Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected n...
Gespeichert in:
| Veröffentlicht in: | Computer methods in applied mechanics and engineering Jg. 390; S. 114502 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
15.02.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs. |
|---|---|
| AbstractList | Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs. |
| ArticleNumber | 114502 |
| Author | Gao, Han Zahr, Matthew J. Wang, Jian-Xun |
| Author_xml | – sequence: 1 givenname: Han surname: Gao fullname: Gao, Han – sequence: 2 givenname: Matthew J. orcidid: 0000-0003-4066-981X surname: Zahr fullname: Zahr, Matthew J. – sequence: 3 givenname: Jian-Xun orcidid: 0000-0002-9030-1733 surname: Wang fullname: Wang, Jian-Xun email: jwang33@nd.edu |
| BookMark | eNp9kE1PGzEQhq2KSg20P6A3S5w3-GM_vOWEKKRIkcqhPVuOPQ4Ou3Y63gTRX1-v0hMH5jKa0fvMq3nPyVlMEQj5ytmSM95e7ZZ2NEvBBF9yXjdMfCALrrq-ElyqM7JgrG6qTonmEznPecdKKS4W5O_j02sONlch-oQjOLpFs3-iEQ5oBroyA-BziGWeXhI-52_0hh5i8KEoPZoR5i0tKM1pOIa4pY_f76ptOgLGWZLwxaCjJjoaYllmoHtMmwHG_Jl89GbI8OV_vyC_7-9-3f6o1j9XD7c368rKVk3VRtaG29b1rlESeqj7rpXe1cK2nPcbablQXdcbC9457uamNp47z_qurvtaXpDL091i_OcAedK7dMBYLLVoZSNa1cpZ1Z1UFlPOCF7bMJkppDihCYPmTM9B650uQes5aH0KupD8DbnHMBp8fZe5PjFQHj8GQJ1tgGjBBQQ7aZfCO_Q_6QGZ7g |
| CitedBy_id | crossref_primary_10_1016_j_cja_2024_11_025 crossref_primary_10_1063_5_0200168 crossref_primary_10_1016_j_cma_2023_116258 crossref_primary_10_1016_j_cma_2024_117102 crossref_primary_10_1038_s43247_024_01942_2 crossref_primary_10_1016_j_jmps_2025_106222 crossref_primary_10_1016_j_cam_2025_116663 crossref_primary_10_3390_s23031722 crossref_primary_10_1007_s00466_023_02365_0 crossref_primary_10_1007_s11831_023_09890_4 crossref_primary_10_1002_adts_202400589 crossref_primary_10_1016_j_cma_2022_114909 crossref_primary_10_23939_cds2025_01_011 crossref_primary_10_1016_j_jcp_2023_112438 crossref_primary_10_1016_j_engstruct_2025_120018 crossref_primary_10_1098_rsta_2024_0221 crossref_primary_10_1038_s44172_024_00303_3 crossref_primary_10_1088_3050_287X_adfaf7 crossref_primary_10_1016_j_cma_2025_117755 crossref_primary_10_3390_ai5030074 crossref_primary_10_3390_app132413312 crossref_primary_10_1109_TPAMI_2025_3542423 crossref_primary_10_3390_app14167002 crossref_primary_10_1063_5_0216921 crossref_primary_10_1016_j_cja_2024_11_018 crossref_primary_10_1016_j_cma_2025_118284 crossref_primary_10_1016_j_ijsolstr_2025_113315 crossref_primary_10_1016_j_enbuild_2024_114575 crossref_primary_10_1016_j_jcp_2023_111912 crossref_primary_10_1038_s41598_024_67597_3 crossref_primary_10_1016_j_compstruc_2023_107234 crossref_primary_10_1016_j_buildenv_2024_111175 crossref_primary_10_1016_j_wavemoti_2024_103371 crossref_primary_10_1007_s11071_022_08161_4 crossref_primary_10_1016_j_ress_2024_110777 crossref_primary_10_1016_j_compgeo_2025_107389 crossref_primary_10_1016_j_cma_2023_116277 crossref_primary_10_1016_j_jcp_2023_112584 crossref_primary_10_1016_j_compbiomed_2024_108328 crossref_primary_10_1016_j_cageo_2024_105711 crossref_primary_10_1016_j_cnsns_2024_108103 crossref_primary_10_1016_j_advwatres_2024_104870 crossref_primary_10_2118_225442_PA crossref_primary_10_1016_j_engappai_2024_108055 crossref_primary_10_1038_s43588_024_00643_2 crossref_primary_10_3390_math11092016 crossref_primary_10_1017_dce_2023_2 crossref_primary_10_1038_s41598_023_43325_1 crossref_primary_10_1016_j_neucom_2024_129134 crossref_primary_10_1002_nme_7146 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1016_j_cma_2024_116904 crossref_primary_10_1007_s00170_025_15551_6 crossref_primary_10_1016_j_ijmecsci_2024_109783 crossref_primary_10_1016_j_jrmge_2024_10_025 crossref_primary_10_3390_math13132117 crossref_primary_10_1016_j_optlastec_2025_113828 crossref_primary_10_1016_j_cma_2025_118025 crossref_primary_10_1016_j_rineng_2024_102235 crossref_primary_10_1007_s00366_024_01957_5 crossref_primary_10_1016_j_cpc_2025_109754 crossref_primary_10_1016_j_engappai_2023_107324 crossref_primary_10_1016_j_enganabound_2025_106161 crossref_primary_10_1016_j_amc_2023_128392 crossref_primary_10_1038_s42005_024_01521_z crossref_primary_10_1016_j_cma_2025_118260 crossref_primary_10_1016_j_inffus_2023_102041 crossref_primary_10_1088_1402_4896_ad7dc0 crossref_primary_10_1016_j_jcp_2025_113919 crossref_primary_10_1137_23M1556605 crossref_primary_10_1007_s43452_023_00820_6 crossref_primary_10_1016_j_jcp_2022_111510 crossref_primary_10_1016_j_tws_2024_112495 crossref_primary_10_1016_j_advengsoft_2024_103758 crossref_primary_10_1109_TNNLS_2023_3347453 crossref_primary_10_1007_s10409_025_25340_x crossref_primary_10_1016_j_cma_2023_115902 crossref_primary_10_1016_j_cpc_2025_109582 crossref_primary_10_1016_j_jcp_2024_112762 crossref_primary_10_1016_j_ijmecsci_2025_110783 crossref_primary_10_1177_14759217241289575 crossref_primary_10_1016_j_cma_2024_117268 crossref_primary_10_1108_HFF_07_2023_0358 crossref_primary_10_1115_1_4068832 crossref_primary_10_1109_TCSII_2023_3347337 crossref_primary_10_1007_s11071_023_08361_6 crossref_primary_10_1016_j_cma_2022_115757 crossref_primary_10_1016_j_jcp_2024_113569 crossref_primary_10_1109_ACCESS_2024_3452314 crossref_primary_10_1016_j_ymssp_2024_111297 crossref_primary_10_3390_math12020250 crossref_primary_10_1016_j_wroa_2025_100367 crossref_primary_10_1007_s00366_023_01871_2 crossref_primary_10_1016_j_cma_2024_117410 crossref_primary_10_1016_j_jcp_2024_113284 crossref_primary_10_1016_j_cma_2023_116181 crossref_primary_10_1016_j_jcp_2024_113161 crossref_primary_10_1016_j_knosys_2025_113717 crossref_primary_10_1002_mp_17554 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1007_s12206_024_0624_9 crossref_primary_10_1007_s00366_024_01971_7 crossref_primary_10_1007_s00366_024_02090_z crossref_primary_10_1016_j_asoc_2024_111437 crossref_primary_10_1016_j_jcp_2024_112866 crossref_primary_10_1038_s42003_023_04914_y crossref_primary_10_1007_s40314_023_02323_9 crossref_primary_10_1016_j_camwa_2024_07_024 crossref_primary_10_1016_j_jcp_2023_112369 crossref_primary_10_1016_j_mechmat_2023_104642 crossref_primary_10_1016_j_camwa_2025_01_025 crossref_primary_10_1016_j_cma_2025_117888 crossref_primary_10_1016_j_cma_2025_117921 crossref_primary_10_1088_1572_9494_ada3ce crossref_primary_10_1016_j_cma_2023_116351 crossref_primary_10_59717_j_xinn_energy_2025_100087 crossref_primary_10_1016_j_cma_2024_117001 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420 crossref_primary_10_1108_EC_12_2023_0958 crossref_primary_10_1038_s42256_023_00685_7 crossref_primary_10_1016_j_ress_2025_110906 crossref_primary_10_1016_j_cej_2024_150072 crossref_primary_10_1007_s00158_022_03383_x crossref_primary_10_1016_j_cmpb_2024_108427 crossref_primary_10_1016_j_cpc_2024_109129 crossref_primary_10_1016_j_engappai_2025_111098 crossref_primary_10_1016_j_combustflame_2025_114190 crossref_primary_10_1016_j_jcp_2023_112415 crossref_primary_10_1038_s41524_024_01307_5 crossref_primary_10_1016_j_jcp_2024_113544 crossref_primary_10_1016_j_cma_2024_116825 crossref_primary_10_1016_j_cma_2024_117478 crossref_primary_10_1080_17486025_2025_2502029 crossref_primary_10_1016_j_chaos_2023_113169 crossref_primary_10_1007_s00366_024_01955_7 crossref_primary_10_1007_s10483_023_2941_6 crossref_primary_10_1016_j_rser_2024_114898 crossref_primary_10_1016_j_neucom_2025_129917 crossref_primary_10_1017_dce_2022_24 crossref_primary_10_1080_10407790_2023_2264489 crossref_primary_10_1063_5_0197860 crossref_primary_10_1016_j_cma_2024_117509 crossref_primary_10_1016_j_compchemeng_2023_108547 crossref_primary_10_1016_j_dte_2025_100057 crossref_primary_10_1016_j_cma_2022_115645 crossref_primary_10_1016_j_engappai_2023_106284 crossref_primary_10_1007_s10462_024_10931_y crossref_primary_10_1016_j_cma_2024_117628 crossref_primary_10_1063_5_0258420 |
| Cites_doi | 10.1016/j.cma.2019.112789 10.1016/j.taml.2020.01.031 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P 10.1016/j.jcp.2019.05.024 10.1016/j.cma.2020.113226 10.1063/5.0047428 10.1109/TPAMI.2021.3054830 10.1063/5.0054312 10.1016/j.cma.2020.112892 10.1007/s40304-018-0127-z 10.1016/j.jcp.2020.109409 10.1364/OE.384875 10.1016/j.jcp.2019.109056 10.1016/j.cma.2020.113547 10.1016/j.cma.2019.112732 10.1016/j.jcp.2020.109951 10.1016/j.engstruct.2020.110704 10.1016/j.neucom.2018.06.056 10.1016/j.cma.2020.113028 10.1063/5.0055600 10.1016/j.cma.2019.112790 10.1137/19M1274067 10.1073/pnas.2100697118 10.1126/science.aaw4741 10.1007/BF01399007 10.1016/S0024-3795(01)00313-5 10.1007/s00466-019-01740-0 10.1016/j.cma.2019.112623 10.1016/j.cma.2020.113379 10.3389/fphy.2020.00042 10.1016/j.cma.2021.113722 10.1016/j.jcp.2018.10.045 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Feb 15, 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Feb 15, 2022 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2021.114502 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2021_114502 S0045782521007076 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c368t-b34a1c6d9d583e9e49763fd42c6119b3c128779acefdd1dcefd8bf1df09744943 |
| ISICitedReferencesCount | 190 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781386000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sun Nov 09 08:08:18 EST 2025 Tue Nov 18 20:49:35 EST 2025 Sat Nov 29 07:30:13 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Physics-informed machine learning Mechanics Graph convolutional neural networks Partial differential equations Inverse problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-b34a1c6d9d583e9e49763fd42c6119b3c128779acefdd1dcefd8bf1df09744943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9030-1733 0000-0003-4066-981X |
| OpenAccessLink | https://doi.org/10.1016/j.cma.2021.114502 |
| PQID | 2635268634 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2635268634 crossref_citationtrail_10_1016_j_cma_2021_114502 crossref_primary_10_1016_j_cma_2021_114502 elsevier_sciencedirect_doi_10_1016_j_cma_2021_114502 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-15 |
| PublicationDateYYYYMMDD | 2022-02-15 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Geneva, Zabaras (b47) 2020 Jagtap, Kharazmi, Karniadakis (b17) 2020; 365 Jin, Cai, Li, Karniadakis (b13) 2021; 426 BrianDavies, Gladwell, Leydold, Stadler (b42) 2001; 336 Maulik, Balaprakash (b37) 2019 Shi, Huang, Feng, Zhong, Wang, Sun (b52) 2020 Kharazmi, Zhang, Karniadakis (b32) 2021; 374 Wang, Teng, Perdikaris (b16) 2020 Yao, Gao, Liu (b34) 2020; 363 Weinan, Yu (b28) 2018; 6 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b29) 2020; 362 Kharazmi, Zhang, Karniadakis (b31) 2019 V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: ICML, 2010. Xu, Duraisamy (b45) 2020; 372 Gao, Sun, Wang (b53) 2021; 33 Guo, Ye, Han, Zheng, Gao, Chen, Wang, Wang (b54) 2020 Arzani, Wang, D’Souza (b12) 2021 Raissi, Perdikaris, Karniadakis (b1) 2019; 378 Zhu, Zabaras, Koutsourelakis, Perdikaris (b19) 2019; 394 Letallec (b44) 1980; 35 Wu, Souza, Zhang, Fifty, Yu, Weinberger (b50) 2019 Bianchi, Grattarola, Livi, Alippi (b51) 2021 Hennigh, Narasimhan, Nabian, Subramaniam, Tangsali, Rietmann, Ferrandis, Byeon, Fang, Choudhry (b15) 2020 Cai, Li, Zheng, Kong, Dao, Karniadakis, Suresh (b11) 2021; 118 Baydin, Pearlmutter, Radul, Siskind (b2) 2018; 18 Zang, Bao, Ye, Zhou (b30) 2020; 411 Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu (b36) 2016 Sun, Gao, Pan, Wang (b8) 2020; 361 Geneva, Zabaras (b21) 2020; 403 Pfaff, Fortunato, Sanchez-Gonzalez, Battaglia (b38) 2020 Zhang, Liu, Sun (b23) 2020; 369 Ranade, Hill, Pathak (b25) 2021; 378 Duvenaud, Maclaurin, Aguilera-Iparraguirre, Gómez-Bombarelli, Hirzel, Aspuru-Guzik, Adams (b48) 2015 Zhang, Liu, Sun (b22) 2020; 215 Rao, Sun, Liu (b5) 2021; 147 Sahli Costabal, Yang, Perdikaris, Hurtado, Kuhl (b7) 2020; 8 Mao, Jagtap, Karniadakis (b14) 2020; 360 Gao, Sun, Wang (b20) 2020 Defferrard, Bresson, Vandergheynst (b41) 2016; 29 Sanchez-Gonzalez, Godwin, Pfaff, Ying, Leskovec, Battaglia (b39) 2020 Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (b46) 2019; 64 Berg, Nyström (b18) 2018; 317 Schlichtkrull, Kipf, Bloem, Van Den Berg, Titov, Welling (b49) 2018 Sun, Wang (b55) 2020; 10 Hughes (b26) 2012 Duarte, Oden (b27) 1996; 12 Raissi, Yazdani, Karniadakis (b9) 2020; 367 Wandel, Weinmann, Klein (b24) 2021; 33 Kingma, Ba (b56) 2014 Chen, Liu, Sun (b6) 2020 Sanchez-Gonzalez, Heess, Springenberg, Merel, Riedmiller, Hadsell, Battaglia (b35) 2018 Lu, Meng, Mao, Karniadakis (b4) 2021; 63 Khodayi-Mehr, Zavlanos (b33) 2020 Chen, Lu, Karniadakis, Dal Negro (b3) 2020; 28 Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar (b40) 2020 Kissas, Yang, Hwuang, Witschey, Detre, Perdikaris (b10) 2020; 358 Duarte (10.1016/j.cma.2021.114502_b27) 1996; 12 Battaglia (10.1016/j.cma.2021.114502_b36) 2016 Kharazmi (10.1016/j.cma.2021.114502_b31) 2019 Chen (10.1016/j.cma.2021.114502_b6) 2020 Wang (10.1016/j.cma.2021.114502_b16) 2020 Rao (10.1016/j.cma.2021.114502_b5) 2021; 147 Berg (10.1016/j.cma.2021.114502_b18) 2018; 317 Guo (10.1016/j.cma.2021.114502_b54) 2020 Li (10.1016/j.cma.2021.114502_b40) 2020 Arzani (10.1016/j.cma.2021.114502_b12) 2021 Chen (10.1016/j.cma.2021.114502_b3) 2020; 28 Jagtap (10.1016/j.cma.2021.114502_b17) 2020; 365 Gao (10.1016/j.cma.2021.114502_b20) 2020 Geneva (10.1016/j.cma.2021.114502_b47) 2020 Letallec (10.1016/j.cma.2021.114502_b44) 1980; 35 Kissas (10.1016/j.cma.2021.114502_b10) 2020; 358 Hennigh (10.1016/j.cma.2021.114502_b15) 2020 Geneva (10.1016/j.cma.2021.114502_b21) 2020; 403 Bhatnagar (10.1016/j.cma.2021.114502_b46) 2019; 64 Sanchez-Gonzalez (10.1016/j.cma.2021.114502_b39) 2020 10.1016/j.cma.2021.114502_b43 Schlichtkrull (10.1016/j.cma.2021.114502_b49) 2018 Sun (10.1016/j.cma.2021.114502_b8) 2020; 361 Gao (10.1016/j.cma.2021.114502_b53) 2021; 33 Zang (10.1016/j.cma.2021.114502_b30) 2020; 411 Kharazmi (10.1016/j.cma.2021.114502_b32) 2021; 374 BrianDavies (10.1016/j.cma.2021.114502_b42) 2001; 336 Zhang (10.1016/j.cma.2021.114502_b22) 2020; 215 Duvenaud (10.1016/j.cma.2021.114502_b48) 2015 Cai (10.1016/j.cma.2021.114502_b11) 2021; 118 Sanchez-Gonzalez (10.1016/j.cma.2021.114502_b35) 2018 Shi (10.1016/j.cma.2021.114502_b52) 2020 Bianchi (10.1016/j.cma.2021.114502_b51) 2021 Raissi (10.1016/j.cma.2021.114502_b1) 2019; 378 Zhu (10.1016/j.cma.2021.114502_b19) 2019; 394 Zhang (10.1016/j.cma.2021.114502_b23) 2020; 369 Wandel (10.1016/j.cma.2021.114502_b24) 2021; 33 Yao (10.1016/j.cma.2021.114502_b34) 2020; 363 Pfaff (10.1016/j.cma.2021.114502_b38) 2020 Kingma (10.1016/j.cma.2021.114502_b56) 2014 Hughes (10.1016/j.cma.2021.114502_b26) 2012 Samaniego (10.1016/j.cma.2021.114502_b29) 2020; 362 Jin (10.1016/j.cma.2021.114502_b13) 2021; 426 Lu (10.1016/j.cma.2021.114502_b4) 2021; 63 Sun (10.1016/j.cma.2021.114502_b55) 2020; 10 Maulik (10.1016/j.cma.2021.114502_b37) 2019 Baydin (10.1016/j.cma.2021.114502_b2) 2018; 18 Ranade (10.1016/j.cma.2021.114502_b25) 2021; 378 Sahli Costabal (10.1016/j.cma.2021.114502_b7) 2020; 8 Weinan (10.1016/j.cma.2021.114502_b28) 2018; 6 Mao (10.1016/j.cma.2021.114502_b14) 2020; 360 Khodayi-Mehr (10.1016/j.cma.2021.114502_b33) 2020 Wu (10.1016/j.cma.2021.114502_b50) 2019 Raissi (10.1016/j.cma.2021.114502_b9) 2020; 367 Xu (10.1016/j.cma.2021.114502_b45) 2020; 372 Defferrard (10.1016/j.cma.2021.114502_b41) 2016; 29 |
| References_xml | – volume: 426 year: 2021 ident: b13 article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations publication-title: J. Comput. Phys. – year: 2012 ident: b26 article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: b18 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing – volume: 8 start-page: 42 year: 2020 ident: b7 article-title: Physics-informed neural networks for cardiac activation mapping publication-title: Front. Phys. – volume: 63 start-page: 208 year: 2021 end-page: 228 ident: b4 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. – year: 2020 ident: b6 article-title: Deep learning of physical laws from scarce data – reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: ICML, 2010. – volume: 18 year: 2018 ident: b2 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – year: 2020 ident: b38 article-title: Learning mesh-based simulation with graph networks – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b1 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 367 start-page: 1026 year: 2020 end-page: 1030 ident: b9 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science – year: 2020 ident: b20 article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain publication-title: J. Comput. Phys. – volume: 365 year: 2020 ident: b17 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 118 year: 2021 ident: b11 article-title: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease publication-title: Proc. Natl. Acad. Sci. – volume: 363 year: 2020 ident: b34 article-title: FEA-net: A physics-guided data-driven model for efficient mechanical response prediction publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 33 year: 2021 ident: b24 article-title: Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in three dimensions publication-title: Phys. Fluids – start-page: 8459 year: 2020 end-page: 8468 ident: b39 article-title: Learning to simulate complex physics with graph networks publication-title: International Conference on Machine Learning – start-page: 593 year: 2018 end-page: 607 ident: b49 article-title: Modeling relational data with graph convolutional networks publication-title: European Semantic Web Conference – year: 2021 ident: b51 article-title: Graph neural networks with convolutional arma filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: b15 article-title: NVIDIA SimNet̂ – volume: 215 year: 2020 ident: b22 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Eng. Struct. – volume: 411 year: 2020 ident: b30 article-title: Weak adversarial networks for high-dimensional partial differential equations publication-title: J. Comput. Phys. – start-page: 298 year: 2020 end-page: 307 ident: b33 article-title: Varnet: Variational neural networks for the solution of partial differential equations publication-title: Learning for Dynamics and Control – volume: 358 year: 2020 ident: b10 article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 374 year: 2021 ident: b32 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 71 year: 2020 end-page: 80 ident: b54 article-title: SSR-VFD: Spatial super-resolution for vector field data analysis and visualization publication-title: 2020 IEEE Pacific Visualization Symposium (PacificVis) – year: 2020 ident: b47 article-title: Transformers for modeling physical systems – volume: 369 year: 2020 ident: b23 article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2021 ident: b12 article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks publication-title: Phys. Fluids – volume: 403 year: 2020 ident: b21 article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks publication-title: J. Comput. Phys. – volume: 336 start-page: 51 year: 2001 end-page: 60 ident: b42 article-title: Discrete nodal domain theorems publication-title: Linear Algebra Appl. – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: b28 article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. – volume: 361 year: 2020 ident: b8 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 147 year: 2021 ident: b5 article-title: Physics-informed deep learning for computational elastodynamics without labeled data publication-title: J. Eng. Mech. – volume: 362 year: 2020 ident: b29 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 6861 year: 2019 end-page: 6871 ident: b50 article-title: Simplifying graph convolutional networks publication-title: International Conference on Machine Learning – year: 2020 ident: b52 article-title: Masked label prediction: Unified message passing model for semi-supervised classification – year: 2020 ident: b16 article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks – volume: 33 year: 2021 ident: b53 article-title: Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels publication-title: Phys. Fluids – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: b19 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. – volume: 360 year: 2020 ident: b14 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 64 start-page: 525 year: 2019 end-page: 545 ident: b46 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput. Mech. – year: 2014 ident: b56 article-title: Adam: A method for stochastic optimization – volume: 35 start-page: 381 year: 1980 end-page: 404 ident: b44 article-title: A mixed finite element approximation of the Navier–Stokes equations publication-title: Numer. Math. – volume: 28 start-page: 11618 year: 2020 end-page: 11633 ident: b3 article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials publication-title: Opt. Express – volume: 29 start-page: 3844 year: 2016 end-page: 3852 ident: b41 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – year: 2015 ident: b48 article-title: Convolutional networks on graphs for learning molecular fingerprints – volume: 10 start-page: 161 year: 2020 end-page: 169 ident: b55 article-title: Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data publication-title: Theoret. Appl. Mech. Lett. – start-page: 4470 year: 2018 end-page: 4479 ident: b35 article-title: Graph networks as learnable physics engines for inference and control publication-title: International Conference on Machine Learning – volume: 12 start-page: 673 year: 1996 end-page: 705 ident: b27 article-title: H-p clouds—An h-p meshless method publication-title: Numer. Methods Partial Differential Equations: Int. J. – year: 2020 ident: b40 article-title: Multipole graph neural operator for parametric partial differential equations – year: 2019 ident: b37 article-title: Site-specific graph neural network for predicting protonation energy of oxygenate molecules – volume: 378 year: 2021 ident: b25 article-title: Discretizationnet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2016 ident: b36 article-title: Interaction networks for learning about objects, relations and physics – year: 2019 ident: b31 article-title: Variational physics-informed neural networks for solving partial differential equations – volume: 372 year: 2020 ident: b45 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 29 start-page: 3844 year: 2016 ident: 10.1016/j.cma.2021.114502_b41 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inf. Process. Syst. – start-page: 6861 year: 2019 ident: 10.1016/j.cma.2021.114502_b50 article-title: Simplifying graph convolutional networks – volume: 360 year: 2020 ident: 10.1016/j.cma.2021.114502_b14 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112789 – year: 2020 ident: 10.1016/j.cma.2021.114502_b15 – volume: 10 start-page: 161 issue: 3 year: 2020 ident: 10.1016/j.cma.2021.114502_b55 article-title: Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data publication-title: Theoret. Appl. Mech. Lett. doi: 10.1016/j.taml.2020.01.031 – volume: 18 year: 2018 ident: 10.1016/j.cma.2021.114502_b2 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.cma.2021.114502_b36 – volume: 12 start-page: 673 issue: 6 year: 1996 ident: 10.1016/j.cma.2021.114502_b27 article-title: H-p clouds—An h-p meshless method publication-title: Numer. Methods Partial Differential Equations: Int. J. doi: 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P – year: 2020 ident: 10.1016/j.cma.2021.114502_b52 – volume: 394 start-page: 56 year: 2019 ident: 10.1016/j.cma.2021.114502_b19 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – volume: 369 year: 2020 ident: 10.1016/j.cma.2021.114502_b23 article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113226 – year: 2020 ident: 10.1016/j.cma.2021.114502_b16 – volume: 33 issue: 4 year: 2021 ident: 10.1016/j.cma.2021.114502_b24 article-title: Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in three dimensions publication-title: Phys. Fluids doi: 10.1063/5.0047428 – start-page: 298 year: 2020 ident: 10.1016/j.cma.2021.114502_b33 article-title: Varnet: Variational neural networks for the solution of partial differential equations – year: 2021 ident: 10.1016/j.cma.2021.114502_b51 article-title: Graph neural networks with convolutional arma filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3054830 – volume: 33 issue: 7 year: 2021 ident: 10.1016/j.cma.2021.114502_b53 article-title: Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels publication-title: Phys. Fluids doi: 10.1063/5.0054312 – volume: 363 year: 2020 ident: 10.1016/j.cma.2021.114502_b34 article-title: FEA-net: A physics-guided data-driven model for efficient mechanical response prediction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.112892 – year: 2012 ident: 10.1016/j.cma.2021.114502_b26 – year: 2014 ident: 10.1016/j.cma.2021.114502_b56 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cma.2021.114502_b28 article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – year: 2020 ident: 10.1016/j.cma.2021.114502_b20 article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain publication-title: J. Comput. Phys. – volume: 411 year: 2020 ident: 10.1016/j.cma.2021.114502_b30 article-title: Weak adversarial networks for high-dimensional partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109409 – year: 2015 ident: 10.1016/j.cma.2021.114502_b48 – volume: 28 start-page: 11618 issue: 8 year: 2020 ident: 10.1016/j.cma.2021.114502_b3 article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials publication-title: Opt. Express doi: 10.1364/OE.384875 – volume: 403 year: 2020 ident: 10.1016/j.cma.2021.114502_b21 article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109056 – volume: 374 year: 2021 ident: 10.1016/j.cma.2021.114502_b32 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113547 – year: 2020 ident: 10.1016/j.cma.2021.114502_b6 – volume: 361 year: 2020 ident: 10.1016/j.cma.2021.114502_b8 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112732 – volume: 426 year: 2021 ident: 10.1016/j.cma.2021.114502_b13 article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109951 – start-page: 71 year: 2020 ident: 10.1016/j.cma.2021.114502_b54 article-title: SSR-VFD: Spatial super-resolution for vector field data analysis and visualization – volume: 147 issue: 8 year: 2021 ident: 10.1016/j.cma.2021.114502_b5 article-title: Physics-informed deep learning for computational elastodynamics without labeled data publication-title: J. Eng. Mech. – year: 2019 ident: 10.1016/j.cma.2021.114502_b31 – volume: 215 year: 2020 ident: 10.1016/j.cma.2021.114502_b22 article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110704 – start-page: 4470 year: 2018 ident: 10.1016/j.cma.2021.114502_b35 article-title: Graph networks as learnable physics engines for inference and control – volume: 317 start-page: 28 year: 2018 ident: 10.1016/j.cma.2021.114502_b18 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – volume: 365 year: 2020 ident: 10.1016/j.cma.2021.114502_b17 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113028 – year: 2021 ident: 10.1016/j.cma.2021.114502_b12 article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks publication-title: Phys. Fluids doi: 10.1063/5.0055600 – volume: 362 year: 2020 ident: 10.1016/j.cma.2021.114502_b29 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112790 – start-page: 8459 year: 2020 ident: 10.1016/j.cma.2021.114502_b39 article-title: Learning to simulate complex physics with graph networks – volume: 63 start-page: 208 issue: 1 year: 2021 ident: 10.1016/j.cma.2021.114502_b4 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 118 issue: 13 year: 2021 ident: 10.1016/j.cma.2021.114502_b11 article-title: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2100697118 – volume: 367 start-page: 1026 issue: 6481 year: 2020 ident: 10.1016/j.cma.2021.114502_b9 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: 35 start-page: 381 issue: 4 year: 1980 ident: 10.1016/j.cma.2021.114502_b44 article-title: A mixed finite element approximation of the Navier–Stokes equations publication-title: Numer. Math. doi: 10.1007/BF01399007 – year: 2019 ident: 10.1016/j.cma.2021.114502_b37 – year: 2020 ident: 10.1016/j.cma.2021.114502_b40 – volume: 336 start-page: 51 issue: 1–3 year: 2001 ident: 10.1016/j.cma.2021.114502_b42 article-title: Discrete nodal domain theorems publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(01)00313-5 – year: 2020 ident: 10.1016/j.cma.2021.114502_b47 – volume: 64 start-page: 525 issue: 2 year: 2019 ident: 10.1016/j.cma.2021.114502_b46 article-title: Prediction of aerodynamic flow fields using convolutional neural networks publication-title: Comput. Mech. doi: 10.1007/s00466-019-01740-0 – start-page: 593 year: 2018 ident: 10.1016/j.cma.2021.114502_b49 article-title: Modeling relational data with graph convolutional networks – volume: 358 year: 2020 ident: 10.1016/j.cma.2021.114502_b10 article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112623 – volume: 372 year: 2020 ident: 10.1016/j.cma.2021.114502_b45 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113379 – volume: 8 start-page: 42 year: 2020 ident: 10.1016/j.cma.2021.114502_b7 article-title: Physics-informed neural networks for cardiac activation mapping publication-title: Front. Phys. doi: 10.3389/fphy.2020.00042 – volume: 378 year: 2021 ident: 10.1016/j.cma.2021.114502_b25 article-title: Discretizationnet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113722 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2021.114502_b1 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – ident: 10.1016/j.cma.2021.114502_b43 – year: 2020 ident: 10.1016/j.cma.2021.114502_b38 |
| SSID | ssj0000812 |
| Score | 2.7157378 |
| Snippet | Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114502 |
| SubjectTerms | Artificial neural networks Boundary conditions Computational geometry Continuity (mathematics) Convexity Graph convolutional neural networks Inverse problem Inverse problems Mechanics Neural networks Optimization Partial differential equations Physics-informed machine learning Polynomials Training |
| Title | Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems |
| URI | https://dx.doi.org/10.1016/j.cma.2021.114502 https://www.proquest.com/docview/2635268634 |
| Volume | 390 |
| WOSCitedRecordID | wos000781386000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMceBQqCgXtAXEALYrt9WO5RZBSqij0kBaLy2q9a0Or4oY4qSr-CH-X2ZdtRRDBgYuTOLZjeb7Mfjs78w1Cz1mSKQFPn6RDJgilFSUMZhYkLkQ6lGkqAiMpdDpJp9Msz9nxYPDT18JcXaR1nV1fs_l_NTXsA2Pr0tl_MHd7UdgB78HosAWzw_avDG9yOmVDrCQq8EmjSf1KC1eCOd7DgKDD4_DZ5H83tjR9VZ9VmoxWPlfLpB_CjZp4w_G7MflimvLqQy4XOtPWyTbprA5da2Xa0jR9quv7Rbgm1SbvVjjO-63UBcdeILrsNBHbdCBhQriHHXY_i68LW1xkGpR3y1mfXMT7CIBO8lXdj2PAFFh3VYm74FpbYHPa99c0JsBh4r6_jmx_Uedxg9-OAzYkcf5aGm2pMNCSyPEw7AY9v9A__cgPTiYTPhvnsxfz70S3I9PL9q43yw20HaYxA3e5Pfowzo-6QT4LrBC9u0G_YG5SB9d-9U-UZ23wN4xmdg_dcVMRPLIQuo8GZb2D7rppCXZOv9lBt3ualQ_Qj3V8YYMvbPGFPb6wx9cbPMIOXbhFF4ZTsUMX7qMLO3RhwAV26MIeXQ_RycF49vaQuAYeREZJtiRFREUgE8VUnEUlKylw36hSNJRJELAikkCO0pQJWVZKBUq_ZEUVqGoIs1zKaLSLturLunyEsARaz4BKVjAFpzJVQmW6xzRNBKNJkcg9NPTPmEunbq-brFxwn8Z4zsEsXJuFW7PsoZftKXMr7bLpYOoNxx03tZyTA-Q2nbbvjcydj2i41n8KkyyJ6OPNXz9Bt7p_yj7aWi5W5VN0U14tz5rFMwfJXxyNuv8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+graph+neural+Galerkin+networks%3A+A+unified+framework+for+solving+PDE-governed+forward+and+inverse+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Gao%2C+Han&rft.au=Zahr%2C+Matthew+J&rft.au=Wang%2C+Jian-Xun&rft.date=2022-02-15&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=390&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.114502&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |