A numerical method for solving nonlinear ill-posed problems

A two-step iterative process for the numerical solution of nonlinear problems is suggested. In order to avoid the ill-posed inversion of the Fréchet derivative operator, some regularization parameter is introduced. A convergence theorem is proved. The proposed method is illustrated by a numerical ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 20; číslo 3-4; s. 317 - 332
Hlavní autoři: Ramm, Alexander G., Smirnova, Alexandra B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Marcel Dekker, Inc 01.01.1999
Taylor & Francis
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A two-step iterative process for the numerical solution of nonlinear problems is suggested. In order to avoid the ill-posed inversion of the Fréchet derivative operator, some regularization parameter is introduced. A convergence theorem is proved. The proposed method is illustrated by a numerical example in which a nonlinear inverse problem of gravimetry is considered. Based on the results of the numerical experiments practical recommendations for the choice of the regularization parameter are given. Some other iterative schemes are considered.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569908816894