An inner approximation method incorporating with a penalty function method for a reverse convex programming problem

In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set which is defined by the complement of the interior of a compact convex set X. When X is not necessarily a polytope, an inner approximation method has been proposed (J. Optim. Theory A...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 146; číslo 1; s. 57 - 75
Hlavní autori: Yamada, Syuuji, Tanino, Tetsuzo, Inuiguchi, Masahiro
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.09.2002
Elsevier
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set which is defined by the complement of the interior of a compact convex set X. When X is not necessarily a polytope, an inner approximation method has been proposed (J. Optim. Theory Appl. 107(2) (2000) 357). The algorithm utilizes inner approximation of X by a sequence of polytopes to generate relaxed problems. Then, every accumulation point of the sequence of optimal solutions of relaxed problems is an optimal solution of the original problem. In this paper, we improve the proposed algorithm. By underestimating the optimal value of the relaxed problem, the improved algorithms have the global convergence.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(02)00418-1