A cut finite-element method for fracture and contact problems in large-deformation solid mechanics
Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phas...
Uložené v:
| Vydané v: | Computer methods in applied mechanics and engineering Ročník 388; s. 114234 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.01.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of the mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics. Initially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been extended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and on localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further extended to more complex physics of the interfaces — fracture, i.e. separation of the interface into two surfaces in the current configuration, and contact between the separated surfaces. Several cases are considered — fracture with linear and non-linear traction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach as a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated in an unbiased way — the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The weak forms are derived from the total energy functional. The proposed method has been tested computationally for the case of linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal rates.
•CutFEM method for interfaces in large-deformation solid mechanics is proposed.•Various interfaces are considered: phase boundary, fracture and contact.•The contact problem is treated in an unbiased way.•The proposed generalisations contain the linear elasticity as a particular case. |
|---|---|
| AbstractList | Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of the mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics. Initially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been extended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and on localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further extended to more complex physics of the interfaces — fracture, i.e. separation of the interface into two surfaces in the current configuration, and contact between the separated surfaces. Several cases are considered — fracture with linear and non-linear traction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach as a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated in an unbiased way — the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The weak forms are derived from the total energy functional. The proposed method has been tested computationally for the case of linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal rates.
•CutFEM method for interfaces in large-deformation solid mechanics is proposed.•Various interfaces are considered: phase boundary, fracture and contact.•The contact problem is treated in an unbiased way.•The proposed generalisations contain the linear elasticity as a particular case. Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of the mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics. Initially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been extended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and on localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further extended to more complex physics of the interfaces - fracture, i.e. separation of the interface into two surfaces in the current configuration, and contact between the separated surfaces. Several cases are considered - fracture with linear and non-linear traction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach as a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated in an unbiased way - the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The weak forms are derived from the total energy functional. The proposed method has been tested computationally for the case of linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal rates. |
| ArticleNumber | 114234 |
| Author | Poluektov, Michael Figiel, Łukasz |
| Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0002-7492-0163 surname: Poluektov fullname: Poluektov, Michael email: m.poluektov@warwick.ac.uk organization: International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, UK – sequence: 2 givenname: Łukasz orcidid: 0000-0002-5826-8320 surname: Figiel fullname: Figiel, Łukasz organization: International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, UK |
| BookMark | eNp9kE9rGzEQxUVwIY7bD9CboOd1Ja1WK9FTCE1aMOSSnoX-zNYyu5IjyYV--8hxTz14LsPA-828eXdoFVMEhD5TsqWEiq-HrVvMlhFGt5Ry1vMbtKZyVB2jvVyhNSF86EbJhlt0V8qBtJKUrZG9x-5U8RRiqNDBDAvEiheo--TxlDKesnH1lAGb6LFLsbYRH3OyTVpwiHg2-Td0Hpp4MTWkiEuag2873N7E4MpH9GEyc4FP__oG_Xr8_vLwo9s9P_18uN91rheydk5yMQJ4yzjz3CllOYzWOcuFIMNoqB8maSURQqhmniiwo1Rm4r1SoyK236Avl73N3esJStWHdMqxndRMMCbJMCjWVONF5XIqJcOkXajvvms2YdaU6HOg-qBboPocqL4E2kj6H3nMYTH571Xm24WB9vifAFkXFyA68CGDq9qncIV-A40zj-Q |
| CitedBy_id | crossref_primary_10_1007_s10915_025_02815_2 crossref_primary_10_1016_j_ijmecsci_2024_109313 crossref_primary_10_1007_s00466_024_02464_6 crossref_primary_10_1016_j_cma_2022_114630 crossref_primary_10_1016_j_cma_2025_118067 crossref_primary_10_1016_j_camwa_2024_10_022 crossref_primary_10_1016_j_conbuildmat_2022_128890 crossref_primary_10_1007_s00466_024_02492_2 crossref_primary_10_1038_s43246_023_00368_1 crossref_primary_10_1016_j_ijsolstr_2023_112386 crossref_primary_10_1016_j_compstruc_2025_107685 crossref_primary_10_1016_j_cma_2023_116713 crossref_primary_10_3390_applmech3020031 crossref_primary_10_1016_j_cma_2023_116129 |
| Cites_doi | 10.1002/nme.4823 10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-# 10.1002/nme.143 10.1007/s00466-018-1628-z 10.1007/s00466-018-1638-x 10.1016/j.cma.2017.09.005 10.1002/nme.5694 10.1016/j.cma.2016.04.012 10.1090/mcom/3240 10.1016/S0045-7825(01)00215-8 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1016/S0045-7825(02)00524-8 10.1016/j.cma.2017.07.015 10.1016/j.apnum.2011.01.008 10.1093/imanum/drz021 10.1002/nme.941 10.1007/s00466-007-0184-8 10.1051/m2an/2018038 10.1088/0965-0393/17/4/043001 10.1016/S0045-7825(96)01087-0 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M 10.1002/gamm.201490018 10.1016/j.cma.2003.12.041 10.1007/BF02995904 10.1007/s00211-018-0989-8 10.1137/12088344X 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1002/nme.1167 10.1016/j.cma.2019.112803 10.1016/j.cma.2019.03.016 10.1016/S0013-7944(01)00128-X 10.1002/nme.761 10.1090/S0025-5718-2014-02913-X 10.1002/nme.1788 10.1007/s00466-007-0196-4 10.1007/s10659-005-4408-x |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Copyright Elsevier BV Jan 1, 2022 |
| Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright Elsevier BV Jan 1, 2022 |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2021.114234 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2021_114234 S0045782521005600 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c368t-c8467eedb242d4c99b4e7bccb466057a1d5f8b80666900809eb789af4399790b3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720450400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Fri Jul 25 04:02:21 EDT 2025 Tue Nov 18 22:17:53 EST 2025 Sat Nov 29 07:28:56 EST 2025 Fri Feb 23 02:42:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cut finite element method Large deformation mechanics Unbiased contact formulation Fictitious domain method Sharp interface method Contact mechanics |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-c8467eedb242d4c99b4e7bccb466057a1d5f8b80666900809eb789af4399790b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5826-8320 0000-0002-7492-0163 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cma.2021.114234 |
| PQID | 2622805592 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2622805592 crossref_citationtrail_10_1016_j_cma_2021_114234 crossref_primary_10_1016_j_cma_2021_114234 elsevier_sciencedirect_doi_10_1016_j_cma_2021_114234 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Burman, Hansbo (b37) 2017 van den Bosch, Schreurs, Geers (b38) 2008; 42 Hansbo, Larson, Larsson (b29) 2017 Mlika, Renard, Chouly (b33) 2017; 325 Melenk, Babuska (b17) 1996; 139 Rabczuk, Song, Zhuang, Anitescu (b18) 2019 Larson, Zahedi (b9) 2020; 40 Belytschko, Black (b14) 1999; 45 Sukumar, Chopp, Moës, Belytschko (b21) 2001; 190 Hansbo, Larson, Zahedi (b10) 2016; 307 Krongauz, Belytschko (b19) 1998; 41 Ji, Dolbow (b22) 2004; 61 Poluektov, Figiel (b31) 2019; 63 Wells, Sluys (b25) 2001; 50 Hansbo (b30) 2005; 28 Belytschko, Moës, Usui, Parimi (b20) 2001; 50 Claus, Kerfriden (b39) 2018; 113 Moës, Belytschko (b26) 2002; 69 Nitsche (b4) 1971; 36 Hansbo, Hansbo (b3) 2002; 191 Kothari, Krause (b41) 2021 Hansbo, Hansbo (b24) 2004; 193 Wriggers, Zavarise (b32) 2008; 41 Burman, Elfverson, Hansbo, Larson, Larsson (b13) 2019; 350 Burman, Hansbo, Larson, Zahedi (b7) 2019; 141 Zahedi (b11) 2017 Kothari, Krause (b40) 2020 Chouly, Hild (b34) 2013; 51 Seitz, Wall, Popp (b36) 2019; 63 Belytschko, Gracie, Ventura (b16) 2009; 17 Burman, Hansbo, Larson (b5) 2018; 87 Mourad, Dolbow, Harari (b23) 2007; 69 Burman, Hansbo, Larson, Massing (b8) 2020; 362 Horgan, Saccomandi (b43) 2004; 77 Moës, Dolbow, Belytschko (b15) 1999; 46 Belytschko, Chen, Xu, Zi (b27) 2003; 58 Burman, Hansbo (b1) 2012; 62 Burman, Elfverson, Hansbo, Larson, Larsson (b12) 2018; 328 Burman, Hansbo, Larson, Massing (b6) 2018; 52 Mariani, Perego (b28) 2003; 58 Burman, Claus, Hansbo, Larson, Massing (b2) 2015; 104 Chouly, Hild, Renard (b35) 2015; 84 Ogden (b42) 1972; 328 Moës (10.1016/j.cma.2021.114234_b15) 1999; 46 Mlika (10.1016/j.cma.2021.114234_b33) 2017; 325 Claus (10.1016/j.cma.2021.114234_b39) 2018; 113 Burman (10.1016/j.cma.2021.114234_b12) 2018; 328 Hansbo (10.1016/j.cma.2021.114234_b30) 2005; 28 Ji (10.1016/j.cma.2021.114234_b22) 2004; 61 Mourad (10.1016/j.cma.2021.114234_b23) 2007; 69 Poluektov (10.1016/j.cma.2021.114234_b31) 2019; 63 Ogden (10.1016/j.cma.2021.114234_b42) 1972; 328 Larson (10.1016/j.cma.2021.114234_b9) 2020; 40 Belytschko (10.1016/j.cma.2021.114234_b16) 2009; 17 Burman (10.1016/j.cma.2021.114234_b2) 2015; 104 Krongauz (10.1016/j.cma.2021.114234_b19) 1998; 41 Mariani (10.1016/j.cma.2021.114234_b28) 2003; 58 Burman (10.1016/j.cma.2021.114234_b7) 2019; 141 Chouly (10.1016/j.cma.2021.114234_b34) 2013; 51 Zahedi (10.1016/j.cma.2021.114234_b11) 2017 Hansbo (10.1016/j.cma.2021.114234_b24) 2004; 193 Burman (10.1016/j.cma.2021.114234_b1) 2012; 62 van den Bosch (10.1016/j.cma.2021.114234_b38) 2008; 42 Moës (10.1016/j.cma.2021.114234_b26) 2002; 69 Hansbo (10.1016/j.cma.2021.114234_b29) 2017 Horgan (10.1016/j.cma.2021.114234_b43) 2004; 77 Seitz (10.1016/j.cma.2021.114234_b36) 2019; 63 Hansbo (10.1016/j.cma.2021.114234_b3) 2002; 191 Burman (10.1016/j.cma.2021.114234_b5) 2018; 87 Burman (10.1016/j.cma.2021.114234_b6) 2018; 52 Chouly (10.1016/j.cma.2021.114234_b35) 2015; 84 Kothari (10.1016/j.cma.2021.114234_b41) 2021 Belytschko (10.1016/j.cma.2021.114234_b27) 2003; 58 Hansbo (10.1016/j.cma.2021.114234_b10) 2016; 307 Burman (10.1016/j.cma.2021.114234_b8) 2020; 362 Belytschko (10.1016/j.cma.2021.114234_b14) 1999; 45 Burman (10.1016/j.cma.2021.114234_b13) 2019; 350 Wells (10.1016/j.cma.2021.114234_b25) 2001; 50 Melenk (10.1016/j.cma.2021.114234_b17) 1996; 139 Belytschko (10.1016/j.cma.2021.114234_b20) 2001; 50 Burman (10.1016/j.cma.2021.114234_b37) 2017 Sukumar (10.1016/j.cma.2021.114234_b21) 2001; 190 Nitsche (10.1016/j.cma.2021.114234_b4) 1971; 36 Wriggers (10.1016/j.cma.2021.114234_b32) 2008; 41 Kothari (10.1016/j.cma.2021.114234_b40) 2020 Rabczuk (10.1016/j.cma.2021.114234_b18) 2019 |
| References_xml | – start-page: 1 year: 2017 end-page: 24 ident: b37 article-title: Deriving robust unfitted finite element methods from augmented Lagrangian formulations publication-title: Geometrically Unfitted Finite Element Methods and Applications – volume: 193 start-page: 3523 year: 2004 end-page: 3540 ident: b24 article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 325 start-page: 265 year: 2017 end-page: 288 ident: b33 article-title: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 84 start-page: 1089 year: 2015 end-page: 1112 ident: b35 article-title: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: Theory and numerical experiments publication-title: Math. Comp. – volume: 40 start-page: 1702 year: 2020 end-page: 1745 ident: b9 article-title: Stabilization of high order cut finite element methods on surfaces publication-title: IMA J. Numer. Anal. – volume: 307 start-page: 96 year: 2016 end-page: 116 ident: b10 article-title: A cut finite element method for coupled bulk-surface problems on time-dependent domains publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 1 year: 2020 end-page: 12 ident: b40 article-title: Multigrid and saddle-point preconditioners for unfitted finite element modelling of inclusions publication-title: WCCM-ECCOMAS2020 – year: 2021 ident: b41 article-title: A generalized multigrid method for solving contact problems in Lagrange multiplier based unfitted finite element method – volume: 42 start-page: 171 year: 2008 end-page: 180 ident: b38 article-title: On the development of a 3D cohesive zone element in the presence of large deformations publication-title: Comput. Mech. – start-page: 25 year: 2017 end-page: 63 ident: b29 article-title: Cut finite element methods for linear elasticity problems publication-title: Geometrically Unfitted Finite Element Methods and Applications – volume: 46 start-page: 131 year: 1999 end-page: 150 ident: b15 article-title: A finite element method for crack growth without remeshing publication-title: Internat. J. Numer. Methods Engrg. – volume: 58 start-page: 103 year: 2003 end-page: 126 ident: b28 article-title: Extended finite element method for quasi-brittle fracture publication-title: Internat. J. Numer. Methods Engrg. – volume: 141 start-page: 103 year: 2019 end-page: 139 ident: b7 article-title: Stabilized CutFEM for the convection problem on surfaces publication-title: Numer. Math. – volume: 190 start-page: 6183 year: 2001 end-page: 6200 ident: b21 article-title: Modeling holes and inclusions by level sets in the extended finite-element method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 63 start-page: 885 year: 2019 end-page: 911 ident: b31 article-title: A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach publication-title: Comput. Mech. – volume: 113 start-page: 938 year: 2018 end-page: 966 ident: b39 article-title: A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems publication-title: Internat. J. Numer. Methods Engrg. – volume: 350 start-page: 462 year: 2019 end-page: 479 ident: b13 article-title: Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 139 start-page: 289 year: 1996 end-page: 314 ident: b17 article-title: The partition of unity finite element method: Basic theory and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 61 start-page: 2508 year: 2004 end-page: 2535 ident: b22 article-title: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method publication-title: Internat. J. Numer. Methods Engrg. – volume: 50 start-page: 993 year: 2001 end-page: 1013 ident: b20 article-title: Arbitrary discontinuities in finite elements publication-title: Internat. J. Numer. Methods Engrg. – volume: 36 start-page: 9 year: 1971 end-page: 15 ident: b4 article-title: Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind publication-title: Abh. Math. Semin. Univ. Hambg. – volume: 45 start-page: 601 year: 1999 end-page: 620 ident: b14 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Internat. J. Numer. Methods Engrg. – volume: 191 start-page: 5537 year: 2002 end-page: 5552 ident: b3 article-title: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 77 start-page: 123 year: 2004 end-page: 138 ident: b43 article-title: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility publication-title: J. Elasticity – volume: 41 start-page: 407 year: 2008 end-page: 420 ident: b32 article-title: A formulation for frictionless contact problems using a weak form introduced by Nitsche publication-title: Comput. Mech. – volume: 50 start-page: 2667 year: 2001 end-page: 2682 ident: b25 article-title: A new method for modelling cohesive cracks using finite elements publication-title: Internat. J. Numer. Methods Engrg. – volume: 63 start-page: 1091 year: 2019 end-page: 1110 ident: b36 article-title: Nitsche’s method for finite deformation thermomechanical contact problems publication-title: Comput. Mech. – start-page: 281 year: 2017 end-page: 306 ident: b11 article-title: A space-time cut finite element method with quadrature in time publication-title: Geometrically Unfitted Finite Element Methods and Applications – volume: 41 start-page: 1215 year: 1998 end-page: 1233 ident: b19 article-title: EFG approximation with discontinuous derivatives publication-title: Internat. J. Numer. Methods Engrg. – volume: 87 start-page: 633 year: 2018 end-page: 657 ident: b5 article-title: A cut finite element method with boundary value correction publication-title: Math. Comp. – volume: 328 start-page: 242 year: 2018 end-page: 261 ident: b12 article-title: Shape optimization using the cut finite element method publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2019 ident: b18 article-title: Extended Finite Element and Meshfree Methods – volume: 51 start-page: 1295 year: 2013 end-page: 1307 ident: b34 article-title: A Nitsche-based method for unilateral contact problems: Numerical analysis publication-title: SIAM J. Numer. Anal. – volume: 58 start-page: 1873 year: 2003 end-page: 1905 ident: b27 article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment publication-title: Internat. J. Numer. Methods Engrg. – volume: 52 start-page: 2247 year: 2018 end-page: 2282 ident: b6 article-title: Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions publication-title: ESAIM Math. Model. Numer. Anal. – volume: 104 start-page: 472 year: 2015 end-page: 501 ident: b2 article-title: CutFEM: Discretizing geometry and partial differential equations publication-title: Internat. J. Numer. Methods Engrg. – volume: 69 start-page: 772 year: 2007 end-page: 793 ident: b23 article-title: A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces publication-title: Internat. J. Numer. Methods Engrg. – volume: 328 start-page: 567 year: 1972 end-page: 583 ident: b42 article-title: Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids publication-title: Proc. R. Soc. A – volume: 17 year: 2009 ident: b16 article-title: A review of extended/generalized finite element methods for material modeling publication-title: Modelling Simulation Mater. Sci. Eng. – volume: 362 year: 2020 ident: b8 article-title: A stable cut finite element method for partial differential equations on surfaces: The Helmholtz-Beltrami operator publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 62 start-page: 328 year: 2012 end-page: 341 ident: b1 article-title: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method publication-title: Appl. Numer. Math. – volume: 69 start-page: 813 year: 2002 end-page: 833 ident: b26 article-title: Extended finite element method for cohesive crack growth publication-title: Eng. Fract. Mech. – volume: 28 start-page: 183 year: 2005 end-page: 206 ident: b30 article-title: Nitsche’s method for interface problems in computational mechanics publication-title: GAMM-Mitt. – volume: 104 start-page: 472 issue: 7 year: 2015 ident: 10.1016/j.cma.2021.114234_b2 article-title: CutFEM: Discretizing geometry and partial differential equations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4823 – volume: 41 start-page: 1215 issue: 7 year: 1998 ident: 10.1016/j.cma.2021.114234_b19 article-title: EFG approximation with discontinuous derivatives publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-# – volume: 50 start-page: 2667 issue: 12 year: 2001 ident: 10.1016/j.cma.2021.114234_b25 article-title: A new method for modelling cohesive cracks using finite elements publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.143 – volume: 63 start-page: 885 issue: 5 year: 2019 ident: 10.1016/j.cma.2021.114234_b31 article-title: A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach publication-title: Comput. Mech. doi: 10.1007/s00466-018-1628-z – volume: 63 start-page: 1091 issue: 6 year: 2019 ident: 10.1016/j.cma.2021.114234_b36 article-title: Nitsche’s method for finite deformation thermomechanical contact problems publication-title: Comput. Mech. doi: 10.1007/s00466-018-1638-x – start-page: 25 year: 2017 ident: 10.1016/j.cma.2021.114234_b29 article-title: Cut finite element methods for linear elasticity problems – volume: 328 start-page: 242 year: 2018 ident: 10.1016/j.cma.2021.114234_b12 article-title: Shape optimization using the cut finite element method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.09.005 – volume: 113 start-page: 938 issue: 6 year: 2018 ident: 10.1016/j.cma.2021.114234_b39 article-title: A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.5694 – volume: 307 start-page: 96 year: 2016 ident: 10.1016/j.cma.2021.114234_b10 article-title: A cut finite element method for coupled bulk-surface problems on time-dependent domains publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.04.012 – volume: 87 start-page: 633 issue: 310 year: 2018 ident: 10.1016/j.cma.2021.114234_b5 article-title: A cut finite element method with boundary value correction publication-title: Math. Comp. doi: 10.1090/mcom/3240 – volume: 190 start-page: 6183 issue: 46–47 year: 2001 ident: 10.1016/j.cma.2021.114234_b21 article-title: Modeling holes and inclusions by level sets in the extended finite-element method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00215-8 – volume: 46 start-page: 131 issue: 1 year: 1999 ident: 10.1016/j.cma.2021.114234_b15 article-title: A finite element method for crack growth without remeshing publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – year: 2019 ident: 10.1016/j.cma.2021.114234_b18 – volume: 191 start-page: 5537 year: 2002 ident: 10.1016/j.cma.2021.114234_b3 article-title: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00524-8 – volume: 325 start-page: 265 year: 2017 ident: 10.1016/j.cma.2021.114234_b33 article-title: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.07.015 – volume: 62 start-page: 328 issue: 4 year: 2012 ident: 10.1016/j.cma.2021.114234_b1 article-title: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2011.01.008 – start-page: 281 year: 2017 ident: 10.1016/j.cma.2021.114234_b11 article-title: A space-time cut finite element method with quadrature in time – volume: 40 start-page: 1702 issue: 3 year: 2020 ident: 10.1016/j.cma.2021.114234_b9 article-title: Stabilization of high order cut finite element methods on surfaces publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drz021 – volume: 58 start-page: 1873 issue: 12 year: 2003 ident: 10.1016/j.cma.2021.114234_b27 article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.941 – volume: 42 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.cma.2021.114234_b38 article-title: On the development of a 3D cohesive zone element in the presence of large deformations publication-title: Comput. Mech. doi: 10.1007/s00466-007-0184-8 – volume: 52 start-page: 2247 issue: 6 year: 2018 ident: 10.1016/j.cma.2021.114234_b6 article-title: Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2018038 – volume: 17 issue: 4 year: 2009 ident: 10.1016/j.cma.2021.114234_b16 article-title: A review of extended/generalized finite element methods for material modeling publication-title: Modelling Simulation Mater. Sci. Eng. doi: 10.1088/0965-0393/17/4/043001 – volume: 139 start-page: 289 issue: 1–4 year: 1996 ident: 10.1016/j.cma.2021.114234_b17 article-title: The partition of unity finite element method: Basic theory and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(96)01087-0 – start-page: 1 year: 2020 ident: 10.1016/j.cma.2021.114234_b40 article-title: Multigrid and saddle-point preconditioners for unfitted finite element modelling of inclusions – volume: 50 start-page: 993 issue: 4 year: 2001 ident: 10.1016/j.cma.2021.114234_b20 article-title: Arbitrary discontinuities in finite elements publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M – volume: 28 start-page: 183 issue: 2 year: 2005 ident: 10.1016/j.cma.2021.114234_b30 article-title: Nitsche’s method for interface problems in computational mechanics publication-title: GAMM-Mitt. doi: 10.1002/gamm.201490018 – start-page: 1 year: 2017 ident: 10.1016/j.cma.2021.114234_b37 article-title: Deriving robust unfitted finite element methods from augmented Lagrangian formulations – volume: 193 start-page: 3523 issue: 33–35 year: 2004 ident: 10.1016/j.cma.2021.114234_b24 article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.041 – volume: 36 start-page: 9 issue: 1 year: 1971 ident: 10.1016/j.cma.2021.114234_b4 article-title: Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind publication-title: Abh. Math. Semin. Univ. Hambg. doi: 10.1007/BF02995904 – volume: 141 start-page: 103 issue: 1 year: 2019 ident: 10.1016/j.cma.2021.114234_b7 article-title: Stabilized CutFEM for the convection problem on surfaces publication-title: Numer. Math. doi: 10.1007/s00211-018-0989-8 – volume: 51 start-page: 1295 issue: 2 year: 2013 ident: 10.1016/j.cma.2021.114234_b34 article-title: A Nitsche-based method for unilateral contact problems: Numerical analysis publication-title: SIAM J. Numer. Anal. doi: 10.1137/12088344X – year: 2021 ident: 10.1016/j.cma.2021.114234_b41 – volume: 328 start-page: 567 issue: 1575 year: 1972 ident: 10.1016/j.cma.2021.114234_b42 article-title: Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids publication-title: Proc. R. Soc. A – volume: 45 start-page: 601 issue: 5 year: 1999 ident: 10.1016/j.cma.2021.114234_b14 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – volume: 61 start-page: 2508 issue: 14 year: 2004 ident: 10.1016/j.cma.2021.114234_b22 article-title: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1167 – volume: 362 year: 2020 ident: 10.1016/j.cma.2021.114234_b8 article-title: A stable cut finite element method for partial differential equations on surfaces: The Helmholtz-Beltrami operator publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112803 – volume: 350 start-page: 462 year: 2019 ident: 10.1016/j.cma.2021.114234_b13 article-title: Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.03.016 – volume: 69 start-page: 813 issue: 7 year: 2002 ident: 10.1016/j.cma.2021.114234_b26 article-title: Extended finite element method for cohesive crack growth publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(01)00128-X – volume: 58 start-page: 103 issue: 1 year: 2003 ident: 10.1016/j.cma.2021.114234_b28 article-title: Extended finite element method for quasi-brittle fracture publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.761 – volume: 84 start-page: 1089 issue: 293 year: 2015 ident: 10.1016/j.cma.2021.114234_b35 article-title: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: Theory and numerical experiments publication-title: Math. Comp. doi: 10.1090/S0025-5718-2014-02913-X – volume: 69 start-page: 772 issue: 4 year: 2007 ident: 10.1016/j.cma.2021.114234_b23 article-title: A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1788 – volume: 41 start-page: 407 issue: 3 year: 2008 ident: 10.1016/j.cma.2021.114234_b32 article-title: A formulation for frictionless contact problems using a weak form introduced by Nitsche publication-title: Comput. Mech. doi: 10.1007/s00466-007-0196-4 – volume: 77 start-page: 123 issue: 2 year: 2004 ident: 10.1016/j.cma.2021.114234_b43 article-title: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility publication-title: J. Elasticity doi: 10.1007/s10659-005-4408-x |
| SSID | ssj0000812 |
| Score | 2.4729714 |
| Snippet | Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114234 |
| SubjectTerms | Chemical reactions Constitutive relationships Contact mechanics Cut finite element method Deformation Fictitious domain method Finite element method Large deformation mechanics Mechanics Patch tests Phase boundaries Separation Sharp interface method Solid mechanics Unbiased contact formulation |
| Title | A cut finite-element method for fracture and contact problems in large-deformation solid mechanics |
| URI | https://dx.doi.org/10.1016/j.cma.2021.114234 https://www.proquest.com/docview/2622805592 |
| Volume | 388 |
| WOSCitedRecordID | wos000720450400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Freedom Collection) customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHHgVES0E-wIXKKHGcOD6uqiLgUCFRpL1ZtuNFaau0anaril_fmdjOtruiAiQu0Spa29HMl8k39jwIeVcU8I20TjBpi4yJ0lhmfF2y3FXG-AwP1kKzCXl4WE-n6lsMHeqHdgKy6-qrK3X-X1UN90DZmDr7F-oeJ4Ub8BuUDldQO1z_SPGTPbfAektIJpkP0eGxUfQQUzjDvKh0bICR6pglGfvKDMGxpxgczho_5jXuwQO3DcyBWcIpOj5VN4hdIeIKwwQmMttxwLCUX1Y-HO0xCMKfzM8uVwP4EVDtzzZEELzfL4HvLk5M_-vmHgXnK3sU68kzwRiLkgFBCYfaPtjfWirG81DwJRnoIjT-WzP2Yd_h-KMbCkjxHOse87g1eruG9ndcC5cCBzdDjnefbHJZKjCDm5MvB9Ovy493nYcC8_HZ0kH4EBK4stDvqMzKR31gKkdPyePoYtBJgMYzcs93W-RJdDdoNOb9Fnl0oxblc2InFHBDb-OGBq1SgAJNuKGgTBpxQxNuaNvRNdzQATd0hMEL8uPTwdH-ZxYbcDBXVPWcOSSnQKIs8LhGOKWs8NI6Z0UFXrA0eVPOalujC6zQ9VDeylqZGfq4UmW2eEk2urPOvyK0sspaVYLYTCWkNcoCE7WC-5lrHJDQbZIlWWoXq9Njk5RTncIQjzWIX6P4dRD_NvkwDjkPpVnu-rNICtKRWwbOqAFNdw3bTcrU8R3vNa-whhS44nzn32Z9TR4u35JdsjG_WPg35IG7nLf9xdsIyWvg8ag7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cut+finite-element+method+for+fracture+and+contact+problems+in+large-deformation+solid+mechanics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Poluektov%2C+Michael&rft.au=Figiel%2C+%C5%81ukasz&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=388&rft_id=info:doi/10.1016%2Fj.cma.2021.114234&rft.externalDocID=S0045782521005600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |