Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN

•A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster Region-based Convolutional Neural Networks This paper proposes a novel method based on the two-dimensional (2D) curvature mode shape method, C...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in engineering software (1992) Ročník 176; s. 103371
Hlavní autoři: Nguyen, Duong Huong, Abdel Wahab, Magd
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2023
Témata:
ISSN:0965-9978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster Region-based Convolutional Neural Networks This paper proposes a novel method based on the two-dimensional (2D) curvature mode shape method, Convolutional Neural Networks (CNN), and Faster Region-based Convolutional Neural Networks (faster R-CNN) for detecting damage in slab structures. The 2D curvature mode shapes could be measured directly or calculated from the measured mode shapes using the central difference method. The damage indicator is defined as the absolute differences between the 2D curvature mode shapes of the damaged and intact slabs. The contour plot is chosen to convert the damage indicators into images. Four hundred damage scenarios are created using a Finite Element (FE) model of the slab. Images created from those damage scenarios are then used to train CNN and faster R-CNN. Four damage types are considered in this research, namely a single small hole, a single big hole, two small holes, and two large holes. After training, CNN can predict the damage types and faster R-CNN can predict the bounding boxes around the damaged areas. A test sample set is created to test the performance of the proposed method. The effect of noise in the mode shape data is considered. Results show that the classification accuracy for damage type is high. The overlap ratios between the predicted bounding boxes and the real damaged areas are more than 40% for 80% of tested scenarios. Furthermore, the low influence of noise on the predicted results is investigated. The proposed method is robust and has great potential for application to real structures.
AbstractList •A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster Region-based Convolutional Neural Networks This paper proposes a novel method based on the two-dimensional (2D) curvature mode shape method, Convolutional Neural Networks (CNN), and Faster Region-based Convolutional Neural Networks (faster R-CNN) for detecting damage in slab structures. The 2D curvature mode shapes could be measured directly or calculated from the measured mode shapes using the central difference method. The damage indicator is defined as the absolute differences between the 2D curvature mode shapes of the damaged and intact slabs. The contour plot is chosen to convert the damage indicators into images. Four hundred damage scenarios are created using a Finite Element (FE) model of the slab. Images created from those damage scenarios are then used to train CNN and faster R-CNN. Four damage types are considered in this research, namely a single small hole, a single big hole, two small holes, and two large holes. After training, CNN can predict the damage types and faster R-CNN can predict the bounding boxes around the damaged areas. A test sample set is created to test the performance of the proposed method. The effect of noise in the mode shape data is considered. Results show that the classification accuracy for damage type is high. The overlap ratios between the predicted bounding boxes and the real damaged areas are more than 40% for 80% of tested scenarios. Furthermore, the low influence of noise on the predicted results is investigated. The proposed method is robust and has great potential for application to real structures.
ArticleNumber 103371
Author Abdel Wahab, Magd
Nguyen, Duong Huong
Author_xml – sequence: 1
  givenname: Duong Huong
  surname: Nguyen
  fullname: Nguyen, Duong Huong
  organization: Department of Bridge and Tunnel Engineering, Faculty of Bridges and Roads, Hanoi University of Civil Engineering, Hanoi, Vietnam
– sequence: 2
  givenname: Magd
  orcidid: 0000-0002-3610-865X
  surname: Abdel Wahab
  fullname: Abdel Wahab, Magd
  email: magd.abdelwahab@ugent.be
  organization: Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde, Belgium
BookMark eNqNkN1KAzEQhXNRwbb6DnmBrcmm-3cjaLUqSAXR6zCbTNqUbbYkacW3N0sFwRu9mRlmzjkw34SMXO-QEMrZjDNeXm1noI_o1qE3cZazPE9rISo-ImPWlEXWNFV9TiYhbBnjc5bzMbF3sIM1Uo0RVbS9o9bR0EFLQ_QHFQ8eA20hoKbpFj_6TNsdupCU0FF18EcYNHTXa6RhA_s0Ytz0moLTdAkhoqev2WK1uiBnBrqAl999St6X92-Lx-z55eFpcfOcKVHWMUNWioZVjTFFkUrFy6ZSleECmBaYc5NDoUzZYitaVQhoTYsFn0NpjMrnWIspqU-5yvcheDRy7-0O_KfkTA6Y5Fb-YJIDJnnClKzXv6zKRhioRA-2-0_A7SkA04NHi14GZdEp1NYnvFL39u-QL8XFkas
CitedBy_id crossref_primary_10_3390_app15105364
crossref_primary_10_1016_j_ijmecsci_2024_109798
crossref_primary_10_1016_j_knosys_2024_112759
crossref_primary_10_1016_j_tust_2024_105857
crossref_primary_10_1016_j_eswa_2025_127538
crossref_primary_10_1016_j_jobe_2023_107200
crossref_primary_10_3390_buildings15132216
crossref_primary_10_1007_s42107_025_01377_w
crossref_primary_10_1016_j_engfailanal_2025_109785
crossref_primary_10_1007_s10999_023_09695_0
crossref_primary_10_3390_math12193105
crossref_primary_10_1080_17499518_2025_2460007
crossref_primary_10_1016_j_knosys_2024_111797
crossref_primary_10_1007_s13349_024_00852_3
crossref_primary_10_1007_s13349_025_00969_z
crossref_primary_10_1007_s42417_024_01621_8
crossref_primary_10_1080_15732479_2025_2483510
crossref_primary_10_1016_j_measurement_2023_113387
crossref_primary_10_1111_mice_13298
crossref_primary_10_1007_s10999_023_09705_1
crossref_primary_10_1016_j_measurement_2024_114970
crossref_primary_10_1016_j_istruc_2025_108266
crossref_primary_10_1016_j_engstruct_2025_120253
crossref_primary_10_1016_j_measurement_2023_113982
crossref_primary_10_1007_s11709_024_1096_9
crossref_primary_10_1016_j_measurement_2025_117194
crossref_primary_10_1016_j_compstruc_2023_107117
crossref_primary_10_1016_j_undsp_2023_07_003
crossref_primary_10_3389_feart_2025_1526527
crossref_primary_10_1016_j_knosys_2024_112499
crossref_primary_10_1016_j_tws_2023_111044
crossref_primary_10_1007_s11709_024_1092_0
crossref_primary_10_1016_j_advengsoft_2024_103662
crossref_primary_10_1088_1755_1315_1453_1_012013
crossref_primary_10_1177_14759217251334803
crossref_primary_10_1007_s10999_023_09675_4
crossref_primary_10_1007_s12083_024_01731_w
crossref_primary_10_1016_j_dibe_2025_100728
crossref_primary_10_1016_j_saa_2024_125205
crossref_primary_10_1016_j_compstruc_2024_107385
crossref_primary_10_1016_j_swevo_2025_102073
crossref_primary_10_1016_j_finel_2024_104248
crossref_primary_10_1007_s11709_024_1029_7
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_3390_app15020803
crossref_primary_10_1016_j_asoc_2024_111422
crossref_primary_10_1016_j_istruc_2024_107035
crossref_primary_10_3390_electronics12183982
crossref_primary_10_1016_j_compstruc_2024_107342
crossref_primary_10_3390_app15126568
crossref_primary_10_1109_TIM_2025_3529538
crossref_primary_10_1016_j_advengsoft_2024_103597
crossref_primary_10_1108_MMMS_08_2024_0248
crossref_primary_10_3390_jsan14050089
crossref_primary_10_3390_electronics14091699
crossref_primary_10_1016_j_autcon_2025_106045
crossref_primary_10_1016_j_istruc_2024_106538
crossref_primary_10_1016_j_istruc_2024_107344
crossref_primary_10_1155_stc_5965478
crossref_primary_10_1007_s42417_025_01769_x
crossref_primary_10_1016_j_asoc_2024_111978
crossref_primary_10_1016_j_measurement_2024_115374
crossref_primary_10_1016_j_compag_2023_107985
crossref_primary_10_1155_stc_1677778
Cites_doi 10.1016/j.asoc.2019.106013
10.1007/s00419-015-1064-x
10.3390/s18092955
10.1006/jsvi.1997.0961
10.1098/rsta.2006.1938
10.2172/249299
10.1007/s13349-015-0148-1
10.1016/j.measurement.2016.07.054
10.1177/1475921710365419
10.3390/app7050510
10.1016/0022-460X(91)90595-B
10.32604/cmc.2019.06641
10.1002/stc.2230
10.1080/17415977.2015.1017485
10.1016/j.compstruct.2021.114656
10.1016/j.tafmec.2019.102240
10.1016/j.jsv.2003.07.040
10.1111/mice.12334
10.1016/j.compstruct.2021.114287
10.1016/j.tafmec.2020.102728
10.1016/j.cma.2019.112790
10.1016/j.compstruct.2006.05.026
10.1016/j.measurement.2020.107862
10.1006/jsvi.1999.2295
10.1016/j.jsv.2016.10.043
10.3390/s20102778
10.1016/j.engfailanal.2021.105866
10.1111/mice.12497
10.1006/mssp.1999.1249
10.1177/1475921717744480
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2022.103371
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_advengsoft_2022_103371
S0965997822002721
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c368t-e0639079ff559ff71697c7f13a0d3e21f2a5cf6beb3bc53abfbe514a6ffc24e83
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901965600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Sat Nov 29 07:04:29 EST 2025
Tue Nov 18 22:01:42 EST 2025
Fri Feb 23 02:39:41 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords slab structures
Damage detection
convolution neural network (CNN)
structural health monitoring (SHM)
Faster Region-based Convolutional Neural Networks (faster R-CNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-e0639079ff559ff71697c7f13a0d3e21f2a5cf6beb3bc53abfbe514a6ffc24e83
ORCID 0000-0002-3610-865X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0965997822002721
ParticipantIDs crossref_primary_10_1016_j_advengsoft_2022_103371
crossref_citationtrail_10_1016_j_advengsoft_2022_103371
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2022_103371
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in engineering software (1992)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deng, Lu, Lee (bib0031) 2020; 35
Wahab, De Roeck (bib0007) 1999; 226
Nguyen, Vuong, Le, Ngo, Nguyen-Xuan (bib0022) 2020
Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (bib0029) 2018; 33
De Roeck, Reynders, Anastasopoulos (bib0035) 2017
Moughty, Casas (bib0001) 2017; 7
Girshick (bib0038) 2015
Fan, Qiao (bib0004) 2011; 10
Saadatmorad, Jafari-Talookolaei, Pashaei, Khatir (bib0026) 2021; 278
Modarres, Astorga, Droguett, Meruane (bib0017) 2018; 25
Qiao, Lu, Lestari, Wang (bib0009) 2007; 80
Khatir, Tiachacht, Thanh, Ghandourah, Mirjalili, Wahab (bib0032) 2021; 273
Wang, B., S. Bai, J. Wang, W. Zhao, Y. Zhang, and Q. Zhang, A novel concrete crack damage detection method via sparse correlation model. Structural Control and Health Monitoring: p. e2952.
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib0015) 2020; 362
Doebling, S.W., C.R. Farrar, M.B. Prime, and D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. 1996.
Nanthakumar, Lahmer, Zhuang, Zi, Rabczuk (bib0014) 2016; 24
De Oliveira, Monteiro, Vieira Filho (bib0021) 2018; 18
Ho, Trinh, De Roeck, Bui-Tien, Nguyen-Ngoc, Wahab (bib0034) 2022; 131
Girshick, Donahue, Darrell, Malik (bib0037) 2014
Nguyen (bib0002) 2021
Nguyen, Nguyen, Bui-Tien, De Roeck, Wahab (bib0025) 2020; 109
Cofré, Kobrich, Droguett, Meruane (bib0020) 2018
Abdeljaber, Avci, Kiranyaz, Gabbouj, Inman (bib0018) 2017; 388
Nguyen, Bui-Tien, Roeck, Wahab (bib0024) 2021; 77
Gordan, Razak, Ismail, Ghaedi, Tan, Ghayeb (bib0040) 2020; 88
Pham, Kim, Moh (bib0041) 2004
Anastasopoulos, De Smedt, Vandewalle, De Roeck, Reynders (bib0036) 2018; 17
Pandey, Biswas, Samman (bib0005) 1991; 145
Zhong, Yang (bib0011) 2016; 6
Guo, Chen, Shen (bib0019) 2016; 93
Wang, Wu, Yang, Wang (bib0028) 2018
Anitescu, Atroshchenko, Alajlan, Rabczuk (bib0016) 2019; 59
Ratcliffe (bib0006) 1997; 204
Ren, He, Girshick, Sun (bib0027) 2015; 28
Worden, Manson (bib0012) 2007; 365
Khodabandehlou, Pekcan, Fadali (bib0023) 2019; 26
Khatir, Wahab (bib0033) 2019; 103
Azimi, Eslamlou, Pekcan (bib0013) 2020; 20
Wu, Law (bib0008) 2004; 276
Navabian, Bozorgnasab, Taghipour, Yazdanpanah (bib0010) 2016; 86
Peeters, De Roeck (bib0039) 1999; 13
Nguyen (10.1016/j.advengsoft.2022.103371_bib0024) 2021; 77
Ratcliffe (10.1016/j.advengsoft.2022.103371_bib0006) 1997; 204
Anastasopoulos (10.1016/j.advengsoft.2022.103371_bib0036) 2018; 17
10.1016/j.advengsoft.2022.103371_bib0003
Navabian (10.1016/j.advengsoft.2022.103371_bib0010) 2016; 86
Azimi (10.1016/j.advengsoft.2022.103371_bib0013) 2020; 20
Deng (10.1016/j.advengsoft.2022.103371_bib0031) 2020; 35
Girshick (10.1016/j.advengsoft.2022.103371_bib0037) 2014
Samaniego (10.1016/j.advengsoft.2022.103371_bib0015) 2020; 362
Ho (10.1016/j.advengsoft.2022.103371_bib0034) 2022; 131
Peeters (10.1016/j.advengsoft.2022.103371_bib0039) 1999; 13
Wahab (10.1016/j.advengsoft.2022.103371_bib0007) 1999; 226
Saadatmorad (10.1016/j.advengsoft.2022.103371_bib0026) 2021; 278
Qiao (10.1016/j.advengsoft.2022.103371_bib0009) 2007; 80
Zhong (10.1016/j.advengsoft.2022.103371_bib0011) 2016; 6
Nanthakumar (10.1016/j.advengsoft.2022.103371_bib0014) 2016; 24
Pandey (10.1016/j.advengsoft.2022.103371_bib0005) 1991; 145
Pham (10.1016/j.advengsoft.2022.103371_bib0041) 2004
Khodabandehlou (10.1016/j.advengsoft.2022.103371_bib0023) 2019; 26
Nguyen (10.1016/j.advengsoft.2022.103371_bib0022) 2020
Anitescu (10.1016/j.advengsoft.2022.103371_bib0016) 2019; 59
Modarres (10.1016/j.advengsoft.2022.103371_bib0017) 2018; 25
Guo (10.1016/j.advengsoft.2022.103371_bib0019) 2016; 93
Nguyen (10.1016/j.advengsoft.2022.103371_bib0002) 2021
Wu (10.1016/j.advengsoft.2022.103371_bib0008) 2004; 276
10.1016/j.advengsoft.2022.103371_bib0030
Girshick (10.1016/j.advengsoft.2022.103371_bib0038) 2015
Fan (10.1016/j.advengsoft.2022.103371_bib0004) 2011; 10
Abdeljaber (10.1016/j.advengsoft.2022.103371_bib0018) 2017; 388
Cofré (10.1016/j.advengsoft.2022.103371_bib0020) 2018
Gordan (10.1016/j.advengsoft.2022.103371_bib0040) 2020; 88
De Oliveira (10.1016/j.advengsoft.2022.103371_bib0021) 2018; 18
Nguyen (10.1016/j.advengsoft.2022.103371_bib0025) 2020; 109
Khatir (10.1016/j.advengsoft.2022.103371_bib0033) 2019; 103
Cha (10.1016/j.advengsoft.2022.103371_bib0029) 2018; 33
Khatir (10.1016/j.advengsoft.2022.103371_bib0032) 2021; 273
De Roeck (10.1016/j.advengsoft.2022.103371_bib0035) 2017
Ren (10.1016/j.advengsoft.2022.103371_bib0027) 2015; 28
Wang (10.1016/j.advengsoft.2022.103371_bib0028) 2018
Worden (10.1016/j.advengsoft.2022.103371_bib0012) 2007; 365
Moughty (10.1016/j.advengsoft.2022.103371_bib0001) 2017; 7
References_xml – volume: 131
  year: 2022
  ident: bib0034
  article-title: An efficient stochastic-based coupled model for damage identification in plate structures
  publication-title: Engineering Failure Analysis
– volume: 88
  year: 2020
  ident: bib0040
  article-title: A hybrid ANN-based imperial competitive algorithm methodology for structural damage identification of slab-on-girder bridge using data mining
  publication-title: Applied Soft Computing
– volume: 276
  start-page: 227
  year: 2004
  end-page: 244
  ident: bib0008
  article-title: Damage localization in plate structures from uniform load surface curvature
  publication-title: Journal of Sound and Vibration
– volume: 80
  start-page: 409
  year: 2007
  end-page: 428
  ident: bib0009
  article-title: Curvature mode shape-based damage detection in composite laminated plates
  publication-title: Composite Structures
– volume: 365
  start-page: 515
  year: 2007
  end-page: 537
  ident: bib0012
  article-title: The application of machine learning to structural health monitoring
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 20
  start-page: 2778
  year: 2020
  ident: bib0013
  article-title: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review
  publication-title: Sensors
– volume: 18
  start-page: 2955
  year: 2018
  ident: bib0021
  article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network
  publication-title: Sensors
– reference: Wang, B., S. Bai, J. Wang, W. Zhao, Y. Zhang, and Q. Zhang, A novel concrete crack damage detection method via sparse correlation model. Structural Control and Health Monitoring: p. e2952.
– volume: 388
  start-page: 154
  year: 2017
  end-page: 170
  ident: bib0018
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: Journal of Sound and Vibration
– year: 2020
  ident: bib0022
  article-title: A data-driven approach based on wavelet analysis and deep learning for identification of multiple-cracked beam structures under moving load
  publication-title: Measurement
– volume: 77
  start-page: 47
  year: 2021
  end-page: 56
  ident: bib0024
  article-title: Damage detection in structures using modal curvatures gapped smoothing method and deep learning
  publication-title: Structural Engineering and Mechanics
– volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  ident: bib0027
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– volume: 33
  start-page: 731
  year: 2018
  end-page: 747
  ident: bib0029
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 59
  start-page: 345
  year: 2019
  end-page: 359
  ident: bib0016
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Computers, Materials and Continua
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  ident: bib0019
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
– volume: 7
  start-page: 510
  year: 2017
  ident: bib0001
  article-title: A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions
  publication-title: Applied Sciences
– volume: 278
  year: 2021
  ident: bib0026
  article-title: Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique
  publication-title: Composite Structures
– volume: 6
  start-page: 141
  year: 2016
  end-page: 152
  ident: bib0011
  article-title: Damage detection for plate-like structures using generalized curvature mode shape method
  publication-title: Journal of Civil Structural Health Monitoring
– year: 2021
  ident: bib0002
  article-title: Monitoring Vietnamese Bridges Using Vibration Based Damage Detection Method and Machine Learning
– volume: 109
  year: 2020
  ident: bib0025
  article-title: Damage detection in girder bridges using modal curvatures gapped smoothing method and Convolutional Neural Network: Application to Bo Nghi bridge
  publication-title: Theoretical and Applied Fracture Mechanics
– volume: 103
  year: 2019
  ident: bib0033
  article-title: A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm
  publication-title: Theoretical and Applied Fracture Mechanics
– volume: 24
  start-page: 153
  year: 2016
  end-page: 176
  ident: bib0014
  article-title: Detection of material interfaces using a regularized level set method in piezoelectric structures
  publication-title: Inverse Problems in Science and Engineering
– volume: 362
  year: 2020
  ident: bib0015
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 273
  year: 2021
  ident: bib0032
  article-title: An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates
  publication-title: Composite Structures
– year: 2014
  ident: bib0037
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 10
  start-page: 83
  year: 2011
  end-page: 111
  ident: bib0004
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Structural health monitoring
– year: 2018
  ident: bib0020
  article-title: Transmissibility based structural assessment using deep convolutional neural network
  publication-title: in Proc. ISMA
– volume: 25
  start-page: e2230
  year: 2018
  ident: bib0017
  article-title: Convolutional neural networks for automated damage recognition and damage type identification
  publication-title: Structural Control and Health Monitoring
– reference: Doebling, S.W., C.R. Farrar, M.B. Prime, and D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. 1996.
– volume: 145
  start-page: 321
  year: 1991
  end-page: 332
  ident: bib0005
  article-title: Damage detection from changes in curvature mode shapes
  publication-title: Journal of sound and vibration
– year: 2004
  ident: bib0041
  article-title: On data aggregation quality and energy efficiency of wireless sensor network protocols-extended summary
  publication-title: First International Conference on Broadband Networks
– volume: 13
  start-page: 855
  year: 1999
  end-page: 878
  ident: bib0039
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mechanical systems and signal processing
– volume: 204
  start-page: 505
  year: 1997
  end-page: 517
  ident: bib0006
  article-title: Damage detection using a modified Laplacian operator on mode shape data
  publication-title: Journal of Sound and Vibration
– year: 2018
  ident: bib0028
  article-title: Road damage detection and classification with faster r-cnn
  publication-title: 2018 IEEE international conference on big data (Big data)
– volume: 86
  start-page: 819
  year: 2016
  end-page: 830
  ident: bib0010
  article-title: Damage identification in plate-like structure using mode shape derivatives
  publication-title: Archive of Applied Mechanics
– year: 2017
  ident: bib0035
  article-title: Assessment of Small Damage by Direct Modal Strain Measurements
  publication-title: International Conference on Experimental Vibration Analysis for Civil Engineering Structures
– volume: 17
  start-page: 1441
  year: 2018
  end-page: 1459
  ident: bib0036
  article-title: Damage identification using modal strains identified from operational fiber-optic Bragg grating data
  publication-title: Structural Health Monitoring
– volume: 35
  start-page: 373
  year: 2020
  end-page: 388
  ident: bib0031
  article-title: Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 26
  start-page: e2308
  year: 2019
  ident: bib0023
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Structural Control and Health Monitoring
– year: 2015
  ident: bib0038
  article-title: Fast r-cnn
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 226
  start-page: 217
  year: 1999
  end-page: 235
  ident: bib0007
  article-title: Damage detection in bridges using modal curvatures: application to a real damage scenario
  publication-title: Journal of Sound and vibration
– ident: 10.1016/j.advengsoft.2022.103371_bib0030
– volume: 88
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103371_bib0040
  article-title: A hybrid ANN-based imperial competitive algorithm methodology for structural damage identification of slab-on-girder bridge using data mining
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.106013
– year: 2018
  ident: 10.1016/j.advengsoft.2022.103371_bib0028
  article-title: Road damage detection and classification with faster r-cnn
– volume: 86
  start-page: 819
  issue: 5
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103371_bib0010
  article-title: Damage identification in plate-like structure using mode shape derivatives
  publication-title: Archive of Applied Mechanics
  doi: 10.1007/s00419-015-1064-x
– volume: 18
  start-page: 2955
  issue: 9
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103371_bib0021
  article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s18092955
– year: 2017
  ident: 10.1016/j.advengsoft.2022.103371_bib0035
  article-title: Assessment of Small Damage by Direct Modal Strain Measurements
– volume: 204
  start-page: 505
  issue: 3
  year: 1997
  ident: 10.1016/j.advengsoft.2022.103371_bib0006
  article-title: Damage detection using a modified Laplacian operator on mode shape data
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.1997.0961
– volume: 365
  start-page: 515
  issue: 1851
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103371_bib0012
  article-title: The application of machine learning to structural health monitoring
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2006.1938
– year: 2014
  ident: 10.1016/j.advengsoft.2022.103371_bib0037
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– ident: 10.1016/j.advengsoft.2022.103371_bib0003
  doi: 10.2172/249299
– volume: 6
  start-page: 141
  issue: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103371_bib0011
  article-title: Damage detection for plate-like structures using generalized curvature mode shape method
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-015-0148-1
– volume: 93
  start-page: 490
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103371_bib0019
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 26
  start-page: e2308
  issue: 2
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103371_bib0023
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Structural Control and Health Monitoring
– volume: 10
  start-page: 83
  issue: 1
  year: 2011
  ident: 10.1016/j.advengsoft.2022.103371_bib0004
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Structural health monitoring
  doi: 10.1177/1475921710365419
– volume: 7
  start-page: 510
  issue: 5
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103371_bib0001
  article-title: A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions
  publication-title: Applied Sciences
  doi: 10.3390/app7050510
– volume: 77
  start-page: 47
  issue: 1
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103371_bib0024
  article-title: Damage detection in structures using modal curvatures gapped smoothing method and deep learning
  publication-title: Structural Engineering and Mechanics
– year: 2015
  ident: 10.1016/j.advengsoft.2022.103371_bib0038
  article-title: Fast r-cnn
– volume: 145
  start-page: 321
  issue: 2
  year: 1991
  ident: 10.1016/j.advengsoft.2022.103371_bib0005
  article-title: Damage detection from changes in curvature mode shapes
  publication-title: Journal of sound and vibration
  doi: 10.1016/0022-460X(91)90595-B
– volume: 59
  start-page: 345
  issue: 1
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103371_bib0016
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Computers, Materials and Continua
  doi: 10.32604/cmc.2019.06641
– volume: 25
  start-page: e2230
  issue: 10
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103371_bib0017
  article-title: Convolutional neural networks for automated damage recognition and damage type identification
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2230
– volume: 24
  start-page: 153
  issue: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2022.103371_bib0014
  article-title: Detection of material interfaces using a regularized level set method in piezoelectric structures
  publication-title: Inverse Problems in Science and Engineering
  doi: 10.1080/17415977.2015.1017485
– volume: 278
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103371_bib0026
  article-title: Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2021.114656
– year: 2021
  ident: 10.1016/j.advengsoft.2022.103371_bib0002
– volume: 103
  year: 2019
  ident: 10.1016/j.advengsoft.2022.103371_bib0033
  article-title: A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/j.tafmec.2019.102240
– volume: 276
  start-page: 227
  issue: 1-2
  year: 2004
  ident: 10.1016/j.advengsoft.2022.103371_bib0008
  article-title: Damage localization in plate structures from uniform load surface curvature
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2003.07.040
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103371_bib0029
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12334
– volume: 273
  year: 2021
  ident: 10.1016/j.advengsoft.2022.103371_bib0032
  article-title: An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2021.114287
– volume: 109
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103371_bib0025
  article-title: Damage detection in girder bridges using modal curvatures gapped smoothing method and Convolutional Neural Network: Application to Bo Nghi bridge
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/j.tafmec.2020.102728
– volume: 362
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103371_bib0015
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112790
– volume: 80
  start-page: 409
  issue: 3
  year: 2007
  ident: 10.1016/j.advengsoft.2022.103371_bib0009
  article-title: Curvature mode shape-based damage detection in composite laminated plates
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2006.05.026
– year: 2020
  ident: 10.1016/j.advengsoft.2022.103371_bib0022
  article-title: A data-driven approach based on wavelet analysis and deep learning for identification of multiple-cracked beam structures under moving load
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107862
– volume: 226
  start-page: 217
  issue: 2
  year: 1999
  ident: 10.1016/j.advengsoft.2022.103371_bib0007
  article-title: Damage detection in bridges using modal curvatures: application to a real damage scenario
  publication-title: Journal of Sound and vibration
  doi: 10.1006/jsvi.1999.2295
– volume: 388
  start-page: 154
  year: 2017
  ident: 10.1016/j.advengsoft.2022.103371_bib0018
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2016.10.043
– volume: 28
  start-page: 91
  year: 2015
  ident: 10.1016/j.advengsoft.2022.103371_bib0027
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in neural information processing systems
– volume: 20
  start-page: 2778
  issue: 10
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103371_bib0013
  article-title: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review
  publication-title: Sensors
  doi: 10.3390/s20102778
– volume: 131
  year: 2022
  ident: 10.1016/j.advengsoft.2022.103371_bib0034
  article-title: An efficient stochastic-based coupled model for damage identification in plate structures
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2021.105866
– volume: 35
  start-page: 373
  issue: 4
  year: 2020
  ident: 10.1016/j.advengsoft.2022.103371_bib0031
  article-title: Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12497
– year: 2018
  ident: 10.1016/j.advengsoft.2022.103371_bib0020
  article-title: Transmissibility based structural assessment using deep convolutional neural network
  publication-title: in Proc. ISMA
– year: 2004
  ident: 10.1016/j.advengsoft.2022.103371_bib0041
  article-title: On data aggregation quality and energy efficiency of wireless sensor network protocols-extended summary
– volume: 13
  start-page: 855
  issue: 6
  year: 1999
  ident: 10.1016/j.advengsoft.2022.103371_bib0039
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mechanical systems and signal processing
  doi: 10.1006/mssp.1999.1249
– volume: 17
  start-page: 1441
  issue: 6
  year: 2018
  ident: 10.1016/j.advengsoft.2022.103371_bib0036
  article-title: Damage identification using modal strains identified from operational fiber-optic Bragg grating data
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921717744480
SSID ssj0014021
Score 2.5694227
Snippet •A novel method for detecting damage in slab structures•A damage indicator based on 2D curvature mode shapes•A combination of curvature mode shape and Faster...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103371
SubjectTerms convolution neural network (CNN)
Damage detection
Faster Region-based Convolutional Neural Networks (faster R-CNN)
slab structures
structural health monitoring (SHM)
Title Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN
URI https://dx.doi.org/10.1016/j.advengsoft.2022.103371
Volume 176
WOSCitedRecordID wos000901965600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjgMc-BigjS_5wC0KSu0kTsSpGpsGhwjBED0R2Y7ddSpZRdtt_Pe8FzsfGpMYQlysyq2TqL9fX997fv49Ql4rwaVVmQw5j3UYyygOIWyugMuxUJGUleCqaTYhiiKbzfKPo9G39izMxVLUdXZ1la_-K9QwB2Dj0dm_gLu7KEzAawAdRoAdxlsB_05-xzqcymyMbisZAXcVOKnYLcTXAf53Vc0-weV5WKHAvxPnCPQWc7S4qYAtcoL1qVwZ32W62WY4kiisEHwKD4pi6NdOXSlBU1xreonDYA1W_hKLy1APKs_ZIPFQzLc_vc3bYsOjYxz73ajKLIOv8lQqd6JoXg3zE4z3BVouadYenOmrlJrsY5qEee6693SG2HWC-c2ou_zC2RtZgf2f44NDXM8Y6gVw17_lmmT2Z7w8Xp1hCYpAnYEdJpI8G5Od6fvD2Ydunwmi56anYvs4vtbLVQDefL-bHZiBU3LykNz30QSdOhY8IiNT75IHPrKg3m6vYapt3tHO7ZJ7AyXKx2ThWEM71tBFTZE1tGcNbVhD4b1rrKEdayiyhjasoY41FFhDHWtow5on5MvR4cnBcei7cISap9kmNOjERiK3FoJPa1FdSWhhJ1xGFTdsYplMtE2VUVzphEtllQEvXKbWahabjD8l4_q8NnuEojKUimIhsgwCBWaVhE-AUUjBj5KJSfaJaL_aUnuJeuyUsizbWsSzsgelRFBKB8o-mXQrV06m5RZr3rbold7ddG5kCcT74-pn_7T6Obnb_1ZekDFAaV6SO_pis1j_eOVZ-gseY6xh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+detection+in+slab+structures+based+on+two-dimensional+curvature+mode+shape+method+and+Faster+R-CNN&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Nguyen%2C+Duong+Huong&rft.au=Abdel+Wahab%2C+Magd&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=176&rft_id=info:doi/10.1016%2Fj.advengsoft.2022.103371&rft.externalDocID=S0965997822002721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon