AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning

•Multi-atlas functional connectivity is calculated as the original feature representation.•Multi-atlas deep feature representation is extracted by a deep learning method.•An ensemble learning strategy is proposed to perform the final ASD identification task.•Our proposed method achieves classificati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of neuroscience methods Ročník 343; s. 108840
Hlavní autoři: Wang, Yufei, Wang, Jianxin, Wu, Fang-Xiang, Hayrat, Rahmatjan, Liu, Jin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.09.2020
Témata:
ISSN:0165-0270, 1872-678X, 1872-678X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Multi-atlas functional connectivity is calculated as the original feature representation.•Multi-atlas deep feature representation is extracted by a deep learning method.•An ensemble learning strategy is proposed to perform the final ASD identification task.•Our proposed method achieves classification accuracy of 74.52%. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is not objective enough and could cause delayed diagnosis. Since functional magnetic resonance imaging (fMRI) can measure brain activity, it provides data for the study of brain dysfunction disorders and has been widely used in ASD identification. However, satisfactory accuracy for ASD identification has not been achieved. To improve the performance of ASD identification, we propose an ASD identification method based on multi-atlas deep feature representation and ensemble learning. We first calculate multiple functional connectivity based on different brain atlases from fMRI data of each subject. Then, to get the more discriminative features for ASD identification, we propose a multi-atlas deep feature representation method based on stacked denoising autoencoder (SDA). Finally, we propose multilayer perceptron (MLP) and an ensemble learning method to perform the final ASD identification task. Our proposed method is evaluated on 949 subjects (including 419 ASDs and 530 typical control (TCs)) from the Autism Brain Imaging Data Exchange (ABIDE) and achieves accuracy of 74.52% (sensitivity of 80.69%, specificity of 66.71%, AUC of 0.8026) for ASD identification. Compared with some previously published methods, our proposed method obtains the better performance for ASD identification. The results suggest that our proposed method is efficient to improve the performance of ASD identification, and is promising for ASD clinical diagnosis.
AbstractList Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is not objective enough and could cause delayed diagnosis. Since functional magnetic resonance imaging (fMRI) can measure brain activity, it provides data for the study of brain dysfunction disorders and has been widely used in ASD identification. However, satisfactory accuracy for ASD identification has not been achieved.BACKGROUNDAutism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is not objective enough and could cause delayed diagnosis. Since functional magnetic resonance imaging (fMRI) can measure brain activity, it provides data for the study of brain dysfunction disorders and has been widely used in ASD identification. However, satisfactory accuracy for ASD identification has not been achieved.To improve the performance of ASD identification, we propose an ASD identification method based on multi-atlas deep feature representation and ensemble learning. We first calculate multiple functional connectivity based on different brain atlases from fMRI data of each subject. Then, to get the more discriminative features for ASD identification, we propose a multi-atlas deep feature representation method based on stacked denoising autoencoder (SDA). Finally, we propose multilayer perceptron (MLP) and an ensemble learning method to perform the final ASD identification task.NEW METHODTo improve the performance of ASD identification, we propose an ASD identification method based on multi-atlas deep feature representation and ensemble learning. We first calculate multiple functional connectivity based on different brain atlases from fMRI data of each subject. Then, to get the more discriminative features for ASD identification, we propose a multi-atlas deep feature representation method based on stacked denoising autoencoder (SDA). Finally, we propose multilayer perceptron (MLP) and an ensemble learning method to perform the final ASD identification task.Our proposed method is evaluated on 949 subjects (including 419 ASDs and 530 typical control (TCs)) from the Autism Brain Imaging Data Exchange (ABIDE) and achieves accuracy of 74.52% (sensitivity of 80.69%, specificity of 66.71%, AUC of 0.8026) for ASD identification.RESULTSOur proposed method is evaluated on 949 subjects (including 419 ASDs and 530 typical control (TCs)) from the Autism Brain Imaging Data Exchange (ABIDE) and achieves accuracy of 74.52% (sensitivity of 80.69%, specificity of 66.71%, AUC of 0.8026) for ASD identification.Compared with some previously published methods, our proposed method obtains the better performance for ASD identification.COMPARISON WITH EXISTING METHODSCompared with some previously published methods, our proposed method obtains the better performance for ASD identification.The results suggest that our proposed method is efficient to improve the performance of ASD identification, and is promising for ASD clinical diagnosis.CONCLUSIONThe results suggest that our proposed method is efficient to improve the performance of ASD identification, and is promising for ASD clinical diagnosis.
•Multi-atlas functional connectivity is calculated as the original feature representation.•Multi-atlas deep feature representation is extracted by a deep learning method.•An ensemble learning strategy is proposed to perform the final ASD identification task.•Our proposed method achieves classification accuracy of 74.52%. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is not objective enough and could cause delayed diagnosis. Since functional magnetic resonance imaging (fMRI) can measure brain activity, it provides data for the study of brain dysfunction disorders and has been widely used in ASD identification. However, satisfactory accuracy for ASD identification has not been achieved. To improve the performance of ASD identification, we propose an ASD identification method based on multi-atlas deep feature representation and ensemble learning. We first calculate multiple functional connectivity based on different brain atlases from fMRI data of each subject. Then, to get the more discriminative features for ASD identification, we propose a multi-atlas deep feature representation method based on stacked denoising autoencoder (SDA). Finally, we propose multilayer perceptron (MLP) and an ensemble learning method to perform the final ASD identification task. Our proposed method is evaluated on 949 subjects (including 419 ASDs and 530 typical control (TCs)) from the Autism Brain Imaging Data Exchange (ABIDE) and achieves accuracy of 74.52% (sensitivity of 80.69%, specificity of 66.71%, AUC of 0.8026) for ASD identification. Compared with some previously published methods, our proposed method obtains the better performance for ASD identification. The results suggest that our proposed method is efficient to improve the performance of ASD identification, and is promising for ASD clinical diagnosis.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on behavioral criteria while this approach is not objective enough and could cause delayed diagnosis. Since functional magnetic resonance imaging (fMRI) can measure brain activity, it provides data for the study of brain dysfunction disorders and has been widely used in ASD identification. However, satisfactory accuracy for ASD identification has not been achieved. To improve the performance of ASD identification, we propose an ASD identification method based on multi-atlas deep feature representation and ensemble learning. We first calculate multiple functional connectivity based on different brain atlases from fMRI data of each subject. Then, to get the more discriminative features for ASD identification, we propose a multi-atlas deep feature representation method based on stacked denoising autoencoder (SDA). Finally, we propose multilayer perceptron (MLP) and an ensemble learning method to perform the final ASD identification task. Our proposed method is evaluated on 949 subjects (including 419 ASDs and 530 typical control (TCs)) from the Autism Brain Imaging Data Exchange (ABIDE) and achieves accuracy of 74.52% (sensitivity of 80.69%, specificity of 66.71%, AUC of 0.8026) for ASD identification. Compared with some previously published methods, our proposed method obtains the better performance for ASD identification. The results suggest that our proposed method is efficient to improve the performance of ASD identification, and is promising for ASD clinical diagnosis.
ArticleNumber 108840
Author Wang, Yufei
Liu, Jin
Wu, Fang-Xiang
Wang, Jianxin
Hayrat, Rahmatjan
Author_xml – sequence: 1
  givenname: Yufei
  surname: Wang
  fullname: Wang, Yufei
  email: willem@csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Jianxin
  surname: Wang
  fullname: Wang, Jianxin
  email: jxwang@mail.csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Fang-Xiang
  surname: Wu
  fullname: Wu, Fang-Xiang
  email: faw341@mail.usask.ca
  organization: Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Canada
– sequence: 4
  givenname: Rahmatjan
  surname: Hayrat
  fullname: Hayrat, Rahmatjan
  email: rahmatjan@csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Jin
  orcidid: 0000-0002-4961-7074
  surname: Liu
  fullname: Liu, Jin
  email: liujin06@csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32653384$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUQEVISSaPXwhaduOJ3rZKFx1CkgZSummhOyFL140GW3YluaV_Xw_ObLrJSiDOuUL3XKDTOEZA6IaSLSVU3e63-wjzAOVlywg7XDaNICdoQ5uaVapufpyizQLKirCanKOLnPeEEKGJOkPnnCnJeSM2KO2evuwe7j_g3VxCHnCewJU0D9iHPCYPCQcPsYQuOFvCGPGfUF7wMPclVLb0NmMPMOEObJkT4ARTgrwIK2yjxxAzDG0PuAebYog_r9C7zvYZrl_PS_T94f7b3efq-evj093uuXJcNaVyigCn2okOGi80tTV1tdSSqpbUjLVOcEm8lMJq0G0HmlsrlOqIdI547fgler_OndL4a4ZczBCyg763EcY5GyYYl1RI3SzozSs6twN4M6Uw2PTXHPe0AB9XwKUx5wSdcWH9Y0k29IYSc8hi9uaYxRyymDXLoqv_9OMLb4qfVhGWRf0OkEx2AaIDH9ISyvgxvDXiH0aarPU
CitedBy_id crossref_primary_10_1016_j_jbi_2024_104714
crossref_primary_10_3390_brainsci13111578
crossref_primary_10_1016_j_neucom_2025_130780
crossref_primary_10_1109_THMS_2025_3526957
crossref_primary_10_1371_journal_pone_0276832
crossref_primary_10_1007_s10586_020_03199_8
crossref_primary_10_1088_1741_2552_ac8b39
crossref_primary_10_1155_2023_4853800
crossref_primary_10_1016_j_compbiomed_2023_107667
crossref_primary_10_1016_j_bbr_2023_114603
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1038_s41398_024_02972_2
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1109_ACCESS_2023_3325701
crossref_primary_10_1016_j_compbiomed_2024_109083
crossref_primary_10_1016_j_engappai_2023_107185
crossref_primary_10_1038_s41598_022_06459_2
crossref_primary_10_1109_JBHI_2023_3286421
crossref_primary_10_1016_j_health_2024_100379
crossref_primary_10_1007_s11571_022_09828_9
crossref_primary_10_1038_s41398_024_03024_5
crossref_primary_10_1007_s41060_023_00408_6
crossref_primary_10_1007_s42979_022_01617_9
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_1038_s44184_023_00050_x
crossref_primary_10_1109_JBHI_2024_3366662
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1016_j_neuroscience_2025_08_001
crossref_primary_10_3390_bioengineering10010056
crossref_primary_10_1016_j_cmpb_2024_108196
crossref_primary_10_1016_j_compbiomed_2024_108415
crossref_primary_10_1111_exsy_13623
crossref_primary_10_48084_etasr_10864
crossref_primary_10_1007_s00371_021_02230_2
crossref_primary_10_1016_j_patrec_2025_05_015
crossref_primary_10_1016_j_heliyon_2023_e21530
crossref_primary_10_1016_j_health_2023_100178
crossref_primary_10_3390_app11083636
crossref_primary_10_1049_cit2_12340
crossref_primary_10_1016_j_jneumeth_2021_109456
crossref_primary_10_1016_j_rineng_2025_104444
crossref_primary_10_1007_s13198_022_01699_x
crossref_primary_10_3233_IDT_220215
crossref_primary_10_1016_j_media_2024_103133
crossref_primary_10_3389_frai_2025_1594372
Cites_doi 10.1007/s11042-017-5470-7
10.1016/j.media.2018.06.001
10.1002/hbm.23575
10.1016/j.neuron.2011.09.006
10.1016/j.tins.2007.12.005
10.1038/nrn2201
10.1016/j.neuroimage.2009.09.037
10.3389/fnins.2018.00525
10.1016/j.pnpbp.2015.06.014
10.1109/TCBB.2016.2635144
10.1016/j.media.2017.07.005
10.1016/j.cortex.2014.08.011
10.1016/j.nicl.2014.12.013
10.1097/WCO.0b013e32835ee548
10.1089/brain.2017.0496
10.3389/fnhum.2014.00349
10.1007/BF02172145
10.1016/j.nicl.2017.08.017
10.1176/appi.ajp.2011.10101532
10.1016/j.neucom.2018.04.080
10.1109/TNB.2017.2751074
10.1016/j.neuroimage.2016.10.045
10.26599/BDMA.2018.9020001
10.3389/fbioe.2019.00479
10.1023/A:1005592401947
10.1186/s12888-015-0382-4
10.1002/aur.204
10.1093/brain/awr263
10.1126/science.1194144
10.1038/nature14539
10.1109/TCBB.2017.2731849
10.1006/nimg.2001.0978
10.1002/hbm.21333
10.1007/s12264-017-0102-9
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2020.108840
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 32653384
10_1016_j_jneumeth_2020_108840
S0165027020302636
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
AFKWA
AJOXV
AMFUW
NPM
7X8
ID FETCH-LOGICAL-c368t-c60e319c4fe8d491a71c759516b0722bc4350d554a9e9bfe93aa466f05cc0d9c3
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557762600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0270
1872-678X
IngestDate Sun Sep 28 02:54:05 EDT 2025
Wed Feb 19 02:30:24 EST 2025
Sat Nov 29 07:21:57 EST 2025
Tue Nov 18 22:26:23 EST 2025
Sun Apr 06 06:53:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Functional magnetic resonance imaging
Ensemble learning
Stacked denoising autoencoder
Autism spectrum disorder identification
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-c60e319c4fe8d491a71c759516b0722bc4350d554a9e9bfe93aa466f05cc0d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4961-7074
PMID 32653384
PQID 2423514598
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2423514598
pubmed_primary_32653384
crossref_citationtrail_10_1016_j_jneumeth_2020_108840
crossref_primary_10_1016_j_jneumeth_2020_108840
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108840
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kong, Gao, Xu, Pan, Wang, Liu (bib0090) 2019; 324
Chen, Duan, Liu, Lu, Ma, Zhang, Uddin, Chen (bib0025) 2016; 64
Jahedi, Nasamran, Faires, Fan, Müller (bib0075) 2017; 7
Lord, Rutter, Le Couteur (bib0135) 1994; 24
Fox, Raichle (bib0055) 2007; 8
Lord, Risi, Lambrecht, Cook, Leventhal, DiLavore, Pickles, Rutter (bib0140) 2000; 30
Huettel, Song, McCarthy (bib0065) 2004
Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello, Cooperrider, Zielinski, Ravichandran, Fletcher (bib0015) 2011; 134
Liu, Pan, Wu, Wang (bib0130) 2020
LeCun, Bengio, Hinton (bib0095) 2015; 521
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib0005) 2017; 147
Liu, Li, Pan, Wu, Chen, Wang (bib0105) 2017; 16
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (bib0060) 2018; 17
Liu, Li, Lan, Wu, Pan, Wang (bib0115) 2018; 15
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib0175) 2002; 15
Wang, Deng, You, Chen, Li, Tang, Ceng, Zou, Zou (bib0195) 2017; 33
Dvornek, Ventola, Pelphrey, Duncan (bib0050) 2017
Plitt, Barnes, Martin (bib0160) 2015; 7
Timimi, Milton, Bovell, Kapp, Russell (bib0170) 2019; 1
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (bib0100) 2017; 42
Craddock, Sikka, Cheung, Khanuja, Ghosh, Yan, Li, Lurie, Vogelstein, Burns (bib0035) 2013; 42
Liu, Wang, Tang, Hu, Wu, Pan (bib0120) 2018; 15
Iidaka (bib0070) 2015; 63
Kim, Leventhal, Koh, Fombonne, Laska, Lim, Cheon, Kim, Kim, Lee (bib0085) 2011; 168
Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (bib0150) 2018; 48
Xiang, Wang, Tan, Wu, Liu (bib0205) 2020; 7
Liu, Wang, Zhang, Pan, Wang, Wang (bib0125) 2018; 77
Vincent, Larochelle, Bengio, Manzagol (bib0180) 2008
Buxton (bib0020) 2009
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0185) 2010; 11
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar (bib0040) 2010; 329
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay, Scikit-learn (bib0155) 2011; 12
Ou, Shi, Xun, Chen, Wu, Luo, Zhang, Zhao (bib0145) 2015; 15
Kana, Uddin, Kenet, Chugani, Müller (bib0080) 2014; 8
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar (bib0165) 2011; 72
Wang, Wang, Peng, Nie, Zhao, Kim, Zhang, Wee, Wang, Shen (bib0190) 2017; 38
Zuo, Di Martino, Kelly, Shehzad, Gee, Klein, Castellanos, Biswal, Milham (bib0215) 2010; 49
Craddock, James, Holtzheimer, Hu, Mayberg (bib0030) 2012; 33
Werling, Geschwind (bib0200) 2013; 26
Yerys, Pennington (bib0210) 2011; 4
Amaral, Schumann, Nordahl (bib0010) 2008; 31
Du, Fu, Calhoun (bib0045) 2018; 12
Liu, Pan, Li, Chen, Tang, Lu, Wang (bib0110) 2018; 1
Craddock (10.1016/j.jneumeth.2020.108840_bib0030) 2012; 33
Xiang (10.1016/j.jneumeth.2020.108840_bib0205) 2020; 7
Amaral (10.1016/j.jneumeth.2020.108840_bib0010) 2008; 31
Yerys (10.1016/j.jneumeth.2020.108840_bib0210) 2011; 4
Anderson (10.1016/j.jneumeth.2020.108840_bib0015) 2011; 134
Abraham (10.1016/j.jneumeth.2020.108840_bib0005) 2017; 147
Buxton (10.1016/j.jneumeth.2020.108840_bib0020) 2009
Kong (10.1016/j.jneumeth.2020.108840_bib0090) 2019; 324
Tzourio-Mazoyer (10.1016/j.jneumeth.2020.108840_bib0175) 2002; 15
Liu (10.1016/j.jneumeth.2020.108840_bib0115) 2018; 15
Vincent (10.1016/j.jneumeth.2020.108840_bib0180) 2008
Pedregosa (10.1016/j.jneumeth.2020.108840_bib0155) 2011; 12
Lord (10.1016/j.jneumeth.2020.108840_bib0140) 2000; 30
Liu (10.1016/j.jneumeth.2020.108840_bib0120) 2018; 15
Liu (10.1016/j.jneumeth.2020.108840_bib0130) 2020
Fox (10.1016/j.jneumeth.2020.108840_bib0055) 2007; 8
Liu (10.1016/j.jneumeth.2020.108840_bib0125) 2018; 77
Liu (10.1016/j.jneumeth.2020.108840_bib0110) 2018; 1
Timimi (10.1016/j.jneumeth.2020.108840_bib0170) 2019; 1
Craddock (10.1016/j.jneumeth.2020.108840_bib0035) 2013; 42
Zuo (10.1016/j.jneumeth.2020.108840_bib0215) 2010; 49
Ou (10.1016/j.jneumeth.2020.108840_bib0145) 2015; 15
Dosenbach (10.1016/j.jneumeth.2020.108840_bib0040) 2010; 329
Liu (10.1016/j.jneumeth.2020.108840_bib0105) 2017; 16
Iidaka (10.1016/j.jneumeth.2020.108840_bib0070) 2015; 63
LeCun (10.1016/j.jneumeth.2020.108840_bib0095) 2015; 521
Dvornek (10.1016/j.jneumeth.2020.108840_bib0050) 2017
Heinsfeld (10.1016/j.jneumeth.2020.108840_bib0060) 2018; 17
Wang (10.1016/j.jneumeth.2020.108840_bib0195) 2017; 33
Litjens (10.1016/j.jneumeth.2020.108840_bib0100) 2017; 42
Kana (10.1016/j.jneumeth.2020.108840_bib0080) 2014; 8
Du (10.1016/j.jneumeth.2020.108840_bib0045) 2018; 12
Kim (10.1016/j.jneumeth.2020.108840_bib0085) 2011; 168
Parisot (10.1016/j.jneumeth.2020.108840_bib0150) 2018; 48
Werling (10.1016/j.jneumeth.2020.108840_bib0200) 2013; 26
Wang (10.1016/j.jneumeth.2020.108840_bib0190) 2017; 38
Lord (10.1016/j.jneumeth.2020.108840_bib0135) 1994; 24
Chen (10.1016/j.jneumeth.2020.108840_bib0025) 2016; 64
Huettel (10.1016/j.jneumeth.2020.108840_bib0065) 2004
Plitt (10.1016/j.jneumeth.2020.108840_bib0160) 2015; 7
Power (10.1016/j.jneumeth.2020.108840_bib0165) 2011; 72
Jahedi (10.1016/j.jneumeth.2020.108840_bib0075) 2017; 7
Vincent (10.1016/j.jneumeth.2020.108840_bib0185) 2010; 11
References_xml – volume: 1
  start-page: 1
  year: 2019
  end-page: 39
  ident: bib0170
  article-title: Deconstructing diagnosis: four commentaries on a diagnostic tool to assess individuals for autism spectrum disorders
  publication-title: Autonomy (Birm)
– volume: 64
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0025
  article-title: Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity – a multi-center study
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: bib0030
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Human Brain Mapp.
– volume: 7
  start-page: 359
  year: 2015
  end-page: 366
  ident: bib0160
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage: Clin.
– volume: 33
  start-page: 153
  year: 2017
  end-page: 160
  ident: bib0195
  article-title: Sex differences in diagnosis and clinical phenotypes of Chinese children with autism spectrum disorder
  publication-title: Neurosci. Bull.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0100
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 42
  year: 2013
  ident: bib0035
  article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)
  publication-title: Front. Neuroinform.
– volume: 134
  start-page: 3742
  year: 2011
  end-page: 3754
  ident: bib0015
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
– volume: 8
  start-page: 349
  year: 2014
  ident: bib0080
  article-title: Brain connectivity in autism
  publication-title: Front. Human Neurosci.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0180
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 168
  start-page: 904
  year: 2011
  end-page: 912
  ident: bib0085
  article-title: Prevalence of autism spectrum disorders in a total population sample
  publication-title: Am. J. Psychiatry
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib0040
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: bib0060
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage: Clin.
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: bib0005
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
– volume: 15
  start-page: 624
  year: 2018
  end-page: 632
  ident: bib0115
  article-title: Classification of Alzheimer’s disease using whole brain hierarchical network
  publication-title: IEEE/ACM Trans. Comput. Bio. Bioinformatics
– volume: 15
  start-page: 3
  year: 2015
  ident: bib0145
  article-title: Employment and financial burden of families with preschool children diagnosed with autism spectrum disorders in urban china: results from a descriptive study
  publication-title: BMC Psychiatry
– volume: 48
  start-page: 117
  year: 2018
  end-page: 130
  ident: bib0150
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease
  publication-title: Med. Image Anal.
– volume: 38
  start-page: 3081
  year: 2017
  end-page: 3097
  ident: bib0190
  article-title: Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study
  publication-title: Human Brain Mapp.
– year: 2004
  ident: bib0065
  article-title: Functional Magnetic Resonance Imaging, vol. 1
– volume: 24
  start-page: 659
  year: 1994
  end-page: 685
  ident: bib0135
  article-title: Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
  publication-title: J. Autism Dev. Disord.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0175
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 4
  start-page: 239
  year: 2011
  end-page: 241
  ident: bib0210
  article-title: How do we establish a biological marker for a behaviorally defined disorder?. autism as a test case
  publication-title: Autism Res.
– volume: 1
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib0110
  article-title: Applications of deep learning to MRI images: a survey
  publication-title: Big Data Mining Anal.
– volume: 30
  start-page: 205
  year: 2000
  end-page: 223
  ident: bib0140
  article-title: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism
  publication-title: J. Autism Dev. Disord.
– volume: 49
  start-page: 1432
  year: 2010
  end-page: 1445
  ident: bib0215
  article-title: The oscillating brain: complex and reliable
  publication-title: Neuroimage
– volume: 31
  start-page: 137
  year: 2008
  end-page: 145
  ident: bib0010
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0095
  article-title: Deep learning
  publication-title: Nature
– volume: 12
  start-page: 525
  year: 2018
  ident: bib0045
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Front. Neurosci.
– volume: 15
  start-page: 1649
  year: 2018
  end-page: 1659
  ident: bib0120
  article-title: Improving Alzheimer’s disease classification by combining multiple measures
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics
– volume: 77
  start-page: 29651
  year: 2018
  end-page: 29667
  ident: bib0125
  article-title: MMM: classification of schizophrenia using multi-modality multi-atlas feature representation and multi-kernel learning
  publication-title: Multimedia Tools Appl.
– volume: 16
  start-page: 600
  year: 2017
  end-page: 608
  ident: bib0105
  article-title: Classification of schizophrenia based on individual hierarchical brain networks constructed from structural MRI images
  publication-title: IEEE Trans. Nanobiosci.
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib0165
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 324
  start-page: 63
  year: 2019
  end-page: 68
  ident: bib0090
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
– year: 2009
  ident: bib0020
  article-title: Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques
– start-page: 362
  year: 2017
  end-page: 370
  ident: bib0050
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib0055
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– volume: 26
  start-page: 146
  year: 2013
  ident: bib0200
  article-title: Sex differences in autism spectrum disorders
  publication-title: Curr. Opin. Neurol.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0185
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0155
  article-title: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 479
  year: 2020
  ident: bib0205
  article-title: Schizophrenia identification using multi-view graph measures of functional brain networks
  publication-title: Front. Bioeng. Biotechnol.
– volume: 7
  start-page: 515
  year: 2017
  end-page: 525
  ident: bib0075
  article-title: Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort
  publication-title: Brain Connect.
– volume: 63
  start-page: 55
  year: 2015
  end-page: 67
  ident: bib0070
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
– year: 2020
  ident: bib0130
  article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for mci classification
  publication-title: Neurocomputing
– year: 2009
  ident: 10.1016/j.jneumeth.2020.108840_bib0020
– volume: 77
  start-page: 29651
  issue: 22
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0125
  article-title: MMM: classification of schizophrenia using multi-modality multi-atlas feature representation and multi-kernel learning
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-5470-7
– volume: 48
  start-page: 117
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0150
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.06.001
– volume: 38
  start-page: 3081
  issue: 6
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0190
  article-title: Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.23575
– start-page: 1096
  year: 2008
  ident: 10.1016/j.jneumeth.2020.108840_bib0180
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 1
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108840_bib0170
  article-title: Deconstructing diagnosis: four commentaries on a diagnostic tool to assess individuals for autism spectrum disorders
  publication-title: Autonomy (Birm)
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108840_bib0185
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108840_bib0165
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 31
  start-page: 137
  issue: 3
  year: 2008
  ident: 10.1016/j.jneumeth.2020.108840_bib0010
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.12.005
– volume: 8
  start-page: 700
  issue: 9
  year: 2007
  ident: 10.1016/j.jneumeth.2020.108840_bib0055
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– year: 2020
  ident: 10.1016/j.jneumeth.2020.108840_bib0130
  article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for mci classification
  publication-title: Neurocomputing
– volume: 49
  start-page: 1432
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108840_bib0215
  article-title: The oscillating brain: complex and reliable
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.037
– volume: 12
  start-page: 525
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0045
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00525
– volume: 64
  start-page: 1
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108840_bib0025
  article-title: Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity – a multi-center study
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2015.06.014
– volume: 15
  start-page: 624
  issue: 2
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0115
  article-title: Classification of Alzheimer’s disease using whole brain hierarchical network
  publication-title: IEEE/ACM Trans. Comput. Bio. Bioinformatics
  doi: 10.1109/TCBB.2016.2635144
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0100
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 63
  start-page: 55
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108840_bib0070
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.08.011
– volume: 7
  start-page: 359
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108840_bib0160
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.12.013
– volume: 26
  start-page: 146
  issue: 2
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108840_bib0200
  article-title: Sex differences in autism spectrum disorders
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32835ee548
– volume: 7
  start-page: 515
  issue: 8
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0075
  article-title: Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort
  publication-title: Brain Connect.
  doi: 10.1089/brain.2017.0496
– volume: 8
  start-page: 349
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108840_bib0080
  article-title: Brain connectivity in autism
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2014.00349
– volume: 24
  start-page: 659
  issue: 5
  year: 1994
  ident: 10.1016/j.jneumeth.2020.108840_bib0135
  article-title: Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/BF02172145
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0060
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: 42
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108840_bib0035
  article-title: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac)
  publication-title: Front. Neuroinform.
– volume: 168
  start-page: 904
  issue: 9
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108840_bib0085
  article-title: Prevalence of autism spectrum disorders in a total population sample
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2011.10101532
– volume: 324
  start-page: 63
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108840_bib0090
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.080
– volume: 16
  start-page: 600
  issue: 7
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0105
  article-title: Classification of schizophrenia based on individual hierarchical brain networks constructed from structural MRI images
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2017.2751074
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0005
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– start-page: 362
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0050
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0110
  article-title: Applications of deep learning to MRI images: a survey
  publication-title: Big Data Mining Anal.
  doi: 10.26599/BDMA.2018.9020001
– volume: 7
  start-page: 479
  year: 2020
  ident: 10.1016/j.jneumeth.2020.108840_bib0205
  article-title: Schizophrenia identification using multi-view graph measures of functional brain networks
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00479
– year: 2004
  ident: 10.1016/j.jneumeth.2020.108840_bib0065
– volume: 30
  start-page: 205
  issue: 3
  year: 2000
  ident: 10.1016/j.jneumeth.2020.108840_bib0140
  article-title: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism
  publication-title: J. Autism Dev. Disord.
  doi: 10.1023/A:1005592401947
– volume: 15
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108840_bib0145
  article-title: Employment and financial burden of families with preschool children diagnosed with autism spectrum disorders in urban china: results from a descriptive study
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-015-0382-4
– volume: 4
  start-page: 239
  issue: 4
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108840_bib0210
  article-title: How do we establish a biological marker for a behaviorally defined disorder?. autism as a test case
  publication-title: Autism Res.
  doi: 10.1002/aur.204
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108840_bib0155
  article-title: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 134
  start-page: 3742
  issue: 12
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108840_bib0015
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  ident: 10.1016/j.jneumeth.2020.108840_bib0040
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108840_bib0095
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 15
  start-page: 1649
  issue: 5
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108840_bib0120
  article-title: Improving Alzheimer’s disease classification by combining multiple measures
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinformatics
  doi: 10.1109/TCBB.2017.2731849
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.jneumeth.2020.108840_bib0175
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108840_bib0030
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.21333
– volume: 33
  start-page: 153
  issue: 2
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108840_bib0195
  article-title: Sex differences in diagnosis and clinical phenotypes of Chinese children with autism spectrum disorder
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-017-0102-9
SSID ssj0004906
Score 2.5282304
SecondaryResourceType review_article
Snippet •Multi-atlas functional connectivity is calculated as the original feature representation.•Multi-atlas deep feature representation is extracted by a deep...
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that could cause problems in social communications. Clinically, diagnosing ASD mainly relies on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108840
SubjectTerms Autism spectrum disorder identification
Ensemble learning
Functional connectivity
Functional magnetic resonance imaging
Stacked denoising autoencoder
Title AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning
URI https://dx.doi.org/10.1016/j.jneumeth.2020.108840
https://www.ncbi.nlm.nih.gov/pubmed/32653384
https://www.proquest.com/docview/2423514598
Volume 343
WOSCitedRecordID wos000557762600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DSEuE2x8dMBkJMQlSkkaJ7G5VagTm7SJw9DCKXIcZ7Ra06prp-7f4S_l-SttB2XswCWKHNmx835-ee_5fSD0ngddVpIC9reME58UEfF5HHGfSJBFgliIMC50sYn07IxmGfvaav10sTA3V2ld08WCTf4rqaENiK1CZx9A7mZQaIB7IDpcgexw_SfC945Pe0d9bfCDt1yPPB1MOZ2P1GGMzrTpDUrrI2Sor22x2rPQ5zOQpr1SyolXSZ3z09NpL12IknFdBtVXjlTIla05cblBxF1JliltrepGhL-whurv80oO7jaeAGgXgwa3F3MtY8NDP4Mnl0u2eQsA1ijhP0D0HlqoWysGqKzOTasxbCYqUtwUEXGcOSLRCm8NgSGa1E6_sX1jgRh2hrAutZqOekVn2WE9z_ad_1_jlegc3oa5GydX4-RmnC20001jBpxzp3fcz06W0bdMV3BtVrASh_7nGW0SgTapOFrUOX-Kdi0Bcc9g6xlqyXoP7fdqPhuPbvEHrL2G9XHMHnp8ap0z9tHUIO8TNrjDDnfY4Q6v4w4r3OEV3GGFO2xxh9dxhwF32OEOO9w9R9-O-uefv_i2pIcvooTOfJEEEpi-IJWkJWEhT0MBHzUOkyJIu91CgPQelCDiciZZUUkWcU6SpFJcIyiZiF6g7Xpcy1cIi5SU8LMSFAYkMqwoiVMJygillCci6rZR7L5yLmy-e1V25Sr_O53b6GPTb2Iyvtzbgzki5nZPGXk0B3ze2_edo3oOjF2d1vFajufXuVJ0QJuJGW2jlwYOzXxgmaCmUXLw4Lm-Rk-W2-8N2gYYyLfokbgBYEwP0Vaa0UML8F9IdtWy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AIMAFE%3A+Autism+spectrum+disorder+identification+with+multi-atlas+deep+feature+representation+and+ensemble+learning&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Wang%2C+Yufei&rft.au=Wang%2C+Jianxin&rft.au=Wu%2C+Fang-Xiang&rft.au=Hayrat%2C+Rahmatjan&rft.date=2020-09-01&rft.issn=0165-0270&rft.volume=343&rft.spage=108840&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2020_108840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon