Computational complexity of stochastic programming problems
Stochastic programming is the subfield of mathematical programming that considers optimization in the presence of uncertainty. During the last four decades a vast quantity of literature on the subject has appeared. Developments in the theory of computational complexity allow us to establish the theo...
Uložené v:
| Vydané v: | Mathematical programming Ročník 106; číslo 3; s. 423 - 432 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Springer
01.07.2006
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Stochastic programming is the subfield of mathematical programming that considers optimization in the presence of uncertainty. During the last four decades a vast quantity of literature on the subject has appeared. Developments in the theory of computational complexity allow us to establish the theoretical complexity of a variety of stochastic programming problems studied in this literature. Under the assumption that the stochastic parameters are independently distributed, we show that two-stage stochastic programming problems are #P-hard. Under the same assumption we show that certain multi-stage stochastic programming problems are PSPACE-hard. The problems we consider are non-standard in that distributions of stochastic parameters in later stages depend on decisions made in earlier stages. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-005-0597-0 |