Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi
•Effect of three new thawing methods on gel property of protein was analyzed.•Change in MP gel surface morphology was observed by atomic force microscopy.•Effect of ultrasound and vacuum thawing on gel property was lower than others.•Destruction in gel property of microwave thawing was obvious. Effe...
Uložené v:
| Vydané v: | Ultrasonics sonochemistry Ročník 64; s. 104860 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.06.2020
|
| Predmet: | |
| ISSN: | 1350-4177, 1873-2828, 1873-2828 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Effect of three new thawing methods on gel property of protein was analyzed.•Change in MP gel surface morphology was observed by atomic force microscopy.•Effect of ultrasound and vacuum thawing on gel property was lower than others.•Destruction in gel property of microwave thawing was obvious.
Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods. |
|---|---|
| AbstractList | Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods.Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods. Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods. •Effect of three new thawing methods on gel property of protein was analyzed.•Change in MP gel surface morphology was observed by atomic force microscopy.•Effect of ultrasound and vacuum thawing on gel property was lower than others.•Destruction in gel property of microwave thawing was obvious. Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods. |
| ArticleNumber | 104860 |
| Author | Li, Fangfei Pan, Nan Du, Xin Wang, Bo Liu, Qian Kong, Baohua Xia, Xiufang Zhang, Dongjie |
| Author_xml | – sequence: 1 givenname: Bo surname: Wang fullname: Wang, Bo organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 2 givenname: Xin surname: Du fullname: Du, Xin organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 3 givenname: Baohua surname: Kong fullname: Kong, Baohua organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 4 givenname: Qian surname: Liu fullname: Liu, Qian organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 5 givenname: Fangfei surname: Li fullname: Li, Fangfei organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 6 givenname: Nan surname: Pan fullname: Pan, Nan organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 7 givenname: Xiufang surname: Xia fullname: Xia, Xiufang email: xiaxiufang@neau.edu.cn organization: College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China – sequence: 8 givenname: Dongjie surname: Zhang fullname: Zhang, Dongjie email: byndzdj@126.com organization: College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31948851$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUclqHDEUFMbBW_wLRscc0hOppV4EOSQYJzYYcknOQi09jTV0S2NJPcZn_7jVjCeBXHx6W1XxqDpHxz54QOiKkhUltP2yWc1jTsHrh1VNqChL3rfkCJ3RvmNV3df9celZQypOu-4Unae0IYQwUZMTdMqo4H3f0DP0cmMt6IyDxUUwqhRmb3B-UE_Orz_jndLzPP2bVTlOTsfwpHZwWOPg8RrGcWm3MWwhZgdpkSxTBuexjWHC2xC184DH4NcuJTfNCZsQk_uIPlg1Jrh8qxfoz4-b39e31f2vn3fX3-8rzdo-V7ptLBk0V5xZaonpBKWNEtRY3bOONYpzw3itmTLCCjPwTljTgB0GVreibtkF-rTXLW89zpCynFzS5XHlIcxJ1ozTtvhHFujVG3QeJjByG92k4rM8GFcA7R5QvEgpgv0LoUQuCcmNPCQkl4TkPqFC_PofUbussgu-uO_G9-nf9nQoRu0cRJm0A6_BuFhylCa49yReARGItHo |
| CitedBy_id | crossref_primary_10_1111_jfpe_70063 crossref_primary_10_1016_j_ijrefrig_2021_10_003 crossref_primary_10_1186_s41110_025_00313_x crossref_primary_10_1016_j_ijbiomac_2024_135517 crossref_primary_10_1016_j_ultsonch_2023_106578 crossref_primary_10_1016_j_lwt_2021_111922 crossref_primary_10_1016_j_fbio_2023_103175 crossref_primary_10_1016_j_fbp_2025_08_008 crossref_primary_10_3390_foods11010044 crossref_primary_10_1080_10408398_2022_2139660 crossref_primary_10_1016_j_ijbiomac_2025_147857 crossref_primary_10_1016_j_foodchem_2024_140424 crossref_primary_10_1016_j_meatsci_2022_108832 crossref_primary_10_1016_j_lwt_2023_115314 crossref_primary_10_1016_j_ultsonch_2021_105770 crossref_primary_10_1016_j_foodchem_2024_139784 crossref_primary_10_1016_j_foodchem_2021_130756 crossref_primary_10_1007_s10068_021_00966_0 crossref_primary_10_1111_1750_3841_16745 crossref_primary_10_3390_app11072926 crossref_primary_10_1111_1750_3841_16626 crossref_primary_10_1016_j_foodres_2025_117570 crossref_primary_10_1016_j_foodchem_2021_130600 crossref_primary_10_1016_j_ultsonch_2023_106317 crossref_primary_10_1016_j_ultsonch_2024_106911 crossref_primary_10_1080_10408398_2020_1823815 crossref_primary_10_1007_s12393_023_09356_0 crossref_primary_10_1016_j_ijbiomac_2020_12_215 crossref_primary_10_3390_foods11243998 crossref_primary_10_1016_j_foodhyd_2023_109377 crossref_primary_10_1016_j_lwt_2021_112150 crossref_primary_10_1016_j_lwt_2020_110570 crossref_primary_10_1186_s43014_022_00102_3 crossref_primary_10_1016_j_ijbiomac_2025_144045 crossref_primary_10_1111_1541_4337_13064 crossref_primary_10_1016_j_foodres_2021_110405 crossref_primary_10_1016_j_lwt_2021_111974 crossref_primary_10_1016_j_foodchem_2021_131661 crossref_primary_10_3390_foods12152869 crossref_primary_10_1016_j_ultsonch_2024_107031 crossref_primary_10_1016_j_ijrefrig_2021_11_030 crossref_primary_10_1016_j_jfoodeng_2023_111482 crossref_primary_10_1016_j_foodres_2025_117317 crossref_primary_10_1016_j_foostr_2025_100410 crossref_primary_10_1016_j_lwt_2024_116046 crossref_primary_10_3390_foods10112825 crossref_primary_10_1111_1541_4337_13194 crossref_primary_10_1016_j_fbio_2024_105317 crossref_primary_10_3390_foods11091368 crossref_primary_10_1016_j_tifs_2023_06_035 crossref_primary_10_1016_j_foodchem_2022_133137 crossref_primary_10_1080_10408398_2024_2429002 crossref_primary_10_3390_foods10112576 crossref_primary_10_1016_j_ifset_2024_103858 crossref_primary_10_1016_j_ijbiomac_2025_142889 crossref_primary_10_1016_j_meatsci_2023_109311 crossref_primary_10_3390_foods11111612 crossref_primary_10_1007_s11947_025_03832_7 crossref_primary_10_1111_1750_3841_15983 crossref_primary_10_1016_j_ijrefrig_2022_01_007 crossref_primary_10_1111_jtxs_12635 crossref_primary_10_1016_j_meatsci_2021_108457 crossref_primary_10_1016_j_ultsonch_2023_106309 crossref_primary_10_3390_foods14020279 crossref_primary_10_1016_j_ijbiomac_2021_02_158 crossref_primary_10_1016_j_fbp_2023_02_007 crossref_primary_10_1016_j_foodchem_2024_138932 crossref_primary_10_1016_j_foodhyd_2021_107194 crossref_primary_10_3390_foods11142099 crossref_primary_10_1016_j_meatsci_2021_108617 crossref_primary_10_1016_j_foodchem_2025_145923 crossref_primary_10_1080_87559129_2025_2477206 crossref_primary_10_3390_foods13101566 crossref_primary_10_1016_j_lwt_2020_110403 crossref_primary_10_1016_j_meatsci_2023_109420 crossref_primary_10_1016_j_foodchem_2022_134738 crossref_primary_10_1111_ijfs_15226 crossref_primary_10_3390_foods12193597 crossref_primary_10_1111_1750_3841_15699 crossref_primary_10_1016_j_lwt_2023_115592 crossref_primary_10_1016_j_foodchem_2024_138369 crossref_primary_10_1080_19476337_2023_2264900 crossref_primary_10_1016_j_foodchem_2020_126375 crossref_primary_10_1016_j_ultsonch_2022_106109 crossref_primary_10_1016_j_ijrefrig_2025_08_022 crossref_primary_10_1016_j_foodchem_2022_134238 crossref_primary_10_1016_j_meatsci_2025_109806 crossref_primary_10_1111_ijfs_14839 crossref_primary_10_1016_j_ultsonch_2023_106489 crossref_primary_10_1016_j_ultsonch_2022_106225 crossref_primary_10_1016_j_ultsonch_2022_106105 crossref_primary_10_1016_j_foodchem_2024_138630 crossref_primary_10_1016_j_afres_2025_101049 crossref_primary_10_1016_j_foodchem_2025_143209 crossref_primary_10_1016_j_foodres_2024_115152 crossref_primary_10_1111_1541_4337_70136 crossref_primary_10_1016_j_foodchem_2024_140430 crossref_primary_10_1016_j_foodres_2024_114461 |
| Cites_doi | 10.1016/j.foodhyd.2018.05.047 10.1016/j.lwt.2016.11.027 10.1111/1750-3841.14595 10.1016/j.lwt.2015.10.008 10.1016/j.lwt.2011.09.018 10.1016/S0309-1740(03)00082-2 10.1016/j.procbio.2013.03.015 10.1016/j.lwt.2017.09.009 10.1016/j.foodchem.2009.12.057 10.1016/j.meatsci.2008.02.014 10.1016/j.procbio.2016.09.026 10.1016/j.ultsonch.2018.05.001 10.1016/j.foodchem.2018.10.110 10.1016/j.foodchem.2017.07.138 10.1016/j.foodhyd.2019.05.003 10.1016/j.jfoodeng.2017.01.010 10.1016/j.meatsci.2016.11.003 10.1016/j.ultsonch.2018.08.015 10.1016/j.foodhyd.2014.10.021 10.1016/j.foodchem.2015.03.130 10.1016/j.ijbiomac.2017.12.167 10.1016/j.foodhyd.2017.10.030 10.1016/j.foodchem.2019.04.017 10.1016/j.foodhyd.2013.06.015 10.1016/j.foodchem.2018.06.057 10.1111/j.1365-2621.2002.tb08698.x 10.1016/j.meatsci.2009.05.003 10.1016/j.foodchem.2019.03.146 10.1016/j.jfoodeng.2019.06.013 10.1016/S1350-4177(02)00076-7 10.1016/j.foodhyd.2019.05.043 10.1016/j.ifset.2017.06.005 10.1016/j.foodchem.2004.06.027 10.1021/jf9710185 10.1016/j.foodres.2014.05.062 10.1016/j.foodchem.2019.01.097 10.1016/j.meatsci.2018.09.003 10.1016/j.ultsonch.2016.08.008 10.1111/ijfs.12755 10.1016/j.foodchem.2018.09.028 10.1021/jf5008083 10.1016/j.ultsonch.2018.10.006 10.1016/j.ultsonch.2019.104784 10.1016/j.foodchem.2018.09.113 10.1016/B978-0-08-100528-6.00012-7 10.1111/j.1365-2621.2001.tb15207.x 10.1016/j.foodhyd.2017.04.001 10.1016/j.foodhyd.2012.08.001 10.1016/j.foodhyd.2018.12.006 10.1016/j.meatsci.2018.01.024 10.1016/j.meatsci.2005.01.015 10.1016/j.lwt.2019.04.071 10.1016/j.meatsci.2012.11.002 10.1016/j.ifset.2018.10.014 10.1016/j.meatsci.2010.02.019 10.1016/j.meatsci.2013.04.012 10.1016/j.foodchem.2019.05.018 10.1016/j.foodhyd.2018.03.044 10.1016/j.foodchem.2015.02.036 10.1016/j.lwt.2018.09.064 10.1016/j.meatsci.2019.01.002 10.1016/j.meatsci.2019.02.016 10.1016/j.foodchem.2013.12.060 10.1016/j.foodhyd.2019.105223 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ultsonch.2019.104860 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-2828 |
| ExternalDocumentID | 31948851 10_1016_j_ultsonch_2019_104860 S1350417719315123 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c368t-c65f0bc4a43f1f0d79115a91dfc83735a44d342c3ad9f9db479fd5efbb3269263 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532044300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-4177 1873-2828 |
| IngestDate | Sun Sep 28 10:47:01 EDT 2025 Tue Nov 11 10:47:51 EST 2025 Sat Nov 29 07:02:06 EST 2025 Tue Nov 18 22:14:01 EST 2025 Fri Feb 23 02:48:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Myofibrillar protein Ultrasound thawing Microwave thawing Gelling property Vacuum thawing |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-c65f0bc4a43f1f0d79115a91dfc83735a44d342c3ad9f9db479fd5efbb3269263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31948851 |
| PQID | 2341618706 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2341618706 pubmed_primary_31948851 crossref_primary_10_1016_j_ultsonch_2019_104860 crossref_citationtrail_10_1016_j_ultsonch_2019_104860 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2019_104860 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 2020-Jun 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics sonochemistry |
| PublicationTitleAlternate | Ultrason Sonochem |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Wang, Liu, Chen, Zhang, Xia, Kong (b0030) 2019; 147 Lin, Zhang, Li, Zheng, Rea, Miao (b0095) 2019; 96 Jiang, Cao, Xia, Liu, Kong (b0310) 2019; 84 Feng, Pan, Yang, Sun, Xu, Zhou (b0085) 2018; 87 Doerscher, Briggs, Lonergan (b0075) 2004; 66 Promeyrat, Gatellier, Lebret, Kajaksiemaszko, Aubry, Santélhoutellier (b0180) 2010; 121 Jia, Zhang, Liu, Wang, Lin, Liu (b0270) 2019; 301 Jia, Nirasawa, Ji, Luo, Liu (b0065) 2018; 240 Li, Wang, Zheng, Guo (b0100) 2019; 291 Sow, Tan, Yang (b0290) 2019; 90 Guo, Xiong (b0285) 2019; 293 Niu, Li, Han, Liu, Kong (b0125) 2017; 70 Tay, Xu, Perera (b0170) 2005; 91 Li, Jia, Zhang, Li, Pan, Zhu, Priny, Kul, Luo (b0020) 2017; 42 Lu, Riyanto, Weavers (b0185) 2002; 9 Kim, Kim, Seo, Setyabrata, Kim (b0010) 2018; 139 Westphalen, Briggs, Lonergan (b0090) 2006; 70 Cao, Xiong (b0295) 2015; 180 Jia, You, Hu, Liu, Xiong (b0220) 2015; 185 James, James, Purnell (b0055) 2017 Mcdonnell, Allen, Duggan, Arimi, Casey, Duane, James (b0245) 2013; 95 Alvarenga, Hopkins, Ramos, Almeida, Geesink (b0060) 2019; 153 Hu, Wu, Li-Chan, Zhu, Zhang, Xu, Gang, Wang, Huang, Pan (b0200) 2013; 30 Xia, Kong, Liu, Diao, Liu (b0135) 2012; 46 Zheng, Han, Ge, Zhao, Sun (b0280) 2019; 96 Choi, Park, Chung, Park, Kim, Chun (b0005) 2017; 124 Zhou, Yang (b0315) 2019; 277 Wen, Hu, Zhao, Peng, Ni (b0015) 2015; 50 Guo, Zhou, Yang, Yin, Ma, Li, Sun, Han (b0105) 2019; 274 Deng, Rosenvold, Karlsson, Horn, Hedegaard, Steffensen, Andersen (b0235) 2002; 67 Huang, Kong, Zhao, Liu, Diao (b0305) 2014; 62 Cao, Jiao, Fan, Huang, Zhao, Yan, Zhou, Zhang, Ye, Zhang (b0175) 2019; 284 Ekezie, Cheng, Sun (b0215) 2019; 276 Zhang, Wang, Sun, Chen, Lai, Yang (b0195) 2020; 60 Liu, Zhao, Xiong, Xie, Qin (b0230) 2008; 80 Shao, Deng, Song, Batur, Jia, Liu (b0255) 2016; 66 Sánchez-Alonso, Moreno, Careche (b0265) 2014; 153 Zheng, Han, Bai, Xu, Zhou (b0300) 2018; 52 Jia, Sha, Meng, Liu (b0050) 2019; 99 Xia, Ma, Chen, Li, Zhang (b0240) 2018; 82 Cao, Cao, Wang, Cai, Regenstein, Ruan, Li (b0145) 2018; 266 Benjakul, Visessanguan, Ishizaki, Tanaka (b0155) 2001; 66 Zhang, Xia, Liu, Chen, Kong (b0120) 2019; 151 Kobayashi, Park (b0070) 2017; 77 Xia, Kong, Xiong, Ren (b0130) 2010; 85 Jiang, Xiong (b0275) 2013; 93 Chen, Xu, Liu, Zhou, Han, Wang (b0210) 2018; 77 Amir, Parisa, Nafiseh (b0140) 2019; 111 Shi, Zhong, Yan, Liu, Yang, Qiao (b0045) 2019; 111 Wang, Xu, Huang, Huang, Zhou (b0160) 2014; 35 Han, Wang, Xu, Zhou (b0260) 2014; 62 Qian, Li, Wang, Mehmood, Zhong, Zhang, Christophe (b0025) 2019; 261 Li, Wang, Kong, Shi, Xia (b0080) 2019; 97 Xia, Kong, Liu, Liu (b0150) 2009; 83 Zhang, Regenstein, Zhou, Yang (b0250) 2017; 34 Sun, Sun, Xia, Xu, Kong (b0115) 2019; 51 Nian, Cao, Cai, Ji, Liu (b0110) 2019; 291 Cai, Cao, Cao, Regenstein, Li, Guan (b0040) 2018; 47 Li, Kong, Xia, Liu, Diao (b0165) 2013; 48 Bedane, Chen, Marra, Wang (b0035) 2017; 201 Sow, Yang (b0325) 2015; 45 Silva, Bogdan, Jayani (b0190) 2018; 49 Li, He, Ma, Wu, Yang, Sun, Lu, Guo, Jian, Zhang, Jin, Ma (b0225) 2018; 84 Ju, Kilara (b0205) 1998; 46 Zhao, Sun, Li, Liu, Kong (b0320) 2017; 52 Guo (10.1016/j.ultsonch.2019.104860_b0105) 2019; 274 Xia (10.1016/j.ultsonch.2019.104860_b0240) 2018; 82 Qian (10.1016/j.ultsonch.2019.104860_b0025) 2019; 261 Shi (10.1016/j.ultsonch.2019.104860_b0045) 2019; 111 Silva (10.1016/j.ultsonch.2019.104860_b0190) 2018; 49 Nian (10.1016/j.ultsonch.2019.104860_b0110) 2019; 291 Zhang (10.1016/j.ultsonch.2019.104860_b0250) 2017; 34 Zheng (10.1016/j.ultsonch.2019.104860_b0280) 2019; 96 Doerscher (10.1016/j.ultsonch.2019.104860_b0075) 2004; 66 Zhang (10.1016/j.ultsonch.2019.104860_b0195) 2020; 60 Li (10.1016/j.ultsonch.2019.104860_b0030) 2019; 147 Sow (10.1016/j.ultsonch.2019.104860_b0290) 2019; 90 Zhou (10.1016/j.ultsonch.2019.104860_b0315) 2019; 277 Wen (10.1016/j.ultsonch.2019.104860_b0015) 2015; 50 Jia (10.1016/j.ultsonch.2019.104860_b0065) 2018; 240 James (10.1016/j.ultsonch.2019.104860_b0055) 2017 Kobayashi (10.1016/j.ultsonch.2019.104860_b0070) 2017; 77 Tay (10.1016/j.ultsonch.2019.104860_b0170) 2005; 91 Sow (10.1016/j.ultsonch.2019.104860_b0325) 2015; 45 Xia (10.1016/j.ultsonch.2019.104860_b0135) 2012; 46 Kim (10.1016/j.ultsonch.2019.104860_b0010) 2018; 139 Feng (10.1016/j.ultsonch.2019.104860_b0085) 2018; 87 Sun (10.1016/j.ultsonch.2019.104860_b0115) 2019; 51 Hu (10.1016/j.ultsonch.2019.104860_b0200) 2013; 30 Westphalen (10.1016/j.ultsonch.2019.104860_b0090) 2006; 70 Cao (10.1016/j.ultsonch.2019.104860_b0145) 2018; 266 Zhang (10.1016/j.ultsonch.2019.104860_b0120) 2019; 151 Sánchez-Alonso (10.1016/j.ultsonch.2019.104860_b0265) 2014; 153 Han (10.1016/j.ultsonch.2019.104860_b0260) 2014; 62 Niu (10.1016/j.ultsonch.2019.104860_b0125) 2017; 70 Jiang (10.1016/j.ultsonch.2019.104860_b0275) 2013; 93 Jiang (10.1016/j.ultsonch.2019.104860_b0310) 2019; 84 Guo (10.1016/j.ultsonch.2019.104860_b0285) 2019; 293 Cao (10.1016/j.ultsonch.2019.104860_b0295) 2015; 180 Jia (10.1016/j.ultsonch.2019.104860_b0220) 2015; 185 Li (10.1016/j.ultsonch.2019.104860_b0020) 2017; 42 Lin (10.1016/j.ultsonch.2019.104860_b0095) 2019; 96 Ekezie (10.1016/j.ultsonch.2019.104860_b0215) 2019; 276 Cao (10.1016/j.ultsonch.2019.104860_b0175) 2019; 284 Benjakul (10.1016/j.ultsonch.2019.104860_b0155) 2001; 66 Promeyrat (10.1016/j.ultsonch.2019.104860_b0180) 2010; 121 Li (10.1016/j.ultsonch.2019.104860_b0080) 2019; 97 Huang (10.1016/j.ultsonch.2019.104860_b0305) 2014; 62 Amir (10.1016/j.ultsonch.2019.104860_b0140) 2019; 111 Ju (10.1016/j.ultsonch.2019.104860_b0205) 1998; 46 Xia (10.1016/j.ultsonch.2019.104860_b0150) 2009; 83 Li (10.1016/j.ultsonch.2019.104860_b0100) 2019; 291 Zhao (10.1016/j.ultsonch.2019.104860_b0320) 2017; 52 Cai (10.1016/j.ultsonch.2019.104860_b0040) 2018; 47 Deng (10.1016/j.ultsonch.2019.104860_b0235) 2002; 67 Liu (10.1016/j.ultsonch.2019.104860_b0230) 2008; 80 Shao (10.1016/j.ultsonch.2019.104860_b0255) 2016; 66 Alvarenga (10.1016/j.ultsonch.2019.104860_b0060) 2019; 153 Jia (10.1016/j.ultsonch.2019.104860_b0050) 2019; 99 Jia (10.1016/j.ultsonch.2019.104860_b0270) 2019; 301 Choi (10.1016/j.ultsonch.2019.104860_b0005) 2017; 124 Li (10.1016/j.ultsonch.2019.104860_b0225) 2018; 84 Li (10.1016/j.ultsonch.2019.104860_b0165) 2013; 48 Mcdonnell (10.1016/j.ultsonch.2019.104860_b0245) 2013; 95 Chen (10.1016/j.ultsonch.2019.104860_b0210) 2018; 77 Wang (10.1016/j.ultsonch.2019.104860_b0160) 2014; 35 Lu (10.1016/j.ultsonch.2019.104860_b0185) 2002; 9 Zheng (10.1016/j.ultsonch.2019.104860_b0300) 2018; 52 Bedane (10.1016/j.ultsonch.2019.104860_b0035) 2017; 201 Xia (10.1016/j.ultsonch.2019.104860_b0130) 2010; 85 |
| References_xml | – volume: 47 start-page: 122 year: 2018 end-page: 132 ident: b0040 article-title: Ultrasound or microwave vacuum thawing of red seabream ( publication-title: Ultrason. Sonochem. – volume: 45 start-page: 72 year: 2015 end-page: 82 ident: b0325 article-title: Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin publication-title: Food Hydrocoll. – volume: 153 start-page: 19 year: 2019 end-page: 25 ident: b0060 article-title: Ageing-freezing/thaw process affects blooming time and myoglobin forms of lamb meat during retail display publication-title: Meat Sci. – volume: 52 start-page: 200 year: 2017 end-page: 208 ident: b0320 article-title: Modification of gel properties of soy protein isolate by freeze-thaw cycles are associated with changes of molecular force involved in the gelation publication-title: Process. Biochem. – volume: 77 start-page: 200 year: 2017 end-page: 207 ident: b0070 article-title: Biochemical and physical characterizations of fish protein isolate and surimi prepared from fresh and frozen whole fish publication-title: LWT-Technol.-Food Sci. Technol. – volume: 96 start-page: 537 year: 2019 end-page: 545 ident: b0095 article-title: Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream ( publication-title: Food Hydrocoll. – volume: 91 start-page: 457 year: 2005 end-page: 462 ident: b0170 article-title: Aggregation profile of 11S, 7S and 2S coagulated with GDL publication-title: Food Chem. – volume: 48 start-page: 863 year: 2013 end-page: 870 ident: b0165 article-title: Structural changes of the myofibrillar proteins in common carp ( publication-title: Process. Biochem. – volume: 95 start-page: 51 year: 2013 end-page: 58 ident: b0245 article-title: The effect of salt and fibre direction on water dynamics, distribution and mobility in pork muscle: a low field NMR study publication-title: Meat Sci. – volume: 66 start-page: 1 year: 2016 end-page: 6 ident: b0255 article-title: Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique publication-title: LWT-Food Sci. Technol. – volume: 277 start-page: 327 year: 2019 end-page: 335 ident: b0315 article-title: Effects of calcium ion on gel properties and gelation of tilapia ( publication-title: Food Chem. – volume: 274 start-page: 775 year: 2019 end-page: 781 ident: b0105 article-title: Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins publication-title: Food Chem. – volume: 84 start-page: 181 year: 2018 end-page: 192 ident: b0225 article-title: Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein publication-title: Food Hydrocoll. – volume: 50 start-page: 1116 year: 2015 end-page: 1122 ident: b0015 article-title: Evaluation of the effects of different thawing methods on texture, colour and ascorbic acid retention of frozen hami melon ( publication-title: Int. J. Food Sci. Technol. – volume: 66 start-page: 1311 year: 2001 end-page: 1318 ident: b0155 article-title: Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus publication-title: J. Food Sci. – volume: 84 start-page: 1068 year: 2019 end-page: 1077 ident: b0310 article-title: Enhancement of the textural and gel properties of frankfurters by adding thermo-reversible or thermo-irreversible curdlan gels publication-title: J. Food Sci. – volume: 52 start-page: 122 year: 2018 end-page: 130 ident: b0300 article-title: Combination of high pressure and heat on the gelation of chicken myofibrillar proteins publication-title: Innov. Food Sci. Emerg. – volume: 62 start-page: 1175 year: 2014 end-page: 1182 ident: b0260 article-title: Low-field NMR study of heatinduced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics publication-title: Food Res. Int. – volume: 83 start-page: 239 year: 2009 end-page: 245 ident: b0150 article-title: Physicochemical change and protein oxidation in porcine publication-title: Meat Sci. – volume: 62 start-page: 6390 year: 2014 end-page: 6399 ident: b0305 article-title: Contributions of fat content and oxidation to the changes in physicochemical and sensory attributes of pork dumpling filler during frozen storage publication-title: J. Agric. Food Chem. – volume: 42 start-page: 25 year: 2017 end-page: 32 ident: b0020 article-title: Post thawing quality changes of common carp ( publication-title: Innov. Food Sci. Emerg. – volume: 99 start-page: 268 year: 2019 end-page: 275 ident: b0050 article-title: Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of lightly salted, frozen pork tenderloin publication-title: LWT-Food Sci. Technol. – volume: 284 start-page: 45 year: 2019 end-page: 52 ident: b0175 article-title: Catalytic effect of transglutaminase mediated by myofibrillar protein crosslinking under microwave irradiation publication-title: Food Chem. – volume: 34 start-page: 960 year: 2017 end-page: 967 ident: b0250 article-title: Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel publication-title: Ultrason. Sonochem. – volume: 90 start-page: 9 year: 2019 end-page: 18 ident: b0290 article-title: Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan publication-title: Food Hydrocoll. – volume: 121 start-page: 412 year: 2010 end-page: 417 ident: b0180 article-title: Evaluation of protein aggregation in cooked meat publication-title: Food Chem. – volume: 30 start-page: 647 year: 2013 end-page: 655 ident: b0200 article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (spi) dispersions publication-title: Food Hydrocoll. – volume: 60 year: 2020 ident: b0195 article-title: Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment publication-title: Ultrason. Sonochem. – volume: 139 start-page: 162 year: 2018 end-page: 170 ident: b0010 article-title: Effects of aging/freezing sequence and freezing rate on meat quality and oxidative stability of pork loins publication-title: Meat Sci. – start-page: 252 year: 2017 end-page: 272 ident: b0055 article-title: Microwave-assisted thawing and tempering publication-title: Microwave Process. Foods (Second Ed.) – volume: 70 start-page: 269 year: 2017 end-page: 276 ident: b0125 article-title: Gelation and rheological properties of myofibrillar proteins influenced by the addition of soybean protein isolates subjected to an acidic pH treatment combined with a mild heating publication-title: Food Hydrocoll. – volume: 9 start-page: 181 year: 2002 end-page: 188 ident: b0185 article-title: Sonolysis of synthetic sediment particles: particle characteristics affecting particle dissolution and size reduction publication-title: Ultrason. Sonochem. – volume: 124 start-page: 69 year: 2017 end-page: 76 ident: b0005 article-title: Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion publication-title: Meat Sci. – volume: 111 start-page: 301 year: 2019 end-page: 308 ident: b0045 article-title: The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp ( publication-title: LWT-Food Sci. Technol. – volume: 35 start-page: 324 year: 2014 end-page: 331 ident: b0160 article-title: Effect of ph on heat-induced gelation of duck blood plasma protein publication-title: Food Hydrocoll. – volume: 266 start-page: 498 year: 2018 end-page: 507 ident: b0145 article-title: Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream ( publication-title: Food Chem. – volume: 66 start-page: 181 year: 2004 end-page: 188 ident: b0075 article-title: Effects of pork collagen on thermal and viscoelastic properties of purified porcine myofibrillar protein gels publication-title: Meat Sci. – volume: 291 start-page: 117 year: 2019 end-page: 125 ident: b0100 article-title: Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan publication-title: Food Chem. – volume: 276 start-page: 147 year: 2019 end-page: 156 ident: b0215 article-title: Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn ( publication-title: Food Chem. – volume: 111 start-page: 139 year: 2019 end-page: 147 ident: b0140 article-title: Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins publication-title: Int. Biol. Macromol. – volume: 96 start-page: 36 year: 2019 end-page: 42 ident: b0280 article-title: Partial substitution of NaCl with chloride salt mixtures: impact on oxidative characteristics of meat myofibrillar protein and their rheological properties publication-title: Food Hydrocoll. – volume: 261 start-page: 140 year: 2019 end-page: 149 ident: b0025 article-title: Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine publication-title: J. Food Eng. – volume: 46 start-page: 280 year: 2012 end-page: 286 ident: b0135 article-title: Influence of different thawing methods on physicochemical changes and protein oxidation of porcine publication-title: LWT-Food Sci. Technol. – volume: 49 start-page: 268 year: 2018 end-page: 276 ident: b0190 article-title: Influence of low-frequency ultrasound on the physico-chemical and structural characteristics of milk systems with varying casein to whey protein ratios publication-title: Ultrason. Sonochem. – volume: 46 start-page: 1830 year: 1998 end-page: 1835 ident: b0205 article-title: Gelation of ph-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant publication-title: J. Agric. Food Chem. – volume: 151 start-page: 24 year: 2019 end-page: 32 ident: b0120 article-title: Changes in microstructure, quality and water distribution of porcine publication-title: Meat Sci. – volume: 80 start-page: 632 year: 2008 end-page: 639 ident: b0230 article-title: Role of secondary structures in the gelation of porcine myosin at different pH values publication-title: Meat Sci. – volume: 51 start-page: 281 year: 2019 end-page: 291 ident: b0115 article-title: The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp ( publication-title: Ultrason. Sonochem. – volume: 70 start-page: 293 year: 2006 end-page: 299 ident: b0090 article-title: Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation publication-title: Meat Sci. – volume: 293 start-page: 529 year: 2019 end-page: 536 ident: b0285 article-title: Glucose oxidase promotes gallic acid-myofibrillar protein interaction and thermal gelation publication-title: Food Chem. – volume: 147 start-page: 108 year: 2019 end-page: 115 ident: b0030 article-title: Changes in myofibrillar protein gel quality of porcine publication-title: Meat Sci. – volume: 240 start-page: 910 year: 2018 end-page: 916 ident: b0065 article-title: Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field publication-title: Food Chem. – volume: 85 start-page: 481 year: 2010 end-page: 486 ident: b0130 article-title: Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen-thawed porcine publication-title: Meat Sci. – volume: 201 start-page: 17 year: 2017 end-page: 25 ident: b0035 article-title: Experimental study of radio frequency (rf) thawing of foods with movement on conveyor belt publication-title: J. Food Eng. – volume: 77 start-page: 524 year: 2018 end-page: 533 ident: b0210 article-title: Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating publication-title: Food Hydrocoll. – volume: 153 start-page: 250 year: 2014 end-page: 257 ident: b0265 article-title: Low field nuclear magnetic resonance (LF-NMR) relaxometry in hake ( publication-title: Food Chem. – volume: 87 start-page: 361 year: 2018 end-page: 367 ident: b0085 article-title: Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations publication-title: LWT-Food Sci. Technol. – volume: 185 start-page: 212 year: 2015 end-page: 218 ident: b0220 article-title: Effect of CaCl publication-title: Food Chem. – volume: 301 year: 2019 ident: b0270 article-title: The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation publication-title: Food Chem. – volume: 82 start-page: 135 year: 2018 end-page: 143 ident: b0240 article-title: Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths publication-title: Food Hydrocoll. – volume: 67 start-page: 1642 year: 2002 end-page: 1647 ident: b0235 article-title: Relationship between thermal denaturation of porcine muscle proteins and water-holding capacity publication-title: J. Food Sci. – volume: 93 start-page: 469 year: 2013 end-page: 476 ident: b0275 article-title: Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase publication-title: Meat Sci. – volume: 291 start-page: 139 year: 2019 end-page: 148 ident: b0110 article-title: Effect of vacuum impregnation of red sea bream ( publication-title: Food Chem. – volume: 180 start-page: 235 year: 2015 end-page: 243 ident: b0295 article-title: Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein publication-title: Food Chem. – volume: 97 year: 2019 ident: b0080 article-title: Decreased gelling properties of protein in mirror carp ( publication-title: Food Hydrocoll. – volume: 301 issue: 15 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0270 article-title: The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation publication-title: Food Chem. – volume: 84 start-page: 181 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0225 article-title: Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.05.047 – volume: 77 start-page: 200 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0070 article-title: Biochemical and physical characterizations of fish protein isolate and surimi prepared from fresh and frozen whole fish publication-title: LWT-Technol.-Food Sci. Technol. doi: 10.1016/j.lwt.2016.11.027 – volume: 84 start-page: 1068 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0310 article-title: Enhancement of the textural and gel properties of frankfurters by adding thermo-reversible or thermo-irreversible curdlan gels publication-title: J. Food Sci. doi: 10.1111/1750-3841.14595 – volume: 66 start-page: 1 year: 2016 ident: 10.1016/j.ultsonch.2019.104860_b0255 article-title: Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2015.10.008 – volume: 46 start-page: 280 issue: 1 year: 2012 ident: 10.1016/j.ultsonch.2019.104860_b0135 article-title: Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2011.09.018 – volume: 66 start-page: 181 issue: 1 year: 2004 ident: 10.1016/j.ultsonch.2019.104860_b0075 article-title: Effects of pork collagen on thermal and viscoelastic properties of purified porcine myofibrillar protein gels publication-title: Meat Sci. doi: 10.1016/S0309-1740(03)00082-2 – volume: 48 start-page: 863 issue: 5–6 year: 2013 ident: 10.1016/j.ultsonch.2019.104860_b0165 article-title: Structural changes of the myofibrillar proteins in common carp (Cyprinus carpio) muscle exposed to a hydroxyl radical-generating system publication-title: Process. Biochem. doi: 10.1016/j.procbio.2013.03.015 – volume: 87 start-page: 361 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0085 article-title: Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2017.09.009 – volume: 121 start-page: 412 issue: 2 year: 2010 ident: 10.1016/j.ultsonch.2019.104860_b0180 article-title: Evaluation of protein aggregation in cooked meat publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.12.057 – volume: 80 start-page: 632 issue: 3 year: 2008 ident: 10.1016/j.ultsonch.2019.104860_b0230 article-title: Role of secondary structures in the gelation of porcine myosin at different pH values publication-title: Meat Sci. doi: 10.1016/j.meatsci.2008.02.014 – volume: 52 start-page: 200 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0320 article-title: Modification of gel properties of soy protein isolate by freeze-thaw cycles are associated with changes of molecular force involved in the gelation publication-title: Process. Biochem. doi: 10.1016/j.procbio.2016.09.026 – volume: 47 start-page: 122 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0040 article-title: Ultrasound or microwave vacuum thawing of red seabream (pagrus major) fillets publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.05.001 – volume: 277 start-page: 327 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0315 article-title: Effects of calcium ion on gel properties and gelation of tilapia (Oreochromis niloticus) protein isolates processed with pH shift method publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.10.110 – volume: 240 start-page: 910 issue: 1 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0065 article-title: Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.07.138 – volume: 96 start-page: 36 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0280 article-title: Partial substitution of NaCl with chloride salt mixtures: impact on oxidative characteristics of meat myofibrillar protein and their rheological properties publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.05.003 – volume: 201 start-page: 17 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0035 article-title: Experimental study of radio frequency (rf) thawing of foods with movement on conveyor belt publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.01.010 – volume: 124 start-page: 69 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0005 article-title: Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion publication-title: Meat Sci. doi: 10.1016/j.meatsci.2016.11.003 – volume: 49 start-page: 268 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0190 article-title: Influence of low-frequency ultrasound on the physico-chemical and structural characteristics of milk systems with varying casein to whey protein ratios publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.08.015 – volume: 45 start-page: 72 year: 2015 ident: 10.1016/j.ultsonch.2019.104860_b0325 article-title: Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2014.10.021 – volume: 185 start-page: 212 year: 2015 ident: 10.1016/j.ultsonch.2019.104860_b0220 article-title: Effect of CaCl2 on denaturation and aggregation of silver carp myosin during setting publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.03.130 – volume: 111 start-page: 139 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0140 article-title: Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins publication-title: Int. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.167 – volume: 77 start-page: 524 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0210 article-title: Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2017.10.030 – volume: 291 start-page: 139 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0110 article-title: Effect of vacuum impregnation of red sea bream (Pagrosomus major) with herring afp combined with CS@Fe3O4 nanoparticles during freeze-thaw cycles publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.04.017 – volume: 35 start-page: 324 year: 2014 ident: 10.1016/j.ultsonch.2019.104860_b0160 article-title: Effect of ph on heat-induced gelation of duck blood plasma protein publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2013.06.015 – volume: 266 start-page: 498 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0145 article-title: Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus major) fillets publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.06.057 – volume: 67 start-page: 1642 issue: 5 year: 2002 ident: 10.1016/j.ultsonch.2019.104860_b0235 article-title: Relationship between thermal denaturation of porcine muscle proteins and water-holding capacity publication-title: J. Food Sci. doi: 10.1111/j.1365-2621.2002.tb08698.x – volume: 83 start-page: 239 issue: 2 year: 2009 ident: 10.1016/j.ultsonch.2019.104860_b0150 article-title: Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze–thaw cycles publication-title: Meat Sci. doi: 10.1016/j.meatsci.2009.05.003 – volume: 291 start-page: 117 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0100 article-title: Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.03.146 – volume: 261 start-page: 140 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0025 article-title: Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine longissimus dorsi muscle publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2019.06.013 – volume: 9 start-page: 181 issue: 4 year: 2002 ident: 10.1016/j.ultsonch.2019.104860_b0185 article-title: Sonolysis of synthetic sediment particles: particle characteristics affecting particle dissolution and size reduction publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(02)00076-7 – volume: 96 start-page: 537 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0095 article-title: Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream (pagrosomus major) publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.05.043 – volume: 42 start-page: 25 issue: 8 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0020 article-title: Post thawing quality changes of common carp (Cyprinus carpio) cubes treated by high voltage electrostatic field (hvef) during chilled storage publication-title: Innov. Food Sci. Emerg. doi: 10.1016/j.ifset.2017.06.005 – volume: 91 start-page: 457 year: 2005 ident: 10.1016/j.ultsonch.2019.104860_b0170 article-title: Aggregation profile of 11S, 7S and 2S coagulated with GDL publication-title: Food Chem. doi: 10.1016/j.foodchem.2004.06.027 – volume: 46 start-page: 1830 issue: 5 year: 1998 ident: 10.1016/j.ultsonch.2019.104860_b0205 article-title: Gelation of ph-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant publication-title: J. Agric. Food Chem. doi: 10.1021/jf9710185 – volume: 62 start-page: 1175 year: 2014 ident: 10.1016/j.ultsonch.2019.104860_b0260 article-title: Low-field NMR study of heatinduced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics publication-title: Food Res. Int. doi: 10.1016/j.foodres.2014.05.062 – volume: 284 start-page: 45 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0175 article-title: Catalytic effect of transglutaminase mediated by myofibrillar protein crosslinking under microwave irradiation publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.01.097 – volume: 147 start-page: 108 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0030 article-title: Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its structural modification under different thawing methods publication-title: Meat Sci. doi: 10.1016/j.meatsci.2018.09.003 – volume: 34 start-page: 960 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0250 article-title: Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.08.008 – volume: 50 start-page: 1116 issue: 5 year: 2015 ident: 10.1016/j.ultsonch.2019.104860_b0015 article-title: Evaluation of the effects of different thawing methods on texture, colour and ascorbic acid retention of frozen hami melon (cucumis melo var. saccharinus) publication-title: Int. J. Food Sci. Technol. doi: 10.1111/ijfs.12755 – volume: 274 start-page: 775 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0105 article-title: Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.09.028 – volume: 62 start-page: 6390 year: 2014 ident: 10.1016/j.ultsonch.2019.104860_b0305 article-title: Contributions of fat content and oxidation to the changes in physicochemical and sensory attributes of pork dumpling filler during frozen storage publication-title: J. Agric. Food Chem. doi: 10.1021/jf5008083 – volume: 51 start-page: 281 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0115 article-title: The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (cyprinus carpio) during freezing storage publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.10.006 – volume: 60 year: 2020 ident: 10.1016/j.ultsonch.2019.104860_b0195 article-title: Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104784 – volume: 276 start-page: 147 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0215 article-title: Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei) publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.09.113 – start-page: 252 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0055 article-title: Microwave-assisted thawing and tempering publication-title: Microwave Process. Foods (Second Ed.) doi: 10.1016/B978-0-08-100528-6.00012-7 – volume: 66 start-page: 1311 issue: 9 year: 2001 ident: 10.1016/j.ultsonch.2019.104860_b0155 article-title: Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus publication-title: J. Food Sci. doi: 10.1111/j.1365-2621.2001.tb15207.x – volume: 70 start-page: 269 year: 2017 ident: 10.1016/j.ultsonch.2019.104860_b0125 article-title: Gelation and rheological properties of myofibrillar proteins influenced by the addition of soybean protein isolates subjected to an acidic pH treatment combined with a mild heating publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2017.04.001 – volume: 30 start-page: 647 issue: 2 year: 2013 ident: 10.1016/j.ultsonch.2019.104860_b0200 article-title: Effects of ultrasound on structural and physical properties of soy protein isolate (spi) dispersions publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2012.08.001 – volume: 90 start-page: 9 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0290 article-title: Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.12.006 – volume: 139 start-page: 162 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0010 article-title: Effects of aging/freezing sequence and freezing rate on meat quality and oxidative stability of pork loins publication-title: Meat Sci. doi: 10.1016/j.meatsci.2018.01.024 – volume: 70 start-page: 293 issue: 2 year: 2006 ident: 10.1016/j.ultsonch.2019.104860_b0090 article-title: Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation publication-title: Meat Sci. doi: 10.1016/j.meatsci.2005.01.015 – volume: 111 start-page: 301 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0045 article-title: The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella) publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2019.04.071 – volume: 93 start-page: 469 issue: 3 year: 2013 ident: 10.1016/j.ultsonch.2019.104860_b0275 article-title: Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase publication-title: Meat Sci. doi: 10.1016/j.meatsci.2012.11.002 – volume: 52 start-page: 122 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0300 article-title: Combination of high pressure and heat on the gelation of chicken myofibrillar proteins publication-title: Innov. Food Sci. Emerg. doi: 10.1016/j.ifset.2018.10.014 – volume: 85 start-page: 481 issue: 3 year: 2010 ident: 10.1016/j.ultsonch.2019.104860_b0130 article-title: Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen-thawed porcine longissimus muscle are due to protein denaturation and susceptibility to aggregation publication-title: Meat Sci. doi: 10.1016/j.meatsci.2010.02.019 – volume: 95 start-page: 51 year: 2013 ident: 10.1016/j.ultsonch.2019.104860_b0245 article-title: The effect of salt and fibre direction on water dynamics, distribution and mobility in pork muscle: a low field NMR study publication-title: Meat Sci. doi: 10.1016/j.meatsci.2013.04.012 – volume: 293 start-page: 529 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0285 article-title: Glucose oxidase promotes gallic acid-myofibrillar protein interaction and thermal gelation publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.05.018 – volume: 82 start-page: 135 year: 2018 ident: 10.1016/j.ultsonch.2019.104860_b0240 article-title: Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.03.044 – volume: 180 start-page: 235 year: 2015 ident: 10.1016/j.ultsonch.2019.104860_b0295 article-title: Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.02.036 – volume: 99 start-page: 268 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0050 article-title: Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of lightly salted, frozen pork tenderloin publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2018.09.064 – volume: 151 start-page: 24 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0120 article-title: Changes in microstructure, quality and water distribution of porcine longissimus muscles subjected to ultrasound-assisted immersion freezing during frozen storage publication-title: Meat Sci. doi: 10.1016/j.meatsci.2019.01.002 – volume: 153 start-page: 19 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0060 article-title: Ageing-freezing/thaw process affects blooming time and myoglobin forms of lamb meat during retail display publication-title: Meat Sci. doi: 10.1016/j.meatsci.2019.02.016 – volume: 153 start-page: 250 issue: 12 year: 2014 ident: 10.1016/j.ultsonch.2019.104860_b0265 article-title: Low field nuclear magnetic resonance (LF-NMR) relaxometry in hake (Merluccius merluccius, L.) muscle after different freezing and storage conditions publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.12.060 – volume: 97 year: 2019 ident: 10.1016/j.ultsonch.2019.104860_b0080 article-title: Decreased gelling properties of protein in mirror carp (Cyprinus carpio) are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.105223 |
| SSID | ssj0003920 |
| Score | 2.5913556 |
| Snippet | •Effect of three new thawing methods on gel property of protein was analyzed.•Change in MP gel surface morphology was observed by atomic force... Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104860 |
| SubjectTerms | Animals Color Food Handling - methods Freezing Gelling property Gels Microwave thawing Microwaves Muscle Proteins - chemistry Myofibrillar protein Rheology Surface Properties Swine Ultrasound thawing Vacuum Vacuum thawing |
| Title | Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi |
| URI | https://dx.doi.org/10.1016/j.ultsonch.2019.104860 https://www.ncbi.nlm.nih.gov/pubmed/31948851 https://www.proquest.com/docview/2341618706 |
| Volume | 64 |
| WOSCitedRecordID | wos000532044300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2828 dateEnd: 20200930 omitProxy: false ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: AIEXJ dateStart: 20110501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCMatXCYj8TYCTexc_LhNQ4CmCcQm9S1KHHtkSpOqabq98wP4y5wTO0nFmAZCvKSJW8duvi_28fG5EPLaV5ynDF5AJv3E4ZnQTspDOPM8HYH4HHrGUfgoPD6OplPxeTT60fnCrIqwLKPLSzH_r1BDGYCNrrN_AXd_UyiAcwAdjgA7HP8IeBuPGITAplgukhrzJoF4mVzY7CWrRDbNbL0EdeczNMy7wFRE9gvcRThThfVWr-Zof20C1LahHfLSeKaA-I5b87tFVZ4BhvmsqXezalHn61LvqelIiRGh4QOTdJksc4M63_RkvxoEa7ye5oORgLUd3k-qb00_lxzl7e--dCS3-gtvMthZGaXaFceadhxm_sThrs3wokxZFDIHV4jrg7cJgX5lHjAqifO38KDhb7W7Tq7A_ezIZC_4Jcb2V2wPmwNxFkUgtkG2vNAXMExu7X08nH7qJ3cQJ43jue3fmtP571u7Tt65bj3TyjUn98k9uyChe4ZID8hIldvkzkGH0Da53RoJy_oh-W6oRStNB2pRy5c31BBruAZa0Z5WXTGtSmppRQda4S0trSjSilpa0TVa0ZZWj8jp-8OTgw-OTeLhSBZES0cGvp6kkiecaVdPshBmVz8RbqZlxELmJ5xnjHuSJTBOiAwGCqEzX-k0hYWF8AL2mGyWVameEip4qgM3UO4kSLnSbpK6EnUGGoqiUKgx8btHHUsb4R4TrRRxZ8p4HncQxQhRbCAak3d9vbmJ8XJjDdEhGVtJ1UigMRDwxrqvOuhjQBL355JSVU0dewy1DWh4MCZPDCf6_sBMCVOt7z77h5afk7vDC_iCbC4XjXpJbsnVMq8XO2QjnEY7lu8_AUhY1r8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+ultrasound+thawing%2C+vacuum+thawing%2C+and+microwave+thawing+on+gelling+properties+of+protein+from+porcine+longissimus+dorsi&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Wang%2C+Bo&rft.au=Du%2C+Xin&rft.au=Kong%2C+Baohua&rft.au=Liu%2C+Qian&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=64&rft_id=info:doi/10.1016%2Fj.ultsonch.2019.104860&rft.externalDocID=S1350417719315123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |