Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN
•A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster Region-based Convolutional Neural Networks This paper proposes a novel method based on the two-dimensional (2D) curvature mode shape method, C...
Saved in:
| Published in: | Advances in engineering software (1992) Vol. 176; p. 103371 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2023
|
| Subjects: | |
| ISSN: | 0965-9978 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster Region-based Convolutional Neural Networks
This paper proposes a novel method based on the two-dimensional (2D) curvature mode shape method, Convolutional Neural Networks (CNN), and Faster Region-based Convolutional Neural Networks (faster R-CNN) for detecting damage in slab structures. The 2D curvature mode shapes could be measured directly or calculated from the measured mode shapes using the central difference method. The damage indicator is defined as the absolute differences between the 2D curvature mode shapes of the damaged and intact slabs. The contour plot is chosen to convert the damage indicators into images. Four hundred damage scenarios are created using a Finite Element (FE) model of the slab. Images created from those damage scenarios are then used to train CNN and faster R-CNN. Four damage types are considered in this research, namely a single small hole, a single big hole, two small holes, and two large holes. After training, CNN can predict the damage types and faster R-CNN can predict the bounding boxes around the damaged areas. A test sample set is created to test the performance of the proposed method. The effect of noise in the mode shape data is considered. Results show that the classification accuracy for damage type is high. The overlap ratios between the predicted bounding boxes and the real damaged areas are more than 40% for 80% of tested scenarios. Furthermore, the low influence of noise on the predicted results is investigated. The proposed method is robust and has great potential for application to real structures. |
|---|---|
| AbstractList | •A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster Region-based Convolutional Neural Networks
This paper proposes a novel method based on the two-dimensional (2D) curvature mode shape method, Convolutional Neural Networks (CNN), and Faster Region-based Convolutional Neural Networks (faster R-CNN) for detecting damage in slab structures. The 2D curvature mode shapes could be measured directly or calculated from the measured mode shapes using the central difference method. The damage indicator is defined as the absolute differences between the 2D curvature mode shapes of the damaged and intact slabs. The contour plot is chosen to convert the damage indicators into images. Four hundred damage scenarios are created using a Finite Element (FE) model of the slab. Images created from those damage scenarios are then used to train CNN and faster R-CNN. Four damage types are considered in this research, namely a single small hole, a single big hole, two small holes, and two large holes. After training, CNN can predict the damage types and faster R-CNN can predict the bounding boxes around the damaged areas. A test sample set is created to test the performance of the proposed method. The effect of noise in the mode shape data is considered. Results show that the classification accuracy for damage type is high. The overlap ratios between the predicted bounding boxes and the real damaged areas are more than 40% for 80% of tested scenarios. Furthermore, the low influence of noise on the predicted results is investigated. The proposed method is robust and has great potential for application to real structures. |
| ArticleNumber | 103371 |
| Author | Abdel Wahab, Magd Nguyen, Duong Huong |
| Author_xml | – sequence: 1 givenname: Duong Huong surname: Nguyen fullname: Nguyen, Duong Huong organization: Department of Bridge and Tunnel Engineering, Faculty of Bridges and Roads, Hanoi University of Civil Engineering, Hanoi, Vietnam – sequence: 2 givenname: Magd orcidid: 0000-0002-3610-865X surname: Abdel Wahab fullname: Abdel Wahab, Magd email: magd.abdelwahab@ugent.be organization: Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde, Belgium |
| BookMark | eNqNkN1KAzEQhXNRwbb6DnmBrcmm-3cjaLUqSAXR6zCbTNqUbbYkacW3N0sFwRu9mRlmzjkw34SMXO-QEMrZjDNeXm1noI_o1qE3cZazPE9rISo-ImPWlEXWNFV9TiYhbBnjc5bzMbF3sIM1Uo0RVbS9o9bR0EFLQ_QHFQ8eA20hoKbpFj_6TNsdupCU0FF18EcYNHTXa6RhA_s0Ytz0moLTdAkhoqev2WK1uiBnBrqAl999St6X92-Lx-z55eFpcfOcKVHWMUNWioZVjTFFkUrFy6ZSleECmBaYc5NDoUzZYitaVQhoTYsFn0NpjMrnWIspqU-5yvcheDRy7-0O_KfkTA6Y5Fb-YJIDJnnClKzXv6zKRhioRA-2-0_A7SkA04NHi14GZdEp1NYnvFL39u-QL8XFkas |
| CitedBy_id | crossref_primary_10_3390_app15105364 crossref_primary_10_1016_j_ijmecsci_2024_109798 crossref_primary_10_1016_j_knosys_2024_112759 crossref_primary_10_1016_j_tust_2024_105857 crossref_primary_10_1016_j_eswa_2025_127538 crossref_primary_10_1016_j_jobe_2023_107200 crossref_primary_10_3390_buildings15132216 crossref_primary_10_1007_s42107_025_01377_w crossref_primary_10_1016_j_engfailanal_2025_109785 crossref_primary_10_1007_s10999_023_09695_0 crossref_primary_10_3390_math12193105 crossref_primary_10_1080_17499518_2025_2460007 crossref_primary_10_1016_j_knosys_2024_111797 crossref_primary_10_1007_s13349_024_00852_3 crossref_primary_10_1007_s13349_025_00969_z crossref_primary_10_1007_s42417_024_01621_8 crossref_primary_10_1080_15732479_2025_2483510 crossref_primary_10_1016_j_measurement_2023_113387 crossref_primary_10_1111_mice_13298 crossref_primary_10_1007_s10999_023_09705_1 crossref_primary_10_1016_j_measurement_2024_114970 crossref_primary_10_1016_j_istruc_2025_108266 crossref_primary_10_1016_j_engstruct_2025_120253 crossref_primary_10_1016_j_measurement_2023_113982 crossref_primary_10_1007_s11709_024_1096_9 crossref_primary_10_1016_j_measurement_2025_117194 crossref_primary_10_1016_j_compstruc_2023_107117 crossref_primary_10_1016_j_undsp_2023_07_003 crossref_primary_10_3389_feart_2025_1526527 crossref_primary_10_1016_j_knosys_2024_112499 crossref_primary_10_1016_j_tws_2023_111044 crossref_primary_10_1007_s11709_024_1092_0 crossref_primary_10_1016_j_advengsoft_2024_103662 crossref_primary_10_1088_1755_1315_1453_1_012013 crossref_primary_10_1177_14759217251334803 crossref_primary_10_1007_s10999_023_09675_4 crossref_primary_10_1007_s12083_024_01731_w crossref_primary_10_1016_j_dibe_2025_100728 crossref_primary_10_1016_j_saa_2024_125205 crossref_primary_10_1016_j_compstruc_2024_107385 crossref_primary_10_1016_j_swevo_2025_102073 crossref_primary_10_1016_j_finel_2024_104248 crossref_primary_10_1007_s11709_024_1029_7 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_3390_app15020803 crossref_primary_10_1016_j_asoc_2024_111422 crossref_primary_10_1016_j_istruc_2024_107035 crossref_primary_10_3390_electronics12183982 crossref_primary_10_1016_j_compstruc_2024_107342 crossref_primary_10_3390_app15126568 crossref_primary_10_1109_TIM_2025_3529538 crossref_primary_10_1016_j_advengsoft_2024_103597 crossref_primary_10_1108_MMMS_08_2024_0248 crossref_primary_10_3390_jsan14050089 crossref_primary_10_3390_electronics14091699 crossref_primary_10_1016_j_autcon_2025_106045 crossref_primary_10_1016_j_istruc_2024_106538 crossref_primary_10_1016_j_istruc_2024_107344 crossref_primary_10_1155_stc_5965478 crossref_primary_10_1007_s42417_025_01769_x crossref_primary_10_1016_j_asoc_2024_111978 crossref_primary_10_1016_j_measurement_2024_115374 crossref_primary_10_1016_j_compag_2023_107985 crossref_primary_10_1155_stc_1677778 |
| Cites_doi | 10.1016/j.asoc.2019.106013 10.1007/s00419-015-1064-x 10.3390/s18092955 10.1006/jsvi.1997.0961 10.1098/rsta.2006.1938 10.2172/249299 10.1007/s13349-015-0148-1 10.1016/j.measurement.2016.07.054 10.1177/1475921710365419 10.3390/app7050510 10.1016/0022-460X(91)90595-B 10.32604/cmc.2019.06641 10.1002/stc.2230 10.1080/17415977.2015.1017485 10.1016/j.compstruct.2021.114656 10.1016/j.tafmec.2019.102240 10.1016/j.jsv.2003.07.040 10.1111/mice.12334 10.1016/j.compstruct.2021.114287 10.1016/j.tafmec.2020.102728 10.1016/j.cma.2019.112790 10.1016/j.compstruct.2006.05.026 10.1016/j.measurement.2020.107862 10.1006/jsvi.1999.2295 10.1016/j.jsv.2016.10.043 10.3390/s20102778 10.1016/j.engfailanal.2021.105866 10.1111/mice.12497 10.1006/mssp.1999.1249 10.1177/1475921717744480 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.advengsoft.2022.103371 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| ExternalDocumentID | 10_1016_j_advengsoft_2022_103371 S0965997822002721 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c368t-e0639079ff559ff71697c7f13a0d3e21f2a5cf6beb3bc53abfbe514a6ffc24e83 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901965600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0965-9978 |
| IngestDate | Sat Nov 29 07:04:29 EST 2025 Tue Nov 18 22:01:42 EST 2025 Fri Feb 23 02:39:41 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | slab structures Damage detection convolution neural network (CNN) structural health monitoring (SHM) Faster Region-based Convolutional Neural Networks (faster R-CNN) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-e0639079ff559ff71697c7f13a0d3e21f2a5cf6beb3bc53abfbe514a6ffc24e83 |
| ORCID | 0000-0002-3610-865X |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0965997822002721 |
| ParticipantIDs | crossref_primary_10_1016_j_advengsoft_2022_103371 crossref_citationtrail_10_1016_j_advengsoft_2022_103371 elsevier_sciencedirect_doi_10_1016_j_advengsoft_2022_103371 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in engineering software (1992) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Deng, Lu, Lee (bib0031) 2020; 35 Wahab, De Roeck (bib0007) 1999; 226 Nguyen, Vuong, Le, Ngo, Nguyen-Xuan (bib0022) 2020 Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bib0029) 2018; 33 De Roeck, Reynders, Anastasopoulos (bib0035) 2017 Moughty, Casas (bib0001) 2017; 7 Girshick (bib0038) 2015 Fan, Qiao (bib0004) 2011; 10 Saadatmorad, Jafari-Talookolaei, Pashaei, Khatir (bib0026) 2021; 278 Modarres, Astorga, Droguett, Meruane (bib0017) 2018; 25 Qiao, Lu, Lestari, Wang (bib0009) 2007; 80 Khatir, Tiachacht, Thanh, Ghandourah, Mirjalili, Wahab (bib0032) 2021; 273 Wang, B., S. Bai, J. Wang, W. Zhao, Y. Zhang, and Q. Zhang, A novel concrete crack damage detection method via sparse correlation model. Structural Control and Health Monitoring: p. e2952. Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib0015) 2020; 362 Doebling, S.W., C.R. Farrar, M.B. Prime, and D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. 1996. Nanthakumar, Lahmer, Zhuang, Zi, Rabczuk (bib0014) 2016; 24 De Oliveira, Monteiro, Vieira Filho (bib0021) 2018; 18 Ho, Trinh, De Roeck, Bui-Tien, Nguyen-Ngoc, Wahab (bib0034) 2022; 131 Girshick, Donahue, Darrell, Malik (bib0037) 2014 Nguyen (bib0002) 2021 Nguyen, Nguyen, Bui-Tien, De Roeck, Wahab (bib0025) 2020; 109 Cofré, Kobrich, Droguett, Meruane (bib0020) 2018 Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (bib0018) 2017; 388 Nguyen, Bui-Tien, Roeck, Wahab (bib0024) 2021; 77 Gordan, Razak, Ismail, Ghaedi, Tan, Ghayeb (bib0040) 2020; 88 Pham, Kim, Moh (bib0041) 2004 Anastasopoulos, De Smedt, Vandewalle, De Roeck, Reynders (bib0036) 2018; 17 Pandey, Biswas, Samman (bib0005) 1991; 145 Zhong, Yang (bib0011) 2016; 6 Guo, Chen, Shen (bib0019) 2016; 93 Wang, Wu, Yang, Wang (bib0028) 2018 Anitescu, Atroshchenko, Alajlan, Rabczuk (bib0016) 2019; 59 Ratcliffe (bib0006) 1997; 204 Ren, He, Girshick, Sun (bib0027) 2015; 28 Worden, Manson (bib0012) 2007; 365 Khodabandehlou, Pekcan, Fadali (bib0023) 2019; 26 Khatir, Wahab (bib0033) 2019; 103 Azimi, Eslamlou, Pekcan (bib0013) 2020; 20 Wu, Law (bib0008) 2004; 276 Navabian, Bozorgnasab, Taghipour, Yazdanpanah (bib0010) 2016; 86 Peeters, De Roeck (bib0039) 1999; 13 Nguyen (10.1016/j.advengsoft.2022.103371_bib0024) 2021; 77 Ratcliffe (10.1016/j.advengsoft.2022.103371_bib0006) 1997; 204 Anastasopoulos (10.1016/j.advengsoft.2022.103371_bib0036) 2018; 17 10.1016/j.advengsoft.2022.103371_bib0003 Navabian (10.1016/j.advengsoft.2022.103371_bib0010) 2016; 86 Azimi (10.1016/j.advengsoft.2022.103371_bib0013) 2020; 20 Deng (10.1016/j.advengsoft.2022.103371_bib0031) 2020; 35 Girshick (10.1016/j.advengsoft.2022.103371_bib0037) 2014 Samaniego (10.1016/j.advengsoft.2022.103371_bib0015) 2020; 362 Ho (10.1016/j.advengsoft.2022.103371_bib0034) 2022; 131 Peeters (10.1016/j.advengsoft.2022.103371_bib0039) 1999; 13 Wahab (10.1016/j.advengsoft.2022.103371_bib0007) 1999; 226 Saadatmorad (10.1016/j.advengsoft.2022.103371_bib0026) 2021; 278 Qiao (10.1016/j.advengsoft.2022.103371_bib0009) 2007; 80 Zhong (10.1016/j.advengsoft.2022.103371_bib0011) 2016; 6 Nanthakumar (10.1016/j.advengsoft.2022.103371_bib0014) 2016; 24 Pandey (10.1016/j.advengsoft.2022.103371_bib0005) 1991; 145 Pham (10.1016/j.advengsoft.2022.103371_bib0041) 2004 Khodabandehlou (10.1016/j.advengsoft.2022.103371_bib0023) 2019; 26 Nguyen (10.1016/j.advengsoft.2022.103371_bib0022) 2020 Anitescu (10.1016/j.advengsoft.2022.103371_bib0016) 2019; 59 Modarres (10.1016/j.advengsoft.2022.103371_bib0017) 2018; 25 Guo (10.1016/j.advengsoft.2022.103371_bib0019) 2016; 93 Nguyen (10.1016/j.advengsoft.2022.103371_bib0002) 2021 Wu (10.1016/j.advengsoft.2022.103371_bib0008) 2004; 276 10.1016/j.advengsoft.2022.103371_bib0030 Girshick (10.1016/j.advengsoft.2022.103371_bib0038) 2015 Fan (10.1016/j.advengsoft.2022.103371_bib0004) 2011; 10 Abdeljaber (10.1016/j.advengsoft.2022.103371_bib0018) 2017; 388 Cofré (10.1016/j.advengsoft.2022.103371_bib0020) 2018 Gordan (10.1016/j.advengsoft.2022.103371_bib0040) 2020; 88 De Oliveira (10.1016/j.advengsoft.2022.103371_bib0021) 2018; 18 Nguyen (10.1016/j.advengsoft.2022.103371_bib0025) 2020; 109 Khatir (10.1016/j.advengsoft.2022.103371_bib0033) 2019; 103 Cha (10.1016/j.advengsoft.2022.103371_bib0029) 2018; 33 Khatir (10.1016/j.advengsoft.2022.103371_bib0032) 2021; 273 De Roeck (10.1016/j.advengsoft.2022.103371_bib0035) 2017 Ren (10.1016/j.advengsoft.2022.103371_bib0027) 2015; 28 Wang (10.1016/j.advengsoft.2022.103371_bib0028) 2018 Worden (10.1016/j.advengsoft.2022.103371_bib0012) 2007; 365 Moughty (10.1016/j.advengsoft.2022.103371_bib0001) 2017; 7 |
| References_xml | – volume: 131 year: 2022 ident: bib0034 article-title: An efficient stochastic-based coupled model for damage identification in plate structures publication-title: Engineering Failure Analysis – volume: 88 year: 2020 ident: bib0040 article-title: A hybrid ANN-based imperial competitive algorithm methodology for structural damage identification of slab-on-girder bridge using data mining publication-title: Applied Soft Computing – volume: 276 start-page: 227 year: 2004 end-page: 244 ident: bib0008 article-title: Damage localization in plate structures from uniform load surface curvature publication-title: Journal of Sound and Vibration – volume: 80 start-page: 409 year: 2007 end-page: 428 ident: bib0009 article-title: Curvature mode shape-based damage detection in composite laminated plates publication-title: Composite Structures – volume: 365 start-page: 515 year: 2007 end-page: 537 ident: bib0012 article-title: The application of machine learning to structural health monitoring publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 20 start-page: 2778 year: 2020 ident: bib0013 article-title: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review publication-title: Sensors – volume: 18 start-page: 2955 year: 2018 ident: bib0021 article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network publication-title: Sensors – reference: Wang, B., S. Bai, J. Wang, W. Zhao, Y. Zhang, and Q. Zhang, A novel concrete crack damage detection method via sparse correlation model. Structural Control and Health Monitoring: p. e2952. – volume: 388 start-page: 154 year: 2017 end-page: 170 ident: bib0018 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: Journal of Sound and Vibration – year: 2020 ident: bib0022 article-title: A data-driven approach based on wavelet analysis and deep learning for identification of multiple-cracked beam structures under moving load publication-title: Measurement – volume: 77 start-page: 47 year: 2021 end-page: 56 ident: bib0024 article-title: Damage detection in structures using modal curvatures gapped smoothing method and deep learning publication-title: Structural Engineering and Mechanics – volume: 28 start-page: 91 year: 2015 end-page: 99 ident: bib0027 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – volume: 33 start-page: 731 year: 2018 end-page: 747 ident: bib0029 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 59 start-page: 345 year: 2019 end-page: 359 ident: bib0016 article-title: Artificial neural network methods for the solution of second order boundary value problems publication-title: Computers, Materials and Continua – volume: 93 start-page: 490 year: 2016 end-page: 502 ident: bib0019 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement – volume: 7 start-page: 510 year: 2017 ident: bib0001 article-title: A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions publication-title: Applied Sciences – volume: 278 year: 2021 ident: bib0026 article-title: Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique publication-title: Composite Structures – volume: 6 start-page: 141 year: 2016 end-page: 152 ident: bib0011 article-title: Damage detection for plate-like structures using generalized curvature mode shape method publication-title: Journal of Civil Structural Health Monitoring – year: 2021 ident: bib0002 article-title: Monitoring Vietnamese Bridges Using Vibration Based Damage Detection Method and Machine Learning – volume: 109 year: 2020 ident: bib0025 article-title: Damage detection in girder bridges using modal curvatures gapped smoothing method and Convolutional Neural Network: Application to Bo Nghi bridge publication-title: Theoretical and Applied Fracture Mechanics – volume: 103 year: 2019 ident: bib0033 article-title: A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm publication-title: Theoretical and Applied Fracture Mechanics – volume: 24 start-page: 153 year: 2016 end-page: 176 ident: bib0014 article-title: Detection of material interfaces using a regularized level set method in piezoelectric structures publication-title: Inverse Problems in Science and Engineering – volume: 362 year: 2020 ident: bib0015 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 273 year: 2021 ident: bib0032 article-title: An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates publication-title: Composite Structures – year: 2014 ident: bib0037 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 10 start-page: 83 year: 2011 end-page: 111 ident: bib0004 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Structural health monitoring – year: 2018 ident: bib0020 article-title: Transmissibility based structural assessment using deep convolutional neural network publication-title: in Proc. ISMA – volume: 25 start-page: e2230 year: 2018 ident: bib0017 article-title: Convolutional neural networks for automated damage recognition and damage type identification publication-title: Structural Control and Health Monitoring – reference: Doebling, S.W., C.R. Farrar, M.B. Prime, and D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. 1996. – volume: 145 start-page: 321 year: 1991 end-page: 332 ident: bib0005 article-title: Damage detection from changes in curvature mode shapes publication-title: Journal of sound and vibration – year: 2004 ident: bib0041 article-title: On data aggregation quality and energy efficiency of wireless sensor network protocols-extended summary publication-title: First International Conference on Broadband Networks – volume: 13 start-page: 855 year: 1999 end-page: 878 ident: bib0039 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mechanical systems and signal processing – volume: 204 start-page: 505 year: 1997 end-page: 517 ident: bib0006 article-title: Damage detection using a modified Laplacian operator on mode shape data publication-title: Journal of Sound and Vibration – year: 2018 ident: bib0028 article-title: Road damage detection and classification with faster r-cnn publication-title: 2018 IEEE international conference on big data (Big data) – volume: 86 start-page: 819 year: 2016 end-page: 830 ident: bib0010 article-title: Damage identification in plate-like structure using mode shape derivatives publication-title: Archive of Applied Mechanics – year: 2017 ident: bib0035 article-title: Assessment of Small Damage by Direct Modal Strain Measurements publication-title: International Conference on Experimental Vibration Analysis for Civil Engineering Structures – volume: 17 start-page: 1441 year: 2018 end-page: 1459 ident: bib0036 article-title: Damage identification using modal strains identified from operational fiber-optic Bragg grating data publication-title: Structural Health Monitoring – volume: 35 start-page: 373 year: 2020 end-page: 388 ident: bib0031 article-title: Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 26 start-page: e2308 year: 2019 ident: bib0023 article-title: Vibration-based structural condition assessment using convolution neural networks publication-title: Structural Control and Health Monitoring – year: 2015 ident: bib0038 article-title: Fast r-cnn publication-title: Proceedings of the IEEE international conference on computer vision – volume: 226 start-page: 217 year: 1999 end-page: 235 ident: bib0007 article-title: Damage detection in bridges using modal curvatures: application to a real damage scenario publication-title: Journal of Sound and vibration – ident: 10.1016/j.advengsoft.2022.103371_bib0030 – volume: 88 year: 2020 ident: 10.1016/j.advengsoft.2022.103371_bib0040 article-title: A hybrid ANN-based imperial competitive algorithm methodology for structural damage identification of slab-on-girder bridge using data mining publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.106013 – year: 2018 ident: 10.1016/j.advengsoft.2022.103371_bib0028 article-title: Road damage detection and classification with faster r-cnn – volume: 86 start-page: 819 issue: 5 year: 2016 ident: 10.1016/j.advengsoft.2022.103371_bib0010 article-title: Damage identification in plate-like structure using mode shape derivatives publication-title: Archive of Applied Mechanics doi: 10.1007/s00419-015-1064-x – volume: 18 start-page: 2955 issue: 9 year: 2018 ident: 10.1016/j.advengsoft.2022.103371_bib0021 article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network publication-title: Sensors doi: 10.3390/s18092955 – year: 2017 ident: 10.1016/j.advengsoft.2022.103371_bib0035 article-title: Assessment of Small Damage by Direct Modal Strain Measurements – volume: 204 start-page: 505 issue: 3 year: 1997 ident: 10.1016/j.advengsoft.2022.103371_bib0006 article-title: Damage detection using a modified Laplacian operator on mode shape data publication-title: Journal of Sound and Vibration doi: 10.1006/jsvi.1997.0961 – volume: 365 start-page: 515 issue: 1851 year: 2007 ident: 10.1016/j.advengsoft.2022.103371_bib0012 article-title: The application of machine learning to structural health monitoring publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2006.1938 – year: 2014 ident: 10.1016/j.advengsoft.2022.103371_bib0037 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – ident: 10.1016/j.advengsoft.2022.103371_bib0003 doi: 10.2172/249299 – volume: 6 start-page: 141 issue: 1 year: 2016 ident: 10.1016/j.advengsoft.2022.103371_bib0011 article-title: Damage detection for plate-like structures using generalized curvature mode shape method publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-015-0148-1 – volume: 93 start-page: 490 year: 2016 ident: 10.1016/j.advengsoft.2022.103371_bib0019 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – volume: 26 start-page: e2308 issue: 2 year: 2019 ident: 10.1016/j.advengsoft.2022.103371_bib0023 article-title: Vibration-based structural condition assessment using convolution neural networks publication-title: Structural Control and Health Monitoring – volume: 10 start-page: 83 issue: 1 year: 2011 ident: 10.1016/j.advengsoft.2022.103371_bib0004 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Structural health monitoring doi: 10.1177/1475921710365419 – volume: 7 start-page: 510 issue: 5 year: 2017 ident: 10.1016/j.advengsoft.2022.103371_bib0001 article-title: A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions publication-title: Applied Sciences doi: 10.3390/app7050510 – volume: 77 start-page: 47 issue: 1 year: 2021 ident: 10.1016/j.advengsoft.2022.103371_bib0024 article-title: Damage detection in structures using modal curvatures gapped smoothing method and deep learning publication-title: Structural Engineering and Mechanics – year: 2015 ident: 10.1016/j.advengsoft.2022.103371_bib0038 article-title: Fast r-cnn – volume: 145 start-page: 321 issue: 2 year: 1991 ident: 10.1016/j.advengsoft.2022.103371_bib0005 article-title: Damage detection from changes in curvature mode shapes publication-title: Journal of sound and vibration doi: 10.1016/0022-460X(91)90595-B – volume: 59 start-page: 345 issue: 1 year: 2019 ident: 10.1016/j.advengsoft.2022.103371_bib0016 article-title: Artificial neural network methods for the solution of second order boundary value problems publication-title: Computers, Materials and Continua doi: 10.32604/cmc.2019.06641 – volume: 25 start-page: e2230 issue: 10 year: 2018 ident: 10.1016/j.advengsoft.2022.103371_bib0017 article-title: Convolutional neural networks for automated damage recognition and damage type identification publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2230 – volume: 24 start-page: 153 issue: 1 year: 2016 ident: 10.1016/j.advengsoft.2022.103371_bib0014 article-title: Detection of material interfaces using a regularized level set method in piezoelectric structures publication-title: Inverse Problems in Science and Engineering doi: 10.1080/17415977.2015.1017485 – volume: 278 year: 2021 ident: 10.1016/j.advengsoft.2022.103371_bib0026 article-title: Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique publication-title: Composite Structures doi: 10.1016/j.compstruct.2021.114656 – year: 2021 ident: 10.1016/j.advengsoft.2022.103371_bib0002 – volume: 103 year: 2019 ident: 10.1016/j.advengsoft.2022.103371_bib0033 article-title: A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm publication-title: Theoretical and Applied Fracture Mechanics doi: 10.1016/j.tafmec.2019.102240 – volume: 276 start-page: 227 issue: 1-2 year: 2004 ident: 10.1016/j.advengsoft.2022.103371_bib0008 article-title: Damage localization in plate structures from uniform load surface curvature publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2003.07.040 – volume: 33 start-page: 731 issue: 9 year: 2018 ident: 10.1016/j.advengsoft.2022.103371_bib0029 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12334 – volume: 273 year: 2021 ident: 10.1016/j.advengsoft.2022.103371_bib0032 article-title: An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates publication-title: Composite Structures doi: 10.1016/j.compstruct.2021.114287 – volume: 109 year: 2020 ident: 10.1016/j.advengsoft.2022.103371_bib0025 article-title: Damage detection in girder bridges using modal curvatures gapped smoothing method and Convolutional Neural Network: Application to Bo Nghi bridge publication-title: Theoretical and Applied Fracture Mechanics doi: 10.1016/j.tafmec.2020.102728 – volume: 362 year: 2020 ident: 10.1016/j.advengsoft.2022.103371_bib0015 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112790 – volume: 80 start-page: 409 issue: 3 year: 2007 ident: 10.1016/j.advengsoft.2022.103371_bib0009 article-title: Curvature mode shape-based damage detection in composite laminated plates publication-title: Composite Structures doi: 10.1016/j.compstruct.2006.05.026 – year: 2020 ident: 10.1016/j.advengsoft.2022.103371_bib0022 article-title: A data-driven approach based on wavelet analysis and deep learning for identification of multiple-cracked beam structures under moving load publication-title: Measurement doi: 10.1016/j.measurement.2020.107862 – volume: 226 start-page: 217 issue: 2 year: 1999 ident: 10.1016/j.advengsoft.2022.103371_bib0007 article-title: Damage detection in bridges using modal curvatures: application to a real damage scenario publication-title: Journal of Sound and vibration doi: 10.1006/jsvi.1999.2295 – volume: 388 start-page: 154 year: 2017 ident: 10.1016/j.advengsoft.2022.103371_bib0018 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2016.10.043 – volume: 28 start-page: 91 year: 2015 ident: 10.1016/j.advengsoft.2022.103371_bib0027 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Advances in neural information processing systems – volume: 20 start-page: 2778 issue: 10 year: 2020 ident: 10.1016/j.advengsoft.2022.103371_bib0013 article-title: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review publication-title: Sensors doi: 10.3390/s20102778 – volume: 131 year: 2022 ident: 10.1016/j.advengsoft.2022.103371_bib0034 article-title: An efficient stochastic-based coupled model for damage identification in plate structures publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2021.105866 – volume: 35 start-page: 373 issue: 4 year: 2020 ident: 10.1016/j.advengsoft.2022.103371_bib0031 article-title: Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12497 – year: 2018 ident: 10.1016/j.advengsoft.2022.103371_bib0020 article-title: Transmissibility based structural assessment using deep convolutional neural network publication-title: in Proc. ISMA – year: 2004 ident: 10.1016/j.advengsoft.2022.103371_bib0041 article-title: On data aggregation quality and energy efficiency of wireless sensor network protocols-extended summary – volume: 13 start-page: 855 issue: 6 year: 1999 ident: 10.1016/j.advengsoft.2022.103371_bib0039 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mechanical systems and signal processing doi: 10.1006/mssp.1999.1249 – volume: 17 start-page: 1441 issue: 6 year: 2018 ident: 10.1016/j.advengsoft.2022.103371_bib0036 article-title: Damage identification using modal strains identified from operational fiber-optic Bragg grating data publication-title: Structural Health Monitoring doi: 10.1177/1475921717744480 |
| SSID | ssj0014021 |
| Score | 2.5694852 |
| Snippet | •A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103371 |
| SubjectTerms | convolution neural network (CNN) Damage detection Faster Region-based Convolutional Neural Networks (faster R-CNN) slab structures structural health monitoring (SHM) |
| Title | Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN |
| URI | https://dx.doi.org/10.1016/j.advengsoft.2022.103371 |
| Volume | 176 |
| WOSCitedRecordID | wos000901965600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0965-9978 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0014021 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM88DFAjC_5gbcoUxsncSKeqrFpIBQhNKBvkROfu04lq2i7jTf-dO5i54MxaQOJFytyZSfp_XK-851_x9jrxEgZR0IT0W3qhwp9VoWrhG8QHwAwjnVdJeLLB5llyXSafhwMfjZnYc4WsqqSi4t0-V9FjX0obDo6-xfibifFDrxGoWOLYsf2RoJ_q75RHo6GNZRNJiPKvfAsVewG_WuP1i5dxwnOT31NBP-WnMMrN7RHS0EFKpHjrY7VElyV6TrMcKCIWMH75O9lWd-undhUgjq5FjqKQ2-FWv6cksuIDypNg97GQzbb_HA6b0MFjw6p7aJRGhbeV3WsCnuiaKb7-xOB6BK0mo3GOPLT1BbqaXWu7GvN8UgIW4jlD4Vu9xZOdpVG3T-jh0afPgh2uyG_c2hfWtvajMMmme0k72bKaabcznSLbQUySpMh25q825--byNR6F_XVRebt3DZYDZH8OqnutrE6ZktRw_YPedv8InFyUM2gGqb3Xe-B3eafYVdTXmPpm-b3e1xVT5ic4sr3uKKzytOuOIdrniNK46_XcIVb3HFCVe8xhW3uOKIK25xxWtcPWafD_aP9g59V6fDL0WcrH0gMxc_dWPQPTWG-JdkKc1YqJEWEIxNoKLSxAUUoigjoQpTANrpKjamDEJIxBM2rE4reMq4iEKFuk1HGmQIOi6CUWygjEciQd8Zwh0mm782Lx2JPdVSWeTXCXiHjduRS0vkcoMxbxrp5c4gtYZmjvC8dvSzf7jjc3an-4ZesCEKEF6y2-XZer76_sph8xcmeLRh |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+detection+in+slab+structures+based+on+two-dimensional+curvature+mode+shape+method+and+Faster+R-CNN&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Nguyen%2C+Duong+Huong&rft.au=Abdel+Wahab%2C+Magd&rft.date=2023-03-01&rft.issn=0965-9978&rft.volume=176&rft.spage=103371&rft_id=info:doi/10.1016%2Fj.advengsoft.2022.103371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_advengsoft_2022_103371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon |