Computational complexity of stochastic programming problems

Stochastic programming is the subfield of mathematical programming that considers optimization in the presence of uncertainty. During the last four decades a vast quantity of literature on the subject has appeared. Developments in the theory of computational complexity allow us to establish the theo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 106; číslo 3; s. 423 - 432
Hlavní autori: Dyer, Martin, Stougie, Leen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer 01.07.2006
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Stochastic programming is the subfield of mathematical programming that considers optimization in the presence of uncertainty. During the last four decades a vast quantity of literature on the subject has appeared. Developments in the theory of computational complexity allow us to establish the theoretical complexity of a variety of stochastic programming problems studied in this literature. Under the assumption that the stochastic parameters are independently distributed, we show that two-stage stochastic programming problems are #P-hard. Under the same assumption we show that certain multi-stage stochastic programming problems are PSPACE-hard. The problems we consider are non-standard in that distributions of stochastic parameters in later stages depend on decisions made in earlier stages. [PUBLICATION ABSTRACT]
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-005-0597-0