An inner approximation method incorporating with a penalty function method for a reverse convex programming problem

In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set which is defined by the complement of the interior of a compact convex set X. When X is not necessarily a polytope, an inner approximation method has been proposed (J. Optim. Theory A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 146; číslo 1; s. 57 - 75
Hlavní autoři: Yamada, Syuuji, Tanino, Tetsuzo, Inuiguchi, Masahiro
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.2002
Elsevier
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set which is defined by the complement of the interior of a compact convex set X. When X is not necessarily a polytope, an inner approximation method has been proposed (J. Optim. Theory Appl. 107(2) (2000) 357). The algorithm utilizes inner approximation of X by a sequence of polytopes to generate relaxed problems. Then, every accumulation point of the sequence of optimal solutions of relaxed problems is an optimal solution of the original problem. In this paper, we improve the proposed algorithm. By underestimating the optimal value of the relaxed problem, the improved algorithms have the global convergence.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(02)00418-1