms of the lattice absorber and the time-dependent sound speed retardation effects of the SBH. Compression tests also reveal significant improvements to the specific energy absorption and absorption efficiency for some of the structures. Overall, this work demonstrates the potential and a conceptual advance with the adoption of additional plates to induce the sound speed reduction mechanism in the design of sound-absorbing lattices. |
|---|---|
| AbstractList | [Display omitted]
•The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat photopolymerization technique.•Sound absorption performances of the proposed lattices outweigh the truss lattices.•The proposed lattices exhibit both resonance and sound speed reduction mechanisms.
The advent of additive manufacturing enabled rapid progress in the research of lattice structures, such as truss lattices, for sound absorption applications. Thus far, the sound absorption coefficient curves of truss lattices are typically characterized by alternating regions of high and low coefficients, reminiscent to that of Helmholtz resonators. The relatively poor sound absorption performances of such lattices prompt a need for an alternative sound absorption mechanism to improve their performances. In this work, we propose to incorporate a series of thin parallel plates with circular holes resembling the profile of a sonic black hole (SBH) into truss lattices for the design of a novel class of slow-sound lattice absorbers (SSLA). Four truss lattices, based on the mimicry of Bravais lattices, are considered. Samples were manufactured using stereolithography and the sound absorption properties were measured using an impedance tube. A significant increase in the sound absorption coefficients throughout a broadband frequency range from 1000 to 6300 Hz was observed with the addition of SBH plates. Finite element modelling reveals that the SSLA exhibits both the frequency-dependent resonant cell mechanisms of the lattice absorber and the time-dependent sound speed retardation effects of the SBH. Compression tests also reveal significant improvements to the specific energy absorption and absorption efficiency for some of the structures. Overall, this work demonstrates the potential and a conceptual advance with the adoption of additional plates to induce the sound speed reduction mechanism in the design of sound-absorbing lattices. |
| ArticleNumber | 116434 |
| Author | Chua, Jun Wei Yu, Xiang Li, Xinwei Zhai, Wei |
| Author_xml | – sequence: 1 givenname: Jun Wei surname: Chua fullname: Chua, Jun Wei organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore – sequence: 2 givenname: Xinwei surname: Li fullname: Li, Xinwei organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore – sequence: 3 givenname: Xiang orcidid: 0000-0002-9514-9515 surname: Yu fullname: Yu, Xiang email: lucien.yu@polyu.edu.hk organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region – sequence: 4 givenname: Wei orcidid: 0000-0003-2307-5243 surname: Zhai fullname: Zhai, Wei email: mpezwei@nus.edu.sg organization: Department of Mechanical Engineering, National University of Singapore, 117575, Singapore |
| BookMark | eNqNkN1KAzEQRoNUsK2-Q15g10yy3WZvRC3-QdEbvQ7Z2Vmaut2UJK349m6pIHijVwMf8x1mzoSNet8TYxxEDgLKy3WOfrONKeww5VJImQOUhSpO2Bj0vMpA6NmIjYUsVaalVGdsEuNaCKELgDG7fvZ76njs_EcW_a5veGdTckjc1tGHmkLktY3UcN_ztCIefe-Q153Fd77yHZ2z09Z2kS6-55S93d-9Lh6z5cvD0-JmmaEqdcra4RioGolYFaAUWYB53UKFurE4s4LKoqBWQqVrWVMtqiHRCqHUupTYWjVl-sjF4GMM1JptcBsbPg0IczBh1ubHhDmYMEcTQ_XqVxVdssn5PgXruv8Abo8AGh7cOwomoqMeqXGBht3Gu78hX8QehEY |
| CitedBy_id | crossref_primary_10_1002_advs_202405835 crossref_primary_10_1038_s41427_024_00565_5 crossref_primary_10_1016_j_oceaneng_2023_114376 crossref_primary_10_1088_1402_4896_ad478a crossref_primary_10_1016_j_compstruct_2024_118046 crossref_primary_10_1002_adfm_202402068 crossref_primary_10_1016_j_compstruct_2025_119437 crossref_primary_10_1016_j_smmf_2025_100073 crossref_primary_10_3397_1_377337 crossref_primary_10_1016_j_apacoust_2024_110388 crossref_primary_10_1007_s42417_025_01909_3 crossref_primary_10_1103_PhysRevApplied_20_010501 crossref_primary_10_1016_j_apacoust_2025_110681 crossref_primary_10_1007_s12613_023_2684_8 crossref_primary_10_1080_17452759_2024_2435562 crossref_primary_10_1016_j_apacoust_2023_109817 crossref_primary_10_1002_adem_202402910 crossref_primary_10_1016_j_matdes_2025_113852 crossref_primary_10_1007_s40435_024_01542_0 crossref_primary_10_1002_advs_202305232 crossref_primary_10_1016_j_jsv_2024_118765 crossref_primary_10_1016_j_apacoust_2025_110813 crossref_primary_10_1121_10_0024470 crossref_primary_10_1016_j_tws_2023_110988 crossref_primary_10_1002_adfm_202420207 crossref_primary_10_1002_admt_202400517 crossref_primary_10_1016_j_apacoust_2025_110754 crossref_primary_10_1016_j_mattod_2025_06_029 crossref_primary_10_1080_17452759_2024_2412198 crossref_primary_10_1177_14644207231200729 crossref_primary_10_1016_j_compstruct_2023_117149 crossref_primary_10_1016_j_apacoust_2024_110196 crossref_primary_10_5050_KSNVE_2025_35_4_373 crossref_primary_10_1016_j_ijmecsci_2024_109071 crossref_primary_10_1016_j_matdes_2023_112354 crossref_primary_10_1016_j_tws_2025_113465 crossref_primary_10_1002_admt_202500118 |
| Cites_doi | 10.1016/j.matdes.2019.107830 10.1038/s41467-020-17533-6 10.1016/j.apacoust.2018.12.030 10.1002/adma.202005647 10.1103/PhysRevApplied.10.054060 10.1016/j.jsv.2019.115035 10.1063/5.0042514 10.1002/smll.201902842 10.1016/j.jmst.2021.07.056 10.1134/1.1478121 10.1080/17452759.2020.1740747 10.1016/j.jsv.2019.03.004 10.1016/j.apacoust.2020.107244 10.1016/j.jsv.2017.02.007 10.1126/science.1252291 10.1016/j.matdes.2019.107881 10.1016/j.euromechsol.2021.104304 10.1016/j.apacoust.2016.08.001 10.1126/science.1211649 10.3390/acoustics1030035 10.3390/met10010111 10.1016/j.matdes.2017.10.016 10.1016/j.mser.2021.100606 10.1007/s00339-016-0674-7 10.1002/smll.202100336 10.1016/j.actamat.2018.10.034 10.1038/srep43340 10.1039/C7MH00129K 10.1007/978-981-15-4481-1_8 10.1109/COA50123.2021.9519953 10.1002/adma.202104552 10.1073/pnas.1817309116 10.1016/j.jsv.2020.115316 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compstruct.2022.116434 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1085 |
| ExternalDocumentID | 10_1016_j_compstruct_2022_116434 S0263822322011667 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS WUQ ~HD |
| ID | FETCH-LOGICAL-c368t-f18719d2cc94133ea117bf19c8dac5a0e644ef2198b2beb090e683c168862cfa3 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881698600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8223 |
| IngestDate | Tue Nov 18 21:35:15 EST 2025 Sat Nov 29 07:16:39 EST 2025 Fri Feb 23 02:38:32 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Acoustic black hole Finite element modelling Lattice structures Sound absorption |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-f18719d2cc94133ea117bf19c8dac5a0e644ef2198b2beb090e683c168862cfa3 |
| ORCID | 0000-0003-2307-5243 0000-0002-9514-9515 |
| OpenAccessLink | http://hdl.handle.net/10397/99428 |
| ParticipantIDs | crossref_primary_10_1016_j_compstruct_2022_116434 crossref_citationtrail_10_1016_j_compstruct_2022_116434 elsevier_sciencedirect_doi_10_1016_j_compstruct_2022_116434 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-15 |
| PublicationDateYYYYMMDD | 2023-01-15 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Composite structures |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhai, Yu, Song, Ang, Cui, Lee (b0050) 2018; 137 Schaedler, Jacobsen, Torrents, Sorensen, Lian, Greer (b0065) 2011; 334 Jia, Li, Liu, Fang, Ding, Song (b0010) 2020; 11 Pelat, Gautier, Conlon, Semperlotti (b0155) 2020; 476 Kumar, Lee (b0005) 2019; 1 Cheng, Cheng, Chung, Kam (b0135) 2017; 123 Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy (b0140) 2020; 36 Guasch, Arnela, Sánchez-Martín (b0175) 2017; 395 Yang, Lee, Kim (b0185) 2017; 50 Chua, Li, Li, Chua, Yu, Zhai (b0215) 2022; 108 Yang M, Chen S, Fu C, Sheng P. Optimal sound-absorbing structures. Materials Horizons. 2017;4:673-80. Johnston, Sharma (b0015) 2021 Bonatti, Mohr (b0190) 2019; 164 Deshmukh, Ronge, Ramamoorthy (b0205) 2019; 175 Guo, Ding, Li, Qu, Song, Fuh (b0095) 2021; 106977 Tang, Ren, Meng, Xin, Huang, Chen (b0025) 2017; 7 Benedetti, Du Plessis, Ritchie, Dallago, Razavi, Berto (b0060) 2021; 144 Plocher, Panesar (b0085) 2020; 33 Mironov, Pislyakov (b0165) 2002; 48 Deshmukh, Ronge, Ramamoorthy (b0125) 2019; 175 Li, Touzé, Pelat, Gautier, Kong (b0160) 2019; 450 Gautier, Krylov (b0045) 2020 Khosravani, Reinicke (b0030) 2021; 89 Mi Y, Zhai W, Cheng L, Xi C, Yu X. Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission. Applied Physics Letters. 2021;118. Fotsing, Dubourg, Ross, Mardjono (b0220) 2019; 148 Zhang X, Vyatskikh A, Gao H, Greer JR, Li X. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences. 2019;116:6665-72. Li, Tan, Willy, Wang, Lu, Cagirici (b0195) 2019; 178 Kassim DH, Putra A, Hamid MFSC, Alkahari MR. Sound Absorption of BCC Lattice Structures. In: Sabino U, Imaduddin F, Prabowo AR, editors.: Springer; 2020. p. 69-79. Monkova, Vasina, Monka, Kozak, Vanca (b0145) 2020 Mironov M. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. 1988;34:318-9. Boulvert, Costa-Baptista, Cavalieri, Perna, Fotsing, Romero-García (b0225) 2020; 164 Sun, Jiang, Wang (b0120) 2020; 10 Zhang, Wang, Ding, Li (b0055) 2020; 16 Li, Yu, Chua, Lee, Ding, Zhai (b0110) 2021; 17 Yang, An, Chua, Zhou (b0130) 2020; 15 Hollkamp, Semperlotti (b0180) 2020; 465 Saleh, Hu, Brenneman, Al Mutairi, Panat (b0090) 2021 Wang (b0200) 2020; 10 Wang X, Wang J, Chen Y. Research on Ultrabroadband Acoustic Absorbers Based on Slow-wave Metamaterials. 2021 OES China Ocean Acoustics (COA)2021. p. 219-23. Gai, Xing, Li, Zhang, Wang (b0020) 2016; 114 Zheng, Lee, Weisgraber, Shusteff, DeOtte, Duoss (b0070) 2014; 344 Jam, du Plessis, Lora, Raghavendra, Pellizzari, Benedetti (b0100) 2022; 50 Bauer, Kraus, Crook, Rimoli, Valdevit (b0080) 2021; 33 Li, Yu, Zhai (b0210) 2021; 33 Bilal, Ballagi, Daraio (b0230) 2018; 10 Askari, Hutchins, Thomas, Astolfi, Watson, Abdi (b0105) 2020 Johnston (10.1016/j.compstruct.2022.116434_b0015) 2021 Monkova (10.1016/j.compstruct.2022.116434_b0145) 2020 Plocher (10.1016/j.compstruct.2022.116434_b0085) 2020; 33 10.1016/j.compstruct.2022.116434_b0115 10.1016/j.compstruct.2022.116434_b0035 Sun (10.1016/j.compstruct.2022.116434_b0120) 2020; 10 Wang (10.1016/j.compstruct.2022.116434_b0200) 2020; 10 10.1016/j.compstruct.2022.116434_b0075 Li (10.1016/j.compstruct.2022.116434_b0160) 2019; 450 Zhai (10.1016/j.compstruct.2022.116434_b0050) 2018; 137 Mironov (10.1016/j.compstruct.2022.116434_b0165) 2002; 48 10.1016/j.compstruct.2022.116434_b0150 Gai (10.1016/j.compstruct.2022.116434_b0020) 2016; 114 10.1016/j.compstruct.2022.116434_b0170 Fotsing (10.1016/j.compstruct.2022.116434_b0220) 2019; 148 Jam (10.1016/j.compstruct.2022.116434_b0100) 2022; 50 Tang (10.1016/j.compstruct.2022.116434_b0025) 2017; 7 Gautier (10.1016/j.compstruct.2022.116434_b0045) 2020 Yang (10.1016/j.compstruct.2022.116434_b0185) 2017; 50 Schaedler (10.1016/j.compstruct.2022.116434_b0065) 2011; 334 Li (10.1016/j.compstruct.2022.116434_b0210) 2021; 33 Khosravani (10.1016/j.compstruct.2022.116434_b0030) 2021; 89 Hollkamp (10.1016/j.compstruct.2022.116434_b0180) 2020; 465 Zheng (10.1016/j.compstruct.2022.116434_b0070) 2014; 344 Deshmukh (10.1016/j.compstruct.2022.116434_b0125) 2019; 175 Pelat (10.1016/j.compstruct.2022.116434_b0155) 2020; 476 Cheng (10.1016/j.compstruct.2022.116434_b0135) 2017; 123 Bauer (10.1016/j.compstruct.2022.116434_b0080) 2021; 33 Guasch (10.1016/j.compstruct.2022.116434_b0175) 2017; 395 Li (10.1016/j.compstruct.2022.116434_b0110) 2021; 17 Li (10.1016/j.compstruct.2022.116434_b0195) 2019; 178 Deshmukh (10.1016/j.compstruct.2022.116434_b0205) 2019; 175 Benedetti (10.1016/j.compstruct.2022.116434_b0060) 2021; 144 Askari (10.1016/j.compstruct.2022.116434_b0105) 2020 Zieliński (10.1016/j.compstruct.2022.116434_b0140) 2020; 36 10.1016/j.compstruct.2022.116434_b0040 Guo (10.1016/j.compstruct.2022.116434_b0095) 2021; 106977 Bonatti (10.1016/j.compstruct.2022.116434_b0190) 2019; 164 Jia (10.1016/j.compstruct.2022.116434_b0010) 2020; 11 Boulvert (10.1016/j.compstruct.2022.116434_b0225) 2020; 164 Zhang (10.1016/j.compstruct.2022.116434_b0055) 2020; 16 Saleh (10.1016/j.compstruct.2022.116434_b0090) 2021 Yang (10.1016/j.compstruct.2022.116434_b0130) 2020; 15 Kumar (10.1016/j.compstruct.2022.116434_b0005) 2019; 1 Bilal (10.1016/j.compstruct.2022.116434_b0230) 2018; 10 Chua (10.1016/j.compstruct.2022.116434_b0215) 2022; 108 |
| References_xml | – volume: 148 start-page: 322 year: 2019 end-page: 331 ident: b0220 article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing publication-title: Appl Acoust – volume: 10 year: 2018 ident: b0230 article-title: Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions publication-title: Phys Rev Appl – volume: 17 start-page: e2100336 year: 2021 ident: b0110 article-title: Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption publication-title: Small – volume: 106977 year: 2021 ident: b0095 article-title: Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design publication-title: Int J Mech Sci – volume: 450 start-page: 28 year: 2019 end-page: 46 ident: b0160 article-title: A vibro-impact acoustic black hole for passive damping of flexural beam vibrations publication-title: J Sound Vib – volume: 16 start-page: 1902842 year: 2020 ident: b0055 article-title: Design, fabrication, and mechanics of 3D micro-/nanolattices publication-title: Small – volume: 144 year: 2021 ident: b0060 article-title: Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication publication-title: Mater Sci Eng: R: Reports – reference: Mi Y, Zhai W, Cheng L, Xi C, Yu X. Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission. Applied Physics Letters. 2021;118. – reference: Zhang X, Vyatskikh A, Gao H, Greer JR, Li X. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences. 2019;116:6665-72. – volume: 48 start-page: 347 year: 2002 end-page: 352 ident: b0165 article-title: One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero publication-title: Acoust Phys – volume: 137 start-page: 108 year: 2018 end-page: 116 ident: b0050 article-title: Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique publication-title: Mater Des – volume: 476 year: 2020 ident: b0155 article-title: The acoustic black hole: a review of theory and applications publication-title: J Sound Vib – volume: 10 year: 2020 ident: b0200 article-title: Sound absorption of face-centered cubic sandwich structure with micro-perforations publication-title: Mater Des – volume: 36 year: 2020 ident: b0140 article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study publication-title: Addit Manuf – start-page: 13 year: 2020 ident: b0145 article-title: Effect of the pore shape and size of 3d-printed open-porous ABS materials on sound absorption performance publication-title: Materials (Basel) – volume: 344 start-page: 1373 year: 2014 end-page: 1377 ident: b0070 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science – volume: 89 year: 2021 ident: b0030 article-title: Experimental characterization of 3D-printed sound absorber publication-title: Eur J Mech A Solids – reference: Wang X, Wang J, Chen Y. Research on Ultrabroadband Acoustic Absorbers Based on Slow-wave Metamaterials. 2021 OES China Ocean Acoustics (COA)2021. p. 219-23. – volume: 10 start-page: 111 year: 2020 ident: b0120 article-title: Acoustic properties of 316L stainless steel lattice structures fabricated via selective laser melting publication-title: Metals – volume: 50 year: 2017 ident: b0185 article-title: Multiple slow waves in metaporous layers for broadband sound absorption publication-title: J Phys D Appl Phys – volume: 11 start-page: 1 year: 2020 end-page: 13 ident: b0010 article-title: Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances publication-title: Nat Commun – volume: 15 start-page: 242 year: 2020 end-page: 249 ident: b0130 article-title: Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography publication-title: Virtual Phys. Prototyp. – volume: 334 start-page: 962 year: 2011 end-page: 965 ident: b0065 article-title: Ultralight metallic microlattices publication-title: Science – volume: 175 year: 2019 ident: b0205 article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation publication-title: Mater Des – start-page: 41 year: 2021 ident: b0015 article-title: Additive manufacturing of fibrous sound absorbers publication-title: Addit Manuf – volume: 164 year: 2020 ident: b0225 article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing publication-title: Appl Acoust – volume: 7 start-page: 43340 year: 2017 ident: b0025 article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound publication-title: Sci Rep – volume: 33 start-page: 2005647 year: 2021 ident: b0080 article-title: Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation publication-title: Adv Mater – volume: 123 start-page: 37 year: 2017 ident: b0135 article-title: Sound absorption of metallic sound absorbers fabricated via the selective laser melting process publication-title: Appl Phys A – volume: 1 start-page: 590 year: 2019 end-page: 607 ident: b0005 article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations publication-title: Acoustics – reference: Mironov M. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. 1988;34:318-9. – volume: 114 start-page: 260 year: 2016 end-page: 265 ident: b0020 article-title: Sound absorption of microperforated panel mounted with helmholtz resonators publication-title: Appl Acoust – volume: 33 year: 2020 ident: b0085 article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures publication-title: Addit Manuf – volume: 108 start-page: 196 year: 2022 end-page: 207 ident: b0215 article-title: Customisable sound absorption properties of functionally graded metallic foams publication-title: J Mater Sci Technol – volume: 395 start-page: 65 year: 2017 end-page: 79 ident: b0175 article-title: Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations publication-title: J Sound Vib – volume: 33 start-page: e2104552 year: 2021 ident: b0210 article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels publication-title: Adv Mater – reference: Kassim DH, Putra A, Hamid MFSC, Alkahari MR. Sound Absorption of BCC Lattice Structures. In: Sabino U, Imaduddin F, Prabowo AR, editors.: Springer; 2020. p. 69-79. – year: 2020: ident: b0105 article-title: Additive manufacturing of metamaterials: a review publication-title: Addit Manuf – volume: 175 year: 2019 ident: b0125 article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation publication-title: Mater Des – start-page: 476 year: 2020 ident: b0045 article-title: Special issue: recent advances in acoustic black hole research publication-title: J Sound Vib – reference: Yang M, Chen S, Fu C, Sheng P. Optimal sound-absorbing structures. Materials Horizons. 2017;4:673-80. – volume: 178 year: 2019 ident: b0195 article-title: Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: Processing, microstructure, superior performance and mechanisms publication-title: Mater Des – volume: 50 year: 2022 ident: b0100 article-title: Manufacturability of lattice structures fabricated by laser powder bed fusion: a novel biomedical application of the beta Ti-21S alloy publication-title: Addit Manuf – volume: 164 start-page: 301 year: 2019 end-page: 321 ident: b0190 article-title: Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption publication-title: Acta Mater – volume: 465 year: 2020 ident: b0180 article-title: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations publication-title: J Sound Vib – start-page: 39 year: 2021 ident: b0090 article-title: 3D printed three-dimensional metallic microlattices with controlled and tunable mechanical properties publication-title: Addit Manuf – volume: 175 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0205 article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation publication-title: Mater Des doi: 10.1016/j.matdes.2019.107830 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0010 article-title: Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances publication-title: Nat Commun doi: 10.1038/s41467-020-17533-6 – volume: 148 start-page: 322 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0220 article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing publication-title: Appl Acoust doi: 10.1016/j.apacoust.2018.12.030 – year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0105 article-title: Additive manufacturing of metamaterials: a review publication-title: Addit Manuf – volume: 33 start-page: 2005647 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0080 article-title: Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation publication-title: Adv Mater doi: 10.1002/adma.202005647 – volume: 36 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0140 article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study publication-title: Addit Manuf – volume: 10 year: 2018 ident: 10.1016/j.compstruct.2022.116434_b0230 article-title: Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.10.054060 – volume: 175 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0125 article-title: Design of periodic foam structures for acoustic applications: concept, parametric study and experimental validation publication-title: Mater Des doi: 10.1016/j.matdes.2019.107830 – volume: 465 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0180 article-title: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115035 – ident: 10.1016/j.compstruct.2022.116434_b0040 doi: 10.1063/5.0042514 – volume: 16 start-page: 1902842 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0055 article-title: Design, fabrication, and mechanics of 3D micro-/nanolattices publication-title: Small doi: 10.1002/smll.201902842 – volume: 108 start-page: 196 year: 2022 ident: 10.1016/j.compstruct.2022.116434_b0215 article-title: Customisable sound absorption properties of functionally graded metallic foams publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2021.07.056 – volume: 48 start-page: 347 year: 2002 ident: 10.1016/j.compstruct.2022.116434_b0165 article-title: One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero publication-title: Acoust Phys doi: 10.1134/1.1478121 – volume: 106977 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0095 article-title: Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design publication-title: Int J Mech Sci – volume: 50 year: 2022 ident: 10.1016/j.compstruct.2022.116434_b0100 article-title: Manufacturability of lattice structures fabricated by laser powder bed fusion: a novel biomedical application of the beta Ti-21S alloy publication-title: Addit Manuf – volume: 15 start-page: 242 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0130 article-title: Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2020.1740747 – volume: 450 start-page: 28 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0160 article-title: A vibro-impact acoustic black hole for passive damping of flexural beam vibrations publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.03.004 – volume: 164 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0225 article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing publication-title: Appl Acoust doi: 10.1016/j.apacoust.2020.107244 – start-page: 476 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0045 article-title: Special issue: recent advances in acoustic black hole research publication-title: J Sound Vib – start-page: 13 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0145 article-title: Effect of the pore shape and size of 3d-printed open-porous ABS materials on sound absorption performance publication-title: Materials (Basel) – start-page: 41 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0015 article-title: Additive manufacturing of fibrous sound absorbers publication-title: Addit Manuf – volume: 395 start-page: 65 year: 2017 ident: 10.1016/j.compstruct.2022.116434_b0175 article-title: Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.02.007 – volume: 344 start-page: 1373 year: 2014 ident: 10.1016/j.compstruct.2022.116434_b0070 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science doi: 10.1126/science.1252291 – ident: 10.1016/j.compstruct.2022.116434_b0150 – volume: 33 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0085 article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures publication-title: Addit Manuf – volume: 178 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0195 article-title: Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: Processing, microstructure, superior performance and mechanisms publication-title: Mater Des doi: 10.1016/j.matdes.2019.107881 – volume: 10 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0200 article-title: Sound absorption of face-centered cubic sandwich structure with micro-perforations publication-title: Mater Des – volume: 89 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0030 article-title: Experimental characterization of 3D-printed sound absorber publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2021.104304 – volume: 114 start-page: 260 year: 2016 ident: 10.1016/j.compstruct.2022.116434_b0020 article-title: Sound absorption of microperforated panel mounted with helmholtz resonators publication-title: Appl Acoust doi: 10.1016/j.apacoust.2016.08.001 – volume: 334 start-page: 962 year: 2011 ident: 10.1016/j.compstruct.2022.116434_b0065 article-title: Ultralight metallic microlattices publication-title: Science doi: 10.1126/science.1211649 – volume: 1 start-page: 590 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0005 article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations publication-title: Acoustics doi: 10.3390/acoustics1030035 – start-page: 39 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0090 article-title: 3D printed three-dimensional metallic microlattices with controlled and tunable mechanical properties publication-title: Addit Manuf – volume: 10 start-page: 111 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0120 article-title: Acoustic properties of 316L stainless steel lattice structures fabricated via selective laser melting publication-title: Metals doi: 10.3390/met10010111 – volume: 137 start-page: 108 year: 2018 ident: 10.1016/j.compstruct.2022.116434_b0050 article-title: Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique publication-title: Mater Des doi: 10.1016/j.matdes.2017.10.016 – volume: 50 year: 2017 ident: 10.1016/j.compstruct.2022.116434_b0185 article-title: Multiple slow waves in metaporous layers for broadband sound absorption publication-title: J Phys D Appl Phys – volume: 144 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0060 article-title: Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication publication-title: Mater Sci Eng: R: Reports doi: 10.1016/j.mser.2021.100606 – volume: 123 start-page: 37 year: 2017 ident: 10.1016/j.compstruct.2022.116434_b0135 article-title: Sound absorption of metallic sound absorbers fabricated via the selective laser melting process publication-title: Appl Phys A doi: 10.1007/s00339-016-0674-7 – volume: 17 start-page: e2100336 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0110 article-title: Microlattice metamaterials with simultaneous superior acoustic and mechanical energy absorption publication-title: Small doi: 10.1002/smll.202100336 – volume: 164 start-page: 301 year: 2019 ident: 10.1016/j.compstruct.2022.116434_b0190 article-title: Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption publication-title: Acta Mater doi: 10.1016/j.actamat.2018.10.034 – volume: 7 start-page: 43340 year: 2017 ident: 10.1016/j.compstruct.2022.116434_b0025 article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound publication-title: Sci Rep doi: 10.1038/srep43340 – ident: 10.1016/j.compstruct.2022.116434_b0035 doi: 10.1039/C7MH00129K – ident: 10.1016/j.compstruct.2022.116434_b0115 doi: 10.1007/978-981-15-4481-1_8 – ident: 10.1016/j.compstruct.2022.116434_b0170 doi: 10.1109/COA50123.2021.9519953 – volume: 33 start-page: e2104552 year: 2021 ident: 10.1016/j.compstruct.2022.116434_b0210 article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels publication-title: Adv Mater doi: 10.1002/adma.202104552 – ident: 10.1016/j.compstruct.2022.116434_b0075 doi: 10.1073/pnas.1817309116 – volume: 476 year: 2020 ident: 10.1016/j.compstruct.2022.116434_b0155 article-title: The acoustic black hole: a review of theory and applications publication-title: J Sound Vib doi: 10.1016/j.jsv.2020.115316 |
| SSID | ssj0008411 |
| Score | 2.5576806 |
| Snippet | [Display omitted]
•The work presents a slow-sound lattice sound absorber with sonic black hole plates.•Samples were printed successfully using the vat... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 116434 |
| SubjectTerms | Acoustic black hole Finite element modelling Lattice structures Sound absorption |
| Title | Novel slow-sound lattice absorbers based on the sonic black hole |
| URI | https://dx.doi.org/10.1016/j.compstruct.2022.116434 |
| Volume | 304 |
| WOSCitedRecordID | wos000881698600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008411 issn: 0263-8223 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4f1YXRftPtCD3szAst2bIm9rJSOdRthsG7LnowlyzTF2CFO0v75u5NkO7DCOsZeTBCWldxPvjtdfndHyJtCSjCyRcXiVIQsUYIzIVXIuAmVgeNBmthuDd8_Z7OZmM_ll8nkU58Ls62zphE3N3L5X6GGMQAbU2f_Au7hoTAAnwF0uALscL0T8LN2a-qgq9tr1mHPpKAu1shwCwrVtSuFCbtoukr_N0HQ2R44CgN5ATbL3XVXUVsgqwvL0GKd2c1qpByeXm4cz3bTBD_MYmD2WHrAfNFcj2M_N26s8GbSBartjf1MH3iIkHbFXOqli4b1GTEj_aizhVxjBk6HU1rGKVWRSYZZDrtaN3Zdh3_T4C6YcIUALN1Pg0N8FIFqB98pGa3WwCX8ikviihH6Mmma3SP7UTaVoOL2T87P5h8HwywS2455-Iqe2OXofrevd7u3suOBXBySh_7oQE8c5I_IxDSPycFOQckn5J0Fn47gUw8-HcCnFnzaNhTApxZ8asGnCP5T8u392cXpB-Z7ZDANb9eaVSBcLstIawnuSGwKzjNVcalFWehpERrwd00FZkmoSBkVShgRseapgKOsror4Gdlr2sYcERqlMtRJOuWZrhKjQ1mmRmacl9Ok1GCMjknWyyLXvoA89jGp854peJWPUsxRirmT4jHhw8ylK6Jyhzlve3Hn3hl0Tl4OO-WPs5__0-wX5MG44V-SPbjBvCL39Xa96Fav_bb6BX4jiHU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+slow-sound+lattice+absorbers+based+on+the+sonic+black+hole&rft.jtitle=Composite+structures&rft.au=Chua%2C+Jun+Wei&rft.au=Li%2C+Xinwei&rft.au=Yu%2C+Xiang&rft.au=Zhai%2C+Wei&rft.date=2023-01-15&rft.pub=Elsevier+Ltd&rft.issn=0263-8223&rft.eissn=1879-1085&rft.volume=304&rft_id=info:doi/10.1016%2Fj.compstruct.2022.116434&rft.externalDocID=S0263822322011667 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8223&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8223&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8223&client=summon |