Diversity of solutions: An exploration through the lens of fixed-parameter tractability theory

•Parameterized analysis of a general notion of diversity of solutions that suits a large class of combinatorial problems.•Introduction of the notion of dynamic programming core.•Efficient dynamic cores for computing one solution yield efficient dynamic cores for computing a diverse set of solutions....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence Ročník 303; s. 103644
Hlavní autoři: Baste, Julien, Fellows, Michael R., Jaffke, Lars, Masařík, Tomáš, de Oliveira Oliveira, Mateus, Philip, Geevarghese, Rosamond, Frances A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.02.2022
Elsevier Science Ltd
Elsevier
Témata:
ISSN:0004-3702, 1872-7921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Parameterized analysis of a general notion of diversity of solutions that suits a large class of combinatorial problems.•Introduction of the notion of dynamic programming core.•Efficient dynamic cores for computing one solution yield efficient dynamic cores for computing a diverse set of solutions.•The notion of diversity of solutions is also compatible with certain notions of kernel. When modeling an application of practical relevance as an instance of a combinatorial problem X, we are often interested not merely in finding one optimal solution for that instance, but in finding a sufficiently diverse collection of good solutions. In this work we initiate a systematic study of diversity from the point of view of fixed-parameter tractability theory. First, we consider an intuitive notion of diversity of a collection of solutions which suits a large variety of combinatorial problems of practical interest. We then present an algorithmic framework which –automatically– converts a tree-decomposition-based dynamic programming algorithm for a given combinatorial problem X into a dynamic programming algorithm for the diverse version of X. Surprisingly, our algorithm has a polynomial dependence on the diversity parameter.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2021.103644