A cut finite-element method for fracture and contact problems in large-deformation solid mechanics

Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phas...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 388; s. 114234
Hlavní autori: Poluektov, Michael, Figiel, Łukasz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.01.2022
Elsevier BV
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of the mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics. Initially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been extended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and on localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further extended to more complex physics of the interfaces — fracture, i.e. separation of the interface into two surfaces in the current configuration, and contact between the separated surfaces. Several cases are considered — fracture with linear and non-linear traction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach as a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated in an unbiased way — the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The weak forms are derived from the total energy functional. The proposed method has been tested computationally for the case of linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal rates. •CutFEM method for interfaces in large-deformation solid mechanics is proposed.•Various interfaces are considered: phase boundary, fracture and contact.•The contact problem is treated in an unbiased way.•The proposed generalisations contain the linear elasticity as a particular case.
AbstractList Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of the mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics. Initially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been extended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and on localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further extended to more complex physics of the interfaces — fracture, i.e. separation of the interface into two surfaces in the current configuration, and contact between the separated surfaces. Several cases are considered — fracture with linear and non-linear traction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach as a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated in an unbiased way — the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The weak forms are derived from the total energy functional. The proposed method has been tested computationally for the case of linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal rates. •CutFEM method for interfaces in large-deformation solid mechanics is proposed.•Various interfaces are considered: phase boundary, fracture and contact.•The contact problem is treated in an unbiased way.•The proposed generalisations contain the linear elasticity as a particular case.
Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially when non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of the mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics. Initially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been extended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and on localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further extended to more complex physics of the interfaces - fracture, i.e. separation of the interface into two surfaces in the current configuration, and contact between the separated surfaces. Several cases are considered - fracture with linear and non-linear traction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach as a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated in an unbiased way - the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The weak forms are derived from the total energy functional. The proposed method has been tested computationally for the case of linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal rates.
ArticleNumber 114234
Author Poluektov, Michael
Figiel, Łukasz
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-7492-0163
  surname: Poluektov
  fullname: Poluektov, Michael
  email: m.poluektov@warwick.ac.uk
  organization: International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, UK
– sequence: 2
  givenname: Łukasz
  orcidid: 0000-0002-5826-8320
  surname: Figiel
  fullname: Figiel, Łukasz
  organization: International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, UK
BookMark eNp9kE9rGzEQxUVwIY7bD9CboOd1Ja1WK9FTCE1aMOSSnoX-zNYyu5IjyYV--8hxTz14LsPA-828eXdoFVMEhD5TsqWEiq-HrVvMlhFGt5Ry1vMbtKZyVB2jvVyhNSF86EbJhlt0V8qBtJKUrZG9x-5U8RRiqNDBDAvEiheo--TxlDKesnH1lAGb6LFLsbYRH3OyTVpwiHg2-Td0Hpp4MTWkiEuag2873N7E4MpH9GEyc4FP__oG_Xr8_vLwo9s9P_18uN91rheydk5yMQJ4yzjz3CllOYzWOcuFIMNoqB8maSURQqhmniiwo1Rm4r1SoyK236Avl73N3esJStWHdMqxndRMMCbJMCjWVONF5XIqJcOkXajvvms2YdaU6HOg-qBboPocqL4E2kj6H3nMYTH571Xm24WB9vifAFkXFyA68CGDq9qncIV-A40zj-Q
CitedBy_id crossref_primary_10_1007_s10915_025_02815_2
crossref_primary_10_1016_j_ijmecsci_2024_109313
crossref_primary_10_1007_s00466_024_02464_6
crossref_primary_10_1016_j_cma_2022_114630
crossref_primary_10_1016_j_cma_2025_118067
crossref_primary_10_1016_j_camwa_2024_10_022
crossref_primary_10_1016_j_conbuildmat_2022_128890
crossref_primary_10_1007_s00466_024_02492_2
crossref_primary_10_1038_s43246_023_00368_1
crossref_primary_10_1016_j_ijsolstr_2023_112386
crossref_primary_10_1016_j_compstruc_2025_107685
crossref_primary_10_1016_j_cma_2023_116713
crossref_primary_10_3390_applmech3020031
crossref_primary_10_1016_j_cma_2023_116129
Cites_doi 10.1002/nme.4823
10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
10.1002/nme.143
10.1007/s00466-018-1628-z
10.1007/s00466-018-1638-x
10.1016/j.cma.2017.09.005
10.1002/nme.5694
10.1016/j.cma.2016.04.012
10.1090/mcom/3240
10.1016/S0045-7825(01)00215-8
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1016/S0045-7825(02)00524-8
10.1016/j.cma.2017.07.015
10.1016/j.apnum.2011.01.008
10.1093/imanum/drz021
10.1002/nme.941
10.1007/s00466-007-0184-8
10.1051/m2an/2018038
10.1088/0965-0393/17/4/043001
10.1016/S0045-7825(96)01087-0
10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
10.1002/gamm.201490018
10.1016/j.cma.2003.12.041
10.1007/BF02995904
10.1007/s00211-018-0989-8
10.1137/12088344X
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1002/nme.1167
10.1016/j.cma.2019.112803
10.1016/j.cma.2019.03.016
10.1016/S0013-7944(01)00128-X
10.1002/nme.761
10.1090/S0025-5718-2014-02913-X
10.1002/nme.1788
10.1007/s00466-007-0196-4
10.1007/s10659-005-4408-x
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright Elsevier BV Jan 1, 2022
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright Elsevier BV Jan 1, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.114234
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_114234
S0045782521005600
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c368t-c8467eedb242d4c99b4e7bccb466057a1d5f8b80666900809eb789af4399790b3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720450400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Fri Jul 25 04:02:21 EDT 2025
Tue Nov 18 22:17:53 EST 2025
Sat Nov 29 07:28:56 EST 2025
Fri Feb 23 02:42:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cut finite element method
Large deformation mechanics
Unbiased contact formulation
Fictitious domain method
Sharp interface method
Contact mechanics
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-c8467eedb242d4c99b4e7bccb466057a1d5f8b80666900809eb789af4399790b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5826-8320
0000-0002-7492-0163
OpenAccessLink https://dx.doi.org/10.1016/j.cma.2021.114234
PQID 2622805592
PQPubID 2045269
ParticipantIDs proquest_journals_2622805592
crossref_citationtrail_10_1016_j_cma_2021_114234
crossref_primary_10_1016_j_cma_2021_114234
elsevier_sciencedirect_doi_10_1016_j_cma_2021_114234
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Burman, Hansbo (b37) 2017
van den Bosch, Schreurs, Geers (b38) 2008; 42
Hansbo, Larson, Larsson (b29) 2017
Mlika, Renard, Chouly (b33) 2017; 325
Melenk, Babuska (b17) 1996; 139
Rabczuk, Song, Zhuang, Anitescu (b18) 2019
Larson, Zahedi (b9) 2020; 40
Belytschko, Black (b14) 1999; 45
Sukumar, Chopp, Moës, Belytschko (b21) 2001; 190
Hansbo, Larson, Zahedi (b10) 2016; 307
Krongauz, Belytschko (b19) 1998; 41
Ji, Dolbow (b22) 2004; 61
Poluektov, Figiel (b31) 2019; 63
Wells, Sluys (b25) 2001; 50
Hansbo (b30) 2005; 28
Belytschko, Moës, Usui, Parimi (b20) 2001; 50
Claus, Kerfriden (b39) 2018; 113
Moës, Belytschko (b26) 2002; 69
Nitsche (b4) 1971; 36
Hansbo, Hansbo (b3) 2002; 191
Kothari, Krause (b41) 2021
Hansbo, Hansbo (b24) 2004; 193
Wriggers, Zavarise (b32) 2008; 41
Burman, Elfverson, Hansbo, Larson, Larsson (b13) 2019; 350
Burman, Hansbo, Larson, Zahedi (b7) 2019; 141
Zahedi (b11) 2017
Kothari, Krause (b40) 2020
Chouly, Hild (b34) 2013; 51
Seitz, Wall, Popp (b36) 2019; 63
Belytschko, Gracie, Ventura (b16) 2009; 17
Burman, Hansbo, Larson (b5) 2018; 87
Mourad, Dolbow, Harari (b23) 2007; 69
Burman, Hansbo, Larson, Massing (b8) 2020; 362
Horgan, Saccomandi (b43) 2004; 77
Moës, Dolbow, Belytschko (b15) 1999; 46
Belytschko, Chen, Xu, Zi (b27) 2003; 58
Burman, Hansbo (b1) 2012; 62
Burman, Elfverson, Hansbo, Larson, Larsson (b12) 2018; 328
Burman, Hansbo, Larson, Massing (b6) 2018; 52
Mariani, Perego (b28) 2003; 58
Burman, Claus, Hansbo, Larson, Massing (b2) 2015; 104
Chouly, Hild, Renard (b35) 2015; 84
Ogden (b42) 1972; 328
Moës (10.1016/j.cma.2021.114234_b15) 1999; 46
Mlika (10.1016/j.cma.2021.114234_b33) 2017; 325
Claus (10.1016/j.cma.2021.114234_b39) 2018; 113
Burman (10.1016/j.cma.2021.114234_b12) 2018; 328
Hansbo (10.1016/j.cma.2021.114234_b30) 2005; 28
Ji (10.1016/j.cma.2021.114234_b22) 2004; 61
Mourad (10.1016/j.cma.2021.114234_b23) 2007; 69
Poluektov (10.1016/j.cma.2021.114234_b31) 2019; 63
Ogden (10.1016/j.cma.2021.114234_b42) 1972; 328
Larson (10.1016/j.cma.2021.114234_b9) 2020; 40
Belytschko (10.1016/j.cma.2021.114234_b16) 2009; 17
Burman (10.1016/j.cma.2021.114234_b2) 2015; 104
Krongauz (10.1016/j.cma.2021.114234_b19) 1998; 41
Mariani (10.1016/j.cma.2021.114234_b28) 2003; 58
Burman (10.1016/j.cma.2021.114234_b7) 2019; 141
Chouly (10.1016/j.cma.2021.114234_b34) 2013; 51
Zahedi (10.1016/j.cma.2021.114234_b11) 2017
Hansbo (10.1016/j.cma.2021.114234_b24) 2004; 193
Burman (10.1016/j.cma.2021.114234_b1) 2012; 62
van den Bosch (10.1016/j.cma.2021.114234_b38) 2008; 42
Moës (10.1016/j.cma.2021.114234_b26) 2002; 69
Hansbo (10.1016/j.cma.2021.114234_b29) 2017
Horgan (10.1016/j.cma.2021.114234_b43) 2004; 77
Seitz (10.1016/j.cma.2021.114234_b36) 2019; 63
Hansbo (10.1016/j.cma.2021.114234_b3) 2002; 191
Burman (10.1016/j.cma.2021.114234_b5) 2018; 87
Burman (10.1016/j.cma.2021.114234_b6) 2018; 52
Chouly (10.1016/j.cma.2021.114234_b35) 2015; 84
Kothari (10.1016/j.cma.2021.114234_b41) 2021
Belytschko (10.1016/j.cma.2021.114234_b27) 2003; 58
Hansbo (10.1016/j.cma.2021.114234_b10) 2016; 307
Burman (10.1016/j.cma.2021.114234_b8) 2020; 362
Belytschko (10.1016/j.cma.2021.114234_b14) 1999; 45
Burman (10.1016/j.cma.2021.114234_b13) 2019; 350
Wells (10.1016/j.cma.2021.114234_b25) 2001; 50
Melenk (10.1016/j.cma.2021.114234_b17) 1996; 139
Belytschko (10.1016/j.cma.2021.114234_b20) 2001; 50
Burman (10.1016/j.cma.2021.114234_b37) 2017
Sukumar (10.1016/j.cma.2021.114234_b21) 2001; 190
Nitsche (10.1016/j.cma.2021.114234_b4) 1971; 36
Wriggers (10.1016/j.cma.2021.114234_b32) 2008; 41
Kothari (10.1016/j.cma.2021.114234_b40) 2020
Rabczuk (10.1016/j.cma.2021.114234_b18) 2019
References_xml – start-page: 1
  year: 2017
  end-page: 24
  ident: b37
  article-title: Deriving robust unfitted finite element methods from augmented Lagrangian formulations
  publication-title: Geometrically Unfitted Finite Element Methods and Applications
– volume: 193
  start-page: 3523
  year: 2004
  end-page: 3540
  ident: b24
  article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 325
  start-page: 265
  year: 2017
  end-page: 288
  ident: b33
  article-title: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 84
  start-page: 1089
  year: 2015
  end-page: 1112
  ident: b35
  article-title: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: Theory and numerical experiments
  publication-title: Math. Comp.
– volume: 40
  start-page: 1702
  year: 2020
  end-page: 1745
  ident: b9
  article-title: Stabilization of high order cut finite element methods on surfaces
  publication-title: IMA J. Numer. Anal.
– volume: 307
  start-page: 96
  year: 2016
  end-page: 116
  ident: b10
  article-title: A cut finite element method for coupled bulk-surface problems on time-dependent domains
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 1
  year: 2020
  end-page: 12
  ident: b40
  article-title: Multigrid and saddle-point preconditioners for unfitted finite element modelling of inclusions
  publication-title: WCCM-ECCOMAS2020
– year: 2021
  ident: b41
  article-title: A generalized multigrid method for solving contact problems in Lagrange multiplier based unfitted finite element method
– volume: 42
  start-page: 171
  year: 2008
  end-page: 180
  ident: b38
  article-title: On the development of a 3D cohesive zone element in the presence of large deformations
  publication-title: Comput. Mech.
– start-page: 25
  year: 2017
  end-page: 63
  ident: b29
  article-title: Cut finite element methods for linear elasticity problems
  publication-title: Geometrically Unfitted Finite Element Methods and Applications
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: b15
  article-title: A finite element method for crack growth without remeshing
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 58
  start-page: 103
  year: 2003
  end-page: 126
  ident: b28
  article-title: Extended finite element method for quasi-brittle fracture
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 141
  start-page: 103
  year: 2019
  end-page: 139
  ident: b7
  article-title: Stabilized CutFEM for the convection problem on surfaces
  publication-title: Numer. Math.
– volume: 190
  start-page: 6183
  year: 2001
  end-page: 6200
  ident: b21
  article-title: Modeling holes and inclusions by level sets in the extended finite-element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 63
  start-page: 885
  year: 2019
  end-page: 911
  ident: b31
  article-title: A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach
  publication-title: Comput. Mech.
– volume: 113
  start-page: 938
  year: 2018
  end-page: 966
  ident: b39
  article-title: A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 350
  start-page: 462
  year: 2019
  end-page: 479
  ident: b13
  article-title: Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 139
  start-page: 289
  year: 1996
  end-page: 314
  ident: b17
  article-title: The partition of unity finite element method: Basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 61
  start-page: 2508
  year: 2004
  end-page: 2535
  ident: b22
  article-title: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 50
  start-page: 993
  year: 2001
  end-page: 1013
  ident: b20
  article-title: Arbitrary discontinuities in finite elements
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 36
  start-page: 9
  year: 1971
  end-page: 15
  ident: b4
  article-title: Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind
  publication-title: Abh. Math. Semin. Univ. Hambg.
– volume: 45
  start-page: 601
  year: 1999
  end-page: 620
  ident: b14
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 191
  start-page: 5537
  year: 2002
  end-page: 5552
  ident: b3
  article-title: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 77
  start-page: 123
  year: 2004
  end-page: 138
  ident: b43
  article-title: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility
  publication-title: J. Elasticity
– volume: 41
  start-page: 407
  year: 2008
  end-page: 420
  ident: b32
  article-title: A formulation for frictionless contact problems using a weak form introduced by Nitsche
  publication-title: Comput. Mech.
– volume: 50
  start-page: 2667
  year: 2001
  end-page: 2682
  ident: b25
  article-title: A new method for modelling cohesive cracks using finite elements
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 63
  start-page: 1091
  year: 2019
  end-page: 1110
  ident: b36
  article-title: Nitsche’s method for finite deformation thermomechanical contact problems
  publication-title: Comput. Mech.
– start-page: 281
  year: 2017
  end-page: 306
  ident: b11
  article-title: A space-time cut finite element method with quadrature in time
  publication-title: Geometrically Unfitted Finite Element Methods and Applications
– volume: 41
  start-page: 1215
  year: 1998
  end-page: 1233
  ident: b19
  article-title: EFG approximation with discontinuous derivatives
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 87
  start-page: 633
  year: 2018
  end-page: 657
  ident: b5
  article-title: A cut finite element method with boundary value correction
  publication-title: Math. Comp.
– volume: 328
  start-page: 242
  year: 2018
  end-page: 261
  ident: b12
  article-title: Shape optimization using the cut finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2019
  ident: b18
  article-title: Extended Finite Element and Meshfree Methods
– volume: 51
  start-page: 1295
  year: 2013
  end-page: 1307
  ident: b34
  article-title: A Nitsche-based method for unilateral contact problems: Numerical analysis
  publication-title: SIAM J. Numer. Anal.
– volume: 58
  start-page: 1873
  year: 2003
  end-page: 1905
  ident: b27
  article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 52
  start-page: 2247
  year: 2018
  end-page: 2282
  ident: b6
  article-title: Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 104
  start-page: 472
  year: 2015
  end-page: 501
  ident: b2
  article-title: CutFEM: Discretizing geometry and partial differential equations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 69
  start-page: 772
  year: 2007
  end-page: 793
  ident: b23
  article-title: A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 328
  start-page: 567
  year: 1972
  end-page: 583
  ident: b42
  article-title: Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids
  publication-title: Proc. R. Soc. A
– volume: 17
  year: 2009
  ident: b16
  article-title: A review of extended/generalized finite element methods for material modeling
  publication-title: Modelling Simulation Mater. Sci. Eng.
– volume: 362
  year: 2020
  ident: b8
  article-title: A stable cut finite element method for partial differential equations on surfaces: The Helmholtz-Beltrami operator
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 62
  start-page: 328
  year: 2012
  end-page: 341
  ident: b1
  article-title: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method
  publication-title: Appl. Numer. Math.
– volume: 69
  start-page: 813
  year: 2002
  end-page: 833
  ident: b26
  article-title: Extended finite element method for cohesive crack growth
  publication-title: Eng. Fract. Mech.
– volume: 28
  start-page: 183
  year: 2005
  end-page: 206
  ident: b30
  article-title: Nitsche’s method for interface problems in computational mechanics
  publication-title: GAMM-Mitt.
– volume: 104
  start-page: 472
  issue: 7
  year: 2015
  ident: 10.1016/j.cma.2021.114234_b2
  article-title: CutFEM: Discretizing geometry and partial differential equations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4823
– volume: 41
  start-page: 1215
  issue: 7
  year: 1998
  ident: 10.1016/j.cma.2021.114234_b19
  article-title: EFG approximation with discontinuous derivatives
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
– volume: 50
  start-page: 2667
  issue: 12
  year: 2001
  ident: 10.1016/j.cma.2021.114234_b25
  article-title: A new method for modelling cohesive cracks using finite elements
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.143
– volume: 63
  start-page: 885
  issue: 5
  year: 2019
  ident: 10.1016/j.cma.2021.114234_b31
  article-title: A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1628-z
– volume: 63
  start-page: 1091
  issue: 6
  year: 2019
  ident: 10.1016/j.cma.2021.114234_b36
  article-title: Nitsche’s method for finite deformation thermomechanical contact problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1638-x
– start-page: 25
  year: 2017
  ident: 10.1016/j.cma.2021.114234_b29
  article-title: Cut finite element methods for linear elasticity problems
– volume: 328
  start-page: 242
  year: 2018
  ident: 10.1016/j.cma.2021.114234_b12
  article-title: Shape optimization using the cut finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.09.005
– volume: 113
  start-page: 938
  issue: 6
  year: 2018
  ident: 10.1016/j.cma.2021.114234_b39
  article-title: A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.5694
– volume: 307
  start-page: 96
  year: 2016
  ident: 10.1016/j.cma.2021.114234_b10
  article-title: A cut finite element method for coupled bulk-surface problems on time-dependent domains
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.04.012
– volume: 87
  start-page: 633
  issue: 310
  year: 2018
  ident: 10.1016/j.cma.2021.114234_b5
  article-title: A cut finite element method with boundary value correction
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3240
– volume: 190
  start-page: 6183
  issue: 46–47
  year: 2001
  ident: 10.1016/j.cma.2021.114234_b21
  article-title: Modeling holes and inclusions by level sets in the extended finite-element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00215-8
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  ident: 10.1016/j.cma.2021.114234_b15
  article-title: A finite element method for crack growth without remeshing
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– year: 2019
  ident: 10.1016/j.cma.2021.114234_b18
– volume: 191
  start-page: 5537
  year: 2002
  ident: 10.1016/j.cma.2021.114234_b3
  article-title: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(02)00524-8
– volume: 325
  start-page: 265
  year: 2017
  ident: 10.1016/j.cma.2021.114234_b33
  article-title: An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.07.015
– volume: 62
  start-page: 328
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2021.114234_b1
  article-title: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2011.01.008
– start-page: 281
  year: 2017
  ident: 10.1016/j.cma.2021.114234_b11
  article-title: A space-time cut finite element method with quadrature in time
– volume: 40
  start-page: 1702
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.114234_b9
  article-title: Stabilization of high order cut finite element methods on surfaces
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz021
– volume: 58
  start-page: 1873
  issue: 12
  year: 2003
  ident: 10.1016/j.cma.2021.114234_b27
  article-title: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.941
– volume: 42
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.cma.2021.114234_b38
  article-title: On the development of a 3D cohesive zone element in the presence of large deformations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-007-0184-8
– volume: 52
  start-page: 2247
  issue: 6
  year: 2018
  ident: 10.1016/j.cma.2021.114234_b6
  article-title: Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2018038
– volume: 17
  issue: 4
  year: 2009
  ident: 10.1016/j.cma.2021.114234_b16
  article-title: A review of extended/generalized finite element methods for material modeling
  publication-title: Modelling Simulation Mater. Sci. Eng.
  doi: 10.1088/0965-0393/17/4/043001
– volume: 139
  start-page: 289
  issue: 1–4
  year: 1996
  ident: 10.1016/j.cma.2021.114234_b17
  article-title: The partition of unity finite element method: Basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01087-0
– start-page: 1
  year: 2020
  ident: 10.1016/j.cma.2021.114234_b40
  article-title: Multigrid and saddle-point preconditioners for unfitted finite element modelling of inclusions
– volume: 50
  start-page: 993
  issue: 4
  year: 2001
  ident: 10.1016/j.cma.2021.114234_b20
  article-title: Arbitrary discontinuities in finite elements
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
– volume: 28
  start-page: 183
  issue: 2
  year: 2005
  ident: 10.1016/j.cma.2021.114234_b30
  article-title: Nitsche’s method for interface problems in computational mechanics
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.201490018
– start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2021.114234_b37
  article-title: Deriving robust unfitted finite element methods from augmented Lagrangian formulations
– volume: 193
  start-page: 3523
  issue: 33–35
  year: 2004
  ident: 10.1016/j.cma.2021.114234_b24
  article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.041
– volume: 36
  start-page: 9
  issue: 1
  year: 1971
  ident: 10.1016/j.cma.2021.114234_b4
  article-title: Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind
  publication-title: Abh. Math. Semin. Univ. Hambg.
  doi: 10.1007/BF02995904
– volume: 141
  start-page: 103
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2021.114234_b7
  article-title: Stabilized CutFEM for the convection problem on surfaces
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0989-8
– volume: 51
  start-page: 1295
  issue: 2
  year: 2013
  ident: 10.1016/j.cma.2021.114234_b34
  article-title: A Nitsche-based method for unilateral contact problems: Numerical analysis
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/12088344X
– year: 2021
  ident: 10.1016/j.cma.2021.114234_b41
– volume: 328
  start-page: 567
  issue: 1575
  year: 1972
  ident: 10.1016/j.cma.2021.114234_b42
  article-title: Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids
  publication-title: Proc. R. Soc. A
– volume: 45
  start-page: 601
  issue: 5
  year: 1999
  ident: 10.1016/j.cma.2021.114234_b14
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume: 61
  start-page: 2508
  issue: 14
  year: 2004
  ident: 10.1016/j.cma.2021.114234_b22
  article-title: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1167
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2021.114234_b8
  article-title: A stable cut finite element method for partial differential equations on surfaces: The Helmholtz-Beltrami operator
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112803
– volume: 350
  start-page: 462
  year: 2019
  ident: 10.1016/j.cma.2021.114234_b13
  article-title: Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.03.016
– volume: 69
  start-page: 813
  issue: 7
  year: 2002
  ident: 10.1016/j.cma.2021.114234_b26
  article-title: Extended finite element method for cohesive crack growth
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(01)00128-X
– volume: 58
  start-page: 103
  issue: 1
  year: 2003
  ident: 10.1016/j.cma.2021.114234_b28
  article-title: Extended finite element method for quasi-brittle fracture
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.761
– volume: 84
  start-page: 1089
  issue: 293
  year: 2015
  ident: 10.1016/j.cma.2021.114234_b35
  article-title: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: Theory and numerical experiments
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2014-02913-X
– volume: 69
  start-page: 772
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2021.114234_b23
  article-title: A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1788
– volume: 41
  start-page: 407
  issue: 3
  year: 2008
  ident: 10.1016/j.cma.2021.114234_b32
  article-title: A formulation for frictionless contact problems using a weak form introduced by Nitsche
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-007-0196-4
– volume: 77
  start-page: 123
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2021.114234_b43
  article-title: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility
  publication-title: J. Elasticity
  doi: 10.1007/s10659-005-4408-x
SSID ssj0000812
Score 2.4729714
Snippet Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the elements, which avoids any...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114234
SubjectTerms Chemical reactions
Constitutive relationships
Contact mechanics
Cut finite element method
Deformation
Fictitious domain method
Finite element method
Large deformation mechanics
Mechanics
Patch tests
Phase boundaries
Separation
Sharp interface method
Solid mechanics
Unbiased contact formulation
Title A cut finite-element method for fracture and contact problems in large-deformation solid mechanics
URI https://dx.doi.org/10.1016/j.cma.2021.114234
https://www.proquest.com/docview/2622805592
Volume 388
WOSCitedRecordID wos000720450400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHHgVES0E-wIXKKHGcOD6uqiLgUCFRpL1ZtuNFaau0anaril_fmdjOtruiAiQu0Spa29HMl8k39jwIeVcU8I20TjBpi4yJ0lhmfF2y3FXG-AwP1kKzCXl4WE-n6lsMHeqHdgKy6-qrK3X-X1UN90DZmDr7F-oeJ4Ub8BuUDldQO1z_SPGTPbfAektIJpkP0eGxUfQQUzjDvKh0bICR6pglGfvKDMGxpxgczho_5jXuwQO3DcyBWcIpOj5VN4hdIeIKwwQmMttxwLCUX1Y-HO0xCMKfzM8uVwP4EVDtzzZEELzfL4HvLk5M_-vmHgXnK3sU68kzwRiLkgFBCYfaPtjfWirG81DwJRnoIjT-WzP2Yd_h-KMbCkjxHOse87g1eruG9ndcC5cCBzdDjnefbHJZKjCDm5MvB9Ovy493nYcC8_HZ0kH4EBK4stDvqMzKR31gKkdPyePoYtBJgMYzcs93W-RJdDdoNOb9Fnl0oxblc2InFHBDb-OGBq1SgAJNuKGgTBpxQxNuaNvRNdzQATd0hMEL8uPTwdH-ZxYbcDBXVPWcOSSnQKIs8LhGOKWs8NI6Z0UFXrA0eVPOalujC6zQ9VDeylqZGfq4UmW2eEk2urPOvyK0sspaVYLYTCWkNcoCE7WC-5lrHJDQbZIlWWoXq9Njk5RTncIQjzWIX6P4dRD_NvkwDjkPpVnu-rNICtKRWwbOqAFNdw3bTcrU8R3vNa-whhS44nzn32Z9TR4u35JdsjG_WPg35IG7nLf9xdsIyWvg8ag7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cut+finite-element+method+for+fracture+and+contact+problems+in+large-deformation+solid+mechanics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Poluektov%2C+Michael&rft.au=Figiel%2C+%C5%81ukasz&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=388&rft_id=info:doi/10.1016%2Fj.cma.2021.114234&rft.externalDocID=S0045782521005600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon