Augmented Lagrangian Tracking for distributed optimization with equality and inequality coupling constraints

In this paper we propose a novel Augmented Lagrangian Tracking distributed optimization algorithm for solving multi-agent optimization problems where each agent has its own decision variables, cost function and constraint set, and the goal is to minimize the sum of the agents’ cost functions subject...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) Vol. 157; p. 111269
Main Authors: Falsone, Alessandro, Prandini, Maria
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2023
Subjects:
ISSN:0005-1098, 1873-2836
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a novel Augmented Lagrangian Tracking distributed optimization algorithm for solving multi-agent optimization problems where each agent has its own decision variables, cost function and constraint set, and the goal is to minimize the sum of the agents’ cost functions subject to local constraints plus some additional coupling constraint involving the decision variables of all the agents. In contrast to alternative approaches available in the literature, the proposed algorithm jointly features a constant penalty parameter, the ability to cope with unbounded local constraint sets, and the ability to handle both affine equality and nonlinear inequality coupling constraints, while requiring convexity only. The effectiveness of the approach is shown first on an artificial example with complexity features that make other state-of-the-art algorithms not applicable and then on a realistic example involving the optimization of the charging schedule of a fleet of electric vehicles.
AbstractList In this paper we propose a novel Augmented Lagrangian Tracking distributed optimization algorithm for solving multi-agent optimization problems where each agent has its own decision variables, cost function and constraint set, and the goal is to minimize the sum of the agents’ cost functions subject to local constraints plus some additional coupling constraint involving the decision variables of all the agents. In contrast to alternative approaches available in the literature, the proposed algorithm jointly features a constant penalty parameter, the ability to cope with unbounded local constraint sets, and the ability to handle both affine equality and nonlinear inequality coupling constraints, while requiring convexity only. The effectiveness of the approach is shown first on an artificial example with complexity features that make other state-of-the-art algorithms not applicable and then on a realistic example involving the optimization of the charging schedule of a fleet of electric vehicles.
ArticleNumber 111269
Author Prandini, Maria
Falsone, Alessandro
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Falsone
  fullname: Falsone, Alessandro
  email: alessandro.falsone@polimi.it
– sequence: 2
  givenname: Maria
  surname: Prandini
  fullname: Prandini, Maria
  email: maria.prandini@polimi.it
BookMark eNqNkF1LwzAUhoNMcE7_Q_5Aa9L0KzfCHH7BwJt5HdIkrWe2yUxTZf56WycK3ujV4cB5n8P7nKKZddYghCmJKaH5xTaWQ3CdDKBknJCExZTSJOdHaE7LgkVJyfIZmhNCsogSXp6g077fjmtKy2SO2uXQdMYGo_FaNl7aBqTFGy_VM9gG185jDX3wUA3TjdsF6OB9_OYsfoPwhM3LIFsIeyytxmC_V-WGXTshlLNjXoIN_Rk6rmXbm_OvuUCPN9eb1V20fri9Xy3XkWJ5GSLDZMG01ITniqhM6yJJJWd1ocqCJ3VtqqRKs6zOi8JQXhWcEUUlTUnGNWOqYgtUHrjKu773phY7D530e0GJmKyJrfixJiZr4mBtjF7-iioIn3WnDu1_AFcHgBkLvoLxoldgrDIavFFBaAd_Qz4Ac8yV9g
CitedBy_id crossref_primary_10_1109_TASE_2025_3593336
crossref_primary_10_1002_oca_70008
crossref_primary_10_1109_TAC_2025_3533424
crossref_primary_10_1109_TASE_2024_3357527
crossref_primary_10_1016_j_neunet_2024_107085
crossref_primary_10_1109_TAC_2024_3524119
crossref_primary_10_1109_TCNS_2025_3539580
crossref_primary_10_1016_j_eswa_2025_127826
crossref_primary_10_1016_j_ifacol_2025_08_103
crossref_primary_10_1109_TAC_2025_3539332
crossref_primary_10_1109_TBME_2025_3529476
crossref_primary_10_1016_j_sysconle_2025_106196
Cites_doi 10.1109/TCNS.2017.2698261
10.1109/TAC.2010.2041686
10.1109/TAC.2017.2747505
10.1109/TSP.2013.2254478
10.1109/LCSYS.2020.3001427
10.1109/TAC.2008.2009515
10.1109/TAC.2014.2308612
10.1002/rnc.6048
10.1016/j.automatica.2021.109938
10.1109/TAC.2011.2167817
10.1016/j.automatica.2017.07.003
10.1016/j.automatica.2016.01.006
10.1016/j.automatica.2020.108962
10.1109/MCS.2019.2900783
10.1016/j.automatica.2021.109738
10.1109/TCNS.2019.2925267
10.1137/16M1084316
10.2140/pjm.1967.21.343
10.1016/j.automatica.2009.10.021
10.1109/TSP.2016.2544743
10.1109/TSP.2021.3123888
10.1109/TAC.2019.2912494
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.automatica.2023.111269
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2023_111269
S0005109823004326
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c368t-e3a73dad096c0c5dd724a93f7c8792ffeb2b455f677e19b7930c1a14059d33cb3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072489800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Sat Nov 29 07:34:41 EST 2025
Tue Nov 18 22:11:20 EST 2025
Fri Feb 23 02:35:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Distributed optimization
ADMM
Proximal algorithm
Constraint-coupled optimization
Augmented Lagrangian
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-e3a73dad096c0c5dd724a93f7c8792ffeb2b455f677e19b7930c1a14059d33cb3
OpenAccessLink https://dx.doi.org/10.1016/j.automatica.2023.111269
ParticipantIDs crossref_primary_10_1016_j_automatica_2023_111269
crossref_citationtrail_10_1016_j_automatica_2023_111269
elsevier_sciencedirect_doi_10_1016_j_automatica_2023_111269
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sinkhorn, Knopp (b21) 1967; 21
Mota, Xavier, Aguiar, Püschel (b13) 2013; 61
Zhu, Martínez (b25) 2010; 46
Qu, Li (b18) 2018; 5
Falsone, Prandini (b9) 2022; 135
Nedić, Ozdaglar, Parrilo (b16) 2010; 55
Romao, Margellos, Notarstefano, Papachristodoulou (b20) 2021; 131
Wang, Hu (b24) 2022; 32
Falsone, Prandini (b8) 2020; 5
Falsone, Margellos, Garatti, Prandini (b6) 2017; 84
Kia, Van Scoy, Cortes, Freeman, Lynch, Martinez (b10) 2019; 39
Su, Wang, Sun (b22) 2021; 70
Vujanic, Esfahani, Goulart, Mariéthoz, Morari (b23) 2016; 67
Bertsekas (b2) 2015
Nedić, Ozdaglar (b15) 2009; 54
Nedić, Olshevsky, Shi (b14) 2017; 27
Rockafellar (b19) 1970
Notarnicola, Notarstefano (b17) 2020; 7
Chang, Nedić, Scaglione (b5) 2014; 59
Zhu, Martínez (b26) 2012; 57
Liang, Wang, Yin (b11) 2020; 63
Bertsekas (b1) 1999
Bertsekas, Tsitsiklis (b3) 1989
Chang (b4) 2016; 64
Margellos, Falsone, Garatti, Prandini (b12) 2018; 63
Falsone, Notarnicola, Notarstefano, Prandini (b7) 2020; 117
Chang (10.1016/j.automatica.2023.111269_b5) 2014; 59
Liang (10.1016/j.automatica.2023.111269_b11) 2020; 63
Nedić (10.1016/j.automatica.2023.111269_b14) 2017; 27
Wang (10.1016/j.automatica.2023.111269_b24) 2022; 32
Bertsekas (10.1016/j.automatica.2023.111269_b3) 1989
Kia (10.1016/j.automatica.2023.111269_b10) 2019; 39
Falsone (10.1016/j.automatica.2023.111269_b6) 2017; 84
Zhu (10.1016/j.automatica.2023.111269_b25) 2010; 46
Falsone (10.1016/j.automatica.2023.111269_b9) 2022; 135
Mota (10.1016/j.automatica.2023.111269_b13) 2013; 61
Bertsekas (10.1016/j.automatica.2023.111269_b1) 1999
Bertsekas (10.1016/j.automatica.2023.111269_b2) 2015
Romao (10.1016/j.automatica.2023.111269_b20) 2021; 131
Su (10.1016/j.automatica.2023.111269_b22) 2021; 70
Chang (10.1016/j.automatica.2023.111269_b4) 2016; 64
Zhu (10.1016/j.automatica.2023.111269_b26) 2012; 57
Vujanic (10.1016/j.automatica.2023.111269_b23) 2016; 67
Falsone (10.1016/j.automatica.2023.111269_b7) 2020; 117
Nedić (10.1016/j.automatica.2023.111269_b16) 2010; 55
Rockafellar (10.1016/j.automatica.2023.111269_b19) 1970
Nedić (10.1016/j.automatica.2023.111269_b15) 2009; 54
Falsone (10.1016/j.automatica.2023.111269_b8) 2020; 5
Margellos (10.1016/j.automatica.2023.111269_b12) 2018; 63
Qu (10.1016/j.automatica.2023.111269_b18) 2018; 5
Sinkhorn (10.1016/j.automatica.2023.111269_b21) 1967; 21
Notarnicola (10.1016/j.automatica.2023.111269_b17) 2020; 7
References_xml – volume: 63
  start-page: 347
  year: 2020
  end-page: 353
  ident: b11
  article-title: Distributed smooth convex optimization with coupled constraints
  publication-title: IEEE Transactions on Automatic Control
– volume: 131
  year: 2021
  ident: b20
  article-title: Subgradient averaging for multi-agent optimisation with different constraint sets
  publication-title: Automatica
– volume: 32
  start-page: 4752
  year: 2022
  end-page: 4770
  ident: b24
  article-title: Composite optimization with coupling constraints via dual proximal gradient method with applications to asynchronous networks
  publication-title: International Journal of Robust and Nonlinear Control
– year: 2015
  ident: b2
  article-title: Convex optimization algorithms
– volume: 27
  start-page: 2597
  year: 2017
  end-page: 2633
  ident: b14
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM Journal on Optimization
– volume: 5
  start-page: 1245
  year: 2018
  end-page: 1260
  ident: b18
  article-title: Harnessing smoothness to accelerate distributed optimization
  publication-title: IEEE Transactions on Control of Network Systems
– volume: 59
  start-page: 1524
  year: 2014
  end-page: 1538
  ident: b5
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Transactions on Automatic Control
– volume: 57
  start-page: 151
  year: 2012
  end-page: 164
  ident: b26
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Transactions on Automatic Control
– volume: 21
  start-page: 343
  year: 1967
  end-page: 348
  ident: b21
  article-title: Concerning nonnegative matrices and doubly stochastic matrices
  publication-title: Pacific Journal of Mathematics
– volume: 63
  start-page: 1372
  year: 2018
  end-page: 1387
  ident: b12
  article-title: Distributed constrained optimization and consensus in uncertain networks via proximal minimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: b15
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 61
  start-page: 2718
  year: 2013
  end-page: 2723
  ident: b13
  article-title: D-ADMM: A communication-efficient distributed algorithm for separable optimization
  publication-title: IEEE Transactions on Signal Processing
– volume: 55
  year: 2010
  ident: b16
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Transactions on Automatic Control
– year: 1999
  ident: b1
  article-title: Nonlinear programming
– volume: 135
  year: 2022
  ident: b9
  article-title: Distributed decision-coupled constrained optimization via Proximal-Tracking
  publication-title: Automatica
– volume: 70
  start-page: 523
  year: 2021
  end-page: 535
  ident: b22
  article-title: Distributed primal-dual method for convex optimization with coupled constraints
  publication-title: IEEE Transactions on Signal Processing
– volume: 7
  start-page: 483
  year: 2020
  end-page: 492
  ident: b17
  article-title: Constraint-coupled distributed optimization: A relaxation and duality approach
  publication-title: IEEE Transactions on Control of Network Systems
– year: 1970
  ident: b19
  article-title: Convex analysis
– volume: 46
  start-page: 322
  year: 2010
  end-page: 329
  ident: b25
  article-title: Discrete-time dynamic average consensus
  publication-title: Automatica
– volume: 39
  start-page: 40
  year: 2019
  end-page: 72
  ident: b10
  article-title: Tutorial on dynamic average consensus: The problem, its applications, and the algorithms
  publication-title: IEEE Control Systems Magazine
– volume: 84
  start-page: 149
  year: 2017
  end-page: 158
  ident: b6
  article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints
  publication-title: Automatica
– volume: 117
  year: 2020
  ident: b7
  article-title: Tracking-ADMM for distributed constraint-coupled optimization
  publication-title: Automatica
– volume: 64
  start-page: 3719
  year: 2016
  end-page: 3734
  ident: b4
  article-title: A proximal dual consensus ADMM method for multi-agent constrained optimization
  publication-title: IEEE Transactions on Signal Processing
– volume: 5
  start-page: 259
  year: 2020
  end-page: 264
  ident: b8
  article-title: A distributed dual proximal minimization algorithm for constraint-coupled optimization problems
  publication-title: IEEE Control Systems Letters
– volume: 67
  start-page: 144
  year: 2016
  end-page: 156
  ident: b23
  article-title: A decomposition method for large scale MILPs, with performance guarantees and a power system application
  publication-title: Automatica
– year: 1989
  ident: b3
  publication-title: Parallel and distributed computation: Numerical methods
– volume: 5
  start-page: 1245
  issue: 3
  year: 2018
  ident: 10.1016/j.automatica.2023.111269_b18
  article-title: Harnessing smoothness to accelerate distributed optimization
  publication-title: IEEE Transactions on Control of Network Systems
  doi: 10.1109/TCNS.2017.2698261
– year: 2015
  ident: 10.1016/j.automatica.2023.111269_b2
– volume: 55
  issue: 4
  year: 2010
  ident: 10.1016/j.automatica.2023.111269_b16
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2041686
– volume: 63
  start-page: 1372
  issue: 5
  year: 2018
  ident: 10.1016/j.automatica.2023.111269_b12
  article-title: Distributed constrained optimization and consensus in uncertain networks via proximal minimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2747505
– year: 1970
  ident: 10.1016/j.automatica.2023.111269_b19
– volume: 61
  start-page: 2718
  issue: 10
  year: 2013
  ident: 10.1016/j.automatica.2023.111269_b13
  article-title: D-ADMM: A communication-efficient distributed algorithm for separable optimization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2254478
– volume: 5
  start-page: 259
  issue: 1
  year: 2020
  ident: 10.1016/j.automatica.2023.111269_b8
  article-title: A distributed dual proximal minimization algorithm for constraint-coupled optimization problems
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2020.3001427
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.automatica.2023.111269_b15
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.2009515
– volume: 59
  start-page: 1524
  issue: 6
  year: 2014
  ident: 10.1016/j.automatica.2023.111269_b5
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2308612
– volume: 32
  start-page: 4752
  issue: 8
  year: 2022
  ident: 10.1016/j.automatica.2023.111269_b24
  article-title: Composite optimization with coupling constraints via dual proximal gradient method with applications to asynchronous networks
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.6048
– volume: 135
  year: 2022
  ident: 10.1016/j.automatica.2023.111269_b9
  article-title: Distributed decision-coupled constrained optimization via Proximal-Tracking
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109938
– volume: 57
  start-page: 151
  issue: 1
  year: 2012
  ident: 10.1016/j.automatica.2023.111269_b26
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2167817
– year: 1989
  ident: 10.1016/j.automatica.2023.111269_b3
– volume: 84
  start-page: 149
  year: 2017
  ident: 10.1016/j.automatica.2023.111269_b6
  article-title: Dual decomposition for multi-agent distributed optimization with coupling constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.003
– volume: 67
  start-page: 144
  year: 2016
  ident: 10.1016/j.automatica.2023.111269_b23
  article-title: A decomposition method for large scale MILPs, with performance guarantees and a power system application
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.01.006
– volume: 117
  year: 2020
  ident: 10.1016/j.automatica.2023.111269_b7
  article-title: Tracking-ADMM for distributed constraint-coupled optimization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.108962
– volume: 39
  start-page: 40
  issue: 3
  year: 2019
  ident: 10.1016/j.automatica.2023.111269_b10
  article-title: Tutorial on dynamic average consensus: The problem, its applications, and the algorithms
  publication-title: IEEE Control Systems Magazine
  doi: 10.1109/MCS.2019.2900783
– volume: 131
  year: 2021
  ident: 10.1016/j.automatica.2023.111269_b20
  article-title: Subgradient averaging for multi-agent optimisation with different constraint sets
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109738
– volume: 7
  start-page: 483
  issue: 1
  year: 2020
  ident: 10.1016/j.automatica.2023.111269_b17
  article-title: Constraint-coupled distributed optimization: A relaxation and duality approach
  publication-title: IEEE Transactions on Control of Network Systems
  doi: 10.1109/TCNS.2019.2925267
– volume: 27
  start-page: 2597
  issue: 4
  year: 2017
  ident: 10.1016/j.automatica.2023.111269_b14
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1084316
– volume: 21
  start-page: 343
  issue: 2
  year: 1967
  ident: 10.1016/j.automatica.2023.111269_b21
  article-title: Concerning nonnegative matrices and doubly stochastic matrices
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1967.21.343
– volume: 46
  start-page: 322
  issue: 2
  year: 2010
  ident: 10.1016/j.automatica.2023.111269_b25
  article-title: Discrete-time dynamic average consensus
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.021
– year: 1999
  ident: 10.1016/j.automatica.2023.111269_b1
– volume: 64
  start-page: 3719
  issue: 14
  year: 2016
  ident: 10.1016/j.automatica.2023.111269_b4
  article-title: A proximal dual consensus ADMM method for multi-agent constrained optimization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2544743
– volume: 70
  start-page: 523
  year: 2021
  ident: 10.1016/j.automatica.2023.111269_b22
  article-title: Distributed primal-dual method for convex optimization with coupled constraints
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2021.3123888
– volume: 63
  start-page: 347
  issue: 1
  year: 2020
  ident: 10.1016/j.automatica.2023.111269_b11
  article-title: Distributed smooth convex optimization with coupled constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2019.2912494
SSID ssj0004182
Score 2.514063
Snippet In this paper we propose a novel Augmented Lagrangian Tracking distributed optimization algorithm for solving multi-agent optimization problems where each...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111269
SubjectTerms ADMM
Augmented Lagrangian
Constraint-coupled optimization
Distributed optimization
Proximal algorithm
Title Augmented Lagrangian Tracking for distributed optimization with equality and inequality coupling constraints
URI https://dx.doi.org/10.1016/j.automatica.2023.111269
Volume 157
WOSCitedRecordID wos001072489800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swGLVY4WF7QLAxjav8sDcU1MRJbIunCoHYhNAeGOpb5FuqstJWvaD-fD7HjhOmSrBJvERtUjtuz8nnS79zjNB3pgVcMDoSpRBRWiZ5JHOd2jmPzCT0OKxazLm_obe3rN_nv_xfMfNqOwE6HrPVik_fFWo4B2Bb6ew_wB0qhRPwGkCHI8AOxzcB31sOKqNNfXojBtATDewjDF2S-lMnTWprlmv3uYLPTCBkPHotpluUNU5nWfsyhbdqspyOnETXus6KoTeBCh62y8Wk8n8VlYXpymXNh3WGK2F9IY0X1cznwjolhMA8q9Q1Q68eGor2YkRCvCqvHWCtsanbWDoEWGdB7UNkbEVLfG30dgsJDzZ3xzf4zN7krCny0jD7r44spBfWmWsPRVNTYWsqXE0f0GZCM846aLP347L_sxHSxszZy_tv4VO_XELg-latH8-0xih3O2jbTy5wz5FiF22Y8Wf0qWU5-QWNAj1wQw9c0wMDaLhFD9ymB7b0wDUfMCCGG3rgmh64RY899Pvq8u7iOvI7bkSK5GwRGSIo0ULDvFZ1VaY1TVLBSUkVozwpSyMTmWZZmVNqYi4htndVLGCOnnFNiJLkK-qMgUvfEKbdMk6UInCFpooLmatMxVwLJlVsMr2PaP27Fcrb0dvGjYrX0NtHcSg5dZYsbyhzXkNT-KGlGzIWwL1XSx_8xx0P0cfmATlCncVsaY7RlnpaDOezE0-8ZyWZp9s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmented+Lagrangian+Tracking+for+distributed+optimization+with+equality+and+inequality+coupling+constraints&rft.jtitle=Automatica+%28Oxford%29&rft.au=Falsone%2C+Alessandro&rft.au=Prandini%2C+Maria&rft.date=2023-11-01&rft.issn=0005-1098&rft.volume=157&rft.spage=111269&rft_id=info:doi/10.1016%2Fj.automatica.2023.111269&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2023_111269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon