Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems

Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 390; s. 114502
Hlavní autoři: Gao, Han, Zahr, Matthew J., Wang, Jian-Xun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.02.2022
Elsevier BV
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
AbstractList Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
ArticleNumber 114502
Author Gao, Han
Zahr, Matthew J.
Wang, Jian-Xun
Author_xml – sequence: 1
  givenname: Han
  surname: Gao
  fullname: Gao, Han
– sequence: 2
  givenname: Matthew J.
  orcidid: 0000-0003-4066-981X
  surname: Zahr
  fullname: Zahr, Matthew J.
– sequence: 3
  givenname: Jian-Xun
  orcidid: 0000-0002-9030-1733
  surname: Wang
  fullname: Wang, Jian-Xun
  email: jwang33@nd.edu
BookMark eNp9kE1PGzEQhq2KSg20P6A3S5w3-GM_vOWEKKRIkcqhPVuOPQ4Ou3Y63gTRX1-v0hMH5jKa0fvMq3nPyVlMEQj5ytmSM95e7ZZ2NEvBBF9yXjdMfCALrrq-ElyqM7JgrG6qTonmEznPecdKKS4W5O_j02sONlch-oQjOLpFs3-iEQ5oBroyA-BziGWeXhI-52_0hh5i8KEoPZoR5i0tKM1pOIa4pY_f76ptOgLGWZLwxaCjJjoaYllmoHtMmwHG_Jl89GbI8OV_vyC_7-9-3f6o1j9XD7c368rKVk3VRtaG29b1rlESeqj7rpXe1cK2nPcbablQXdcbC9457uamNp47z_qurvtaXpDL091i_OcAedK7dMBYLLVoZSNa1cpZ1Z1UFlPOCF7bMJkppDihCYPmTM9B650uQes5aH0KupD8DbnHMBp8fZe5PjFQHj8GQJ1tgGjBBQQ7aZfCO_Q_6QGZ7g
CitedBy_id crossref_primary_10_1016_j_cja_2024_11_025
crossref_primary_10_1063_5_0200168
crossref_primary_10_1016_j_cma_2023_116258
crossref_primary_10_1016_j_cma_2024_117102
crossref_primary_10_1038_s43247_024_01942_2
crossref_primary_10_1016_j_jmps_2025_106222
crossref_primary_10_1016_j_cam_2025_116663
crossref_primary_10_3390_s23031722
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1007_s11831_023_09890_4
crossref_primary_10_1002_adts_202400589
crossref_primary_10_1016_j_cma_2022_114909
crossref_primary_10_23939_cds2025_01_011
crossref_primary_10_1016_j_jcp_2023_112438
crossref_primary_10_1016_j_engstruct_2025_120018
crossref_primary_10_1098_rsta_2024_0221
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1088_3050_287X_adfaf7
crossref_primary_10_1016_j_cma_2025_117755
crossref_primary_10_3390_ai5030074
crossref_primary_10_3390_app132413312
crossref_primary_10_1109_TPAMI_2025_3542423
crossref_primary_10_3390_app14167002
crossref_primary_10_1063_5_0216921
crossref_primary_10_1016_j_cja_2024_11_018
crossref_primary_10_1016_j_cma_2025_118284
crossref_primary_10_1016_j_ijsolstr_2025_113315
crossref_primary_10_1016_j_enbuild_2024_114575
crossref_primary_10_1016_j_jcp_2023_111912
crossref_primary_10_1038_s41598_024_67597_3
crossref_primary_10_1016_j_compstruc_2023_107234
crossref_primary_10_1016_j_buildenv_2024_111175
crossref_primary_10_1016_j_wavemoti_2024_103371
crossref_primary_10_1007_s11071_022_08161_4
crossref_primary_10_1016_j_ress_2024_110777
crossref_primary_10_1016_j_compgeo_2025_107389
crossref_primary_10_1016_j_cma_2023_116277
crossref_primary_10_1016_j_jcp_2023_112584
crossref_primary_10_1016_j_compbiomed_2024_108328
crossref_primary_10_1016_j_cageo_2024_105711
crossref_primary_10_1016_j_cnsns_2024_108103
crossref_primary_10_1016_j_advwatres_2024_104870
crossref_primary_10_2118_225442_PA
crossref_primary_10_1016_j_engappai_2024_108055
crossref_primary_10_1038_s43588_024_00643_2
crossref_primary_10_3390_math11092016
crossref_primary_10_1017_dce_2023_2
crossref_primary_10_1038_s41598_023_43325_1
crossref_primary_10_1016_j_neucom_2024_129134
crossref_primary_10_1002_nme_7146
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_cma_2024_116904
crossref_primary_10_1007_s00170_025_15551_6
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_jrmge_2024_10_025
crossref_primary_10_3390_math13132117
crossref_primary_10_1016_j_optlastec_2025_113828
crossref_primary_10_1016_j_cma_2025_118025
crossref_primary_10_1016_j_rineng_2024_102235
crossref_primary_10_1007_s00366_024_01957_5
crossref_primary_10_1016_j_cpc_2025_109754
crossref_primary_10_1016_j_engappai_2023_107324
crossref_primary_10_1016_j_enganabound_2025_106161
crossref_primary_10_1016_j_amc_2023_128392
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1016_j_cma_2025_118260
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1088_1402_4896_ad7dc0
crossref_primary_10_1016_j_jcp_2025_113919
crossref_primary_10_1137_23M1556605
crossref_primary_10_1007_s43452_023_00820_6
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1016_j_advengsoft_2024_103758
crossref_primary_10_1109_TNNLS_2023_3347453
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_1016_j_cma_2023_115902
crossref_primary_10_1016_j_cpc_2025_109582
crossref_primary_10_1016_j_jcp_2024_112762
crossref_primary_10_1016_j_ijmecsci_2025_110783
crossref_primary_10_1177_14759217241289575
crossref_primary_10_1016_j_cma_2024_117268
crossref_primary_10_1108_HFF_07_2023_0358
crossref_primary_10_1115_1_4068832
crossref_primary_10_1109_TCSII_2023_3347337
crossref_primary_10_1007_s11071_023_08361_6
crossref_primary_10_1016_j_cma_2022_115757
crossref_primary_10_1016_j_jcp_2024_113569
crossref_primary_10_1109_ACCESS_2024_3452314
crossref_primary_10_1016_j_ymssp_2024_111297
crossref_primary_10_3390_math12020250
crossref_primary_10_1016_j_wroa_2025_100367
crossref_primary_10_1007_s00366_023_01871_2
crossref_primary_10_1016_j_cma_2024_117410
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1016_j_cma_2023_116181
crossref_primary_10_1016_j_jcp_2024_113161
crossref_primary_10_1016_j_knosys_2025_113717
crossref_primary_10_1002_mp_17554
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1007_s00366_024_01971_7
crossref_primary_10_1007_s00366_024_02090_z
crossref_primary_10_1016_j_asoc_2024_111437
crossref_primary_10_1016_j_jcp_2024_112866
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_1007_s40314_023_02323_9
crossref_primary_10_1016_j_camwa_2024_07_024
crossref_primary_10_1016_j_jcp_2023_112369
crossref_primary_10_1016_j_mechmat_2023_104642
crossref_primary_10_1016_j_camwa_2025_01_025
crossref_primary_10_1016_j_cma_2025_117888
crossref_primary_10_1016_j_cma_2025_117921
crossref_primary_10_1088_1572_9494_ada3ce
crossref_primary_10_1016_j_cma_2023_116351
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_cma_2024_117001
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1108_EC_12_2023_0958
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_1016_j_ress_2025_110906
crossref_primary_10_1016_j_cej_2024_150072
crossref_primary_10_1007_s00158_022_03383_x
crossref_primary_10_1016_j_cmpb_2024_108427
crossref_primary_10_1016_j_cpc_2024_109129
crossref_primary_10_1016_j_engappai_2025_111098
crossref_primary_10_1016_j_combustflame_2025_114190
crossref_primary_10_1016_j_jcp_2023_112415
crossref_primary_10_1038_s41524_024_01307_5
crossref_primary_10_1016_j_jcp_2024_113544
crossref_primary_10_1016_j_cma_2024_116825
crossref_primary_10_1016_j_cma_2024_117478
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1016_j_chaos_2023_113169
crossref_primary_10_1007_s00366_024_01955_7
crossref_primary_10_1007_s10483_023_2941_6
crossref_primary_10_1016_j_rser_2024_114898
crossref_primary_10_1016_j_neucom_2025_129917
crossref_primary_10_1017_dce_2022_24
crossref_primary_10_1080_10407790_2023_2264489
crossref_primary_10_1063_5_0197860
crossref_primary_10_1016_j_cma_2024_117509
crossref_primary_10_1016_j_compchemeng_2023_108547
crossref_primary_10_1016_j_dte_2025_100057
crossref_primary_10_1016_j_cma_2022_115645
crossref_primary_10_1016_j_engappai_2023_106284
crossref_primary_10_1007_s10462_024_10931_y
crossref_primary_10_1016_j_cma_2024_117628
crossref_primary_10_1063_5_0258420
Cites_doi 10.1016/j.cma.2019.112789
10.1016/j.taml.2020.01.031
10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
10.1016/j.jcp.2019.05.024
10.1016/j.cma.2020.113226
10.1063/5.0047428
10.1109/TPAMI.2021.3054830
10.1063/5.0054312
10.1016/j.cma.2020.112892
10.1007/s40304-018-0127-z
10.1016/j.jcp.2020.109409
10.1364/OE.384875
10.1016/j.jcp.2019.109056
10.1016/j.cma.2020.113547
10.1016/j.cma.2019.112732
10.1016/j.jcp.2020.109951
10.1016/j.engstruct.2020.110704
10.1016/j.neucom.2018.06.056
10.1016/j.cma.2020.113028
10.1063/5.0055600
10.1016/j.cma.2019.112790
10.1137/19M1274067
10.1073/pnas.2100697118
10.1126/science.aaw4741
10.1007/BF01399007
10.1016/S0024-3795(01)00313-5
10.1007/s00466-019-01740-0
10.1016/j.cma.2019.112623
10.1016/j.cma.2020.113379
10.3389/fphy.2020.00042
10.1016/j.cma.2021.113722
10.1016/j.jcp.2018.10.045
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Feb 15, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 15, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.114502
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_114502
S0045782521007076
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-b34a1c6d9d583e9e49763fd42c6119b3c128779acefdd1dcefd8bf1df09744943
ISICitedReferencesCount 190
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781386000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 09 08:08:18 EST 2025
Tue Nov 18 20:49:35 EST 2025
Sat Nov 29 07:30:13 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Physics-informed machine learning
Mechanics
Graph convolutional neural networks
Partial differential equations
Inverse problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-b34a1c6d9d583e9e49763fd42c6119b3c128779acefdd1dcefd8bf1df09744943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9030-1733
0000-0003-4066-981X
OpenAccessLink https://doi.org/10.1016/j.cma.2021.114502
PQID 2635268634
PQPubID 2045269
ParticipantIDs proquest_journals_2635268634
crossref_citationtrail_10_1016_j_cma_2021_114502
crossref_primary_10_1016_j_cma_2021_114502
elsevier_sciencedirect_doi_10_1016_j_cma_2021_114502
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Geneva, Zabaras (b47) 2020
Jagtap, Kharazmi, Karniadakis (b17) 2020; 365
Jin, Cai, Li, Karniadakis (b13) 2021; 426
BrianDavies, Gladwell, Leydold, Stadler (b42) 2001; 336
Maulik, Balaprakash (b37) 2019
Shi, Huang, Feng, Zhong, Wang, Sun (b52) 2020
Kharazmi, Zhang, Karniadakis (b32) 2021; 374
Wang, Teng, Perdikaris (b16) 2020
Yao, Gao, Liu (b34) 2020; 363
Weinan, Yu (b28) 2018; 6
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b29) 2020; 362
Kharazmi, Zhang, Karniadakis (b31) 2019
V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: ICML, 2010.
Xu, Duraisamy (b45) 2020; 372
Gao, Sun, Wang (b53) 2021; 33
Guo, Ye, Han, Zheng, Gao, Chen, Wang, Wang (b54) 2020
Arzani, Wang, D’Souza (b12) 2021
Raissi, Perdikaris, Karniadakis (b1) 2019; 378
Zhu, Zabaras, Koutsourelakis, Perdikaris (b19) 2019; 394
Letallec (b44) 1980; 35
Wu, Souza, Zhang, Fifty, Yu, Weinberger (b50) 2019
Bianchi, Grattarola, Livi, Alippi (b51) 2021
Hennigh, Narasimhan, Nabian, Subramaniam, Tangsali, Rietmann, Ferrandis, Byeon, Fang, Choudhry (b15) 2020
Cai, Li, Zheng, Kong, Dao, Karniadakis, Suresh (b11) 2021; 118
Baydin, Pearlmutter, Radul, Siskind (b2) 2018; 18
Zang, Bao, Ye, Zhou (b30) 2020; 411
Battaglia, Pascanu, Lai, Rezende, Kavukcuoglu (b36) 2016
Sun, Gao, Pan, Wang (b8) 2020; 361
Geneva, Zabaras (b21) 2020; 403
Pfaff, Fortunato, Sanchez-Gonzalez, Battaglia (b38) 2020
Zhang, Liu, Sun (b23) 2020; 369
Ranade, Hill, Pathak (b25) 2021; 378
Duvenaud, Maclaurin, Aguilera-Iparraguirre, Gómez-Bombarelli, Hirzel, Aspuru-Guzik, Adams (b48) 2015
Zhang, Liu, Sun (b22) 2020; 215
Rao, Sun, Liu (b5) 2021; 147
Sahli Costabal, Yang, Perdikaris, Hurtado, Kuhl (b7) 2020; 8
Mao, Jagtap, Karniadakis (b14) 2020; 360
Gao, Sun, Wang (b20) 2020
Defferrard, Bresson, Vandergheynst (b41) 2016; 29
Sanchez-Gonzalez, Godwin, Pfaff, Ying, Leskovec, Battaglia (b39) 2020
Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (b46) 2019; 64
Berg, Nyström (b18) 2018; 317
Schlichtkrull, Kipf, Bloem, Van Den Berg, Titov, Welling (b49) 2018
Sun, Wang (b55) 2020; 10
Hughes (b26) 2012
Duarte, Oden (b27) 1996; 12
Raissi, Yazdani, Karniadakis (b9) 2020; 367
Wandel, Weinmann, Klein (b24) 2021; 33
Kingma, Ba (b56) 2014
Chen, Liu, Sun (b6) 2020
Sanchez-Gonzalez, Heess, Springenberg, Merel, Riedmiller, Hadsell, Battaglia (b35) 2018
Lu, Meng, Mao, Karniadakis (b4) 2021; 63
Khodayi-Mehr, Zavlanos (b33) 2020
Chen, Lu, Karniadakis, Dal Negro (b3) 2020; 28
Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar (b40) 2020
Kissas, Yang, Hwuang, Witschey, Detre, Perdikaris (b10) 2020; 358
Duarte (10.1016/j.cma.2021.114502_b27) 1996; 12
Battaglia (10.1016/j.cma.2021.114502_b36) 2016
Kharazmi (10.1016/j.cma.2021.114502_b31) 2019
Chen (10.1016/j.cma.2021.114502_b6) 2020
Wang (10.1016/j.cma.2021.114502_b16) 2020
Rao (10.1016/j.cma.2021.114502_b5) 2021; 147
Berg (10.1016/j.cma.2021.114502_b18) 2018; 317
Guo (10.1016/j.cma.2021.114502_b54) 2020
Li (10.1016/j.cma.2021.114502_b40) 2020
Arzani (10.1016/j.cma.2021.114502_b12) 2021
Chen (10.1016/j.cma.2021.114502_b3) 2020; 28
Jagtap (10.1016/j.cma.2021.114502_b17) 2020; 365
Gao (10.1016/j.cma.2021.114502_b20) 2020
Geneva (10.1016/j.cma.2021.114502_b47) 2020
Letallec (10.1016/j.cma.2021.114502_b44) 1980; 35
Kissas (10.1016/j.cma.2021.114502_b10) 2020; 358
Hennigh (10.1016/j.cma.2021.114502_b15) 2020
Geneva (10.1016/j.cma.2021.114502_b21) 2020; 403
Bhatnagar (10.1016/j.cma.2021.114502_b46) 2019; 64
Sanchez-Gonzalez (10.1016/j.cma.2021.114502_b39) 2020
10.1016/j.cma.2021.114502_b43
Schlichtkrull (10.1016/j.cma.2021.114502_b49) 2018
Sun (10.1016/j.cma.2021.114502_b8) 2020; 361
Gao (10.1016/j.cma.2021.114502_b53) 2021; 33
Zang (10.1016/j.cma.2021.114502_b30) 2020; 411
Kharazmi (10.1016/j.cma.2021.114502_b32) 2021; 374
BrianDavies (10.1016/j.cma.2021.114502_b42) 2001; 336
Zhang (10.1016/j.cma.2021.114502_b22) 2020; 215
Duvenaud (10.1016/j.cma.2021.114502_b48) 2015
Cai (10.1016/j.cma.2021.114502_b11) 2021; 118
Sanchez-Gonzalez (10.1016/j.cma.2021.114502_b35) 2018
Shi (10.1016/j.cma.2021.114502_b52) 2020
Bianchi (10.1016/j.cma.2021.114502_b51) 2021
Raissi (10.1016/j.cma.2021.114502_b1) 2019; 378
Zhu (10.1016/j.cma.2021.114502_b19) 2019; 394
Zhang (10.1016/j.cma.2021.114502_b23) 2020; 369
Wandel (10.1016/j.cma.2021.114502_b24) 2021; 33
Yao (10.1016/j.cma.2021.114502_b34) 2020; 363
Pfaff (10.1016/j.cma.2021.114502_b38) 2020
Kingma (10.1016/j.cma.2021.114502_b56) 2014
Hughes (10.1016/j.cma.2021.114502_b26) 2012
Samaniego (10.1016/j.cma.2021.114502_b29) 2020; 362
Jin (10.1016/j.cma.2021.114502_b13) 2021; 426
Lu (10.1016/j.cma.2021.114502_b4) 2021; 63
Sun (10.1016/j.cma.2021.114502_b55) 2020; 10
Maulik (10.1016/j.cma.2021.114502_b37) 2019
Baydin (10.1016/j.cma.2021.114502_b2) 2018; 18
Ranade (10.1016/j.cma.2021.114502_b25) 2021; 378
Sahli Costabal (10.1016/j.cma.2021.114502_b7) 2020; 8
Weinan (10.1016/j.cma.2021.114502_b28) 2018; 6
Mao (10.1016/j.cma.2021.114502_b14) 2020; 360
Khodayi-Mehr (10.1016/j.cma.2021.114502_b33) 2020
Wu (10.1016/j.cma.2021.114502_b50) 2019
Raissi (10.1016/j.cma.2021.114502_b9) 2020; 367
Xu (10.1016/j.cma.2021.114502_b45) 2020; 372
Defferrard (10.1016/j.cma.2021.114502_b41) 2016; 29
References_xml – volume: 426
  year: 2021
  ident: b13
  article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– year: 2012
  ident: b26
  article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b18
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 8
  start-page: 42
  year: 2020
  ident: b7
  article-title: Physics-informed neural networks for cardiac activation mapping
  publication-title: Front. Phys.
– volume: 63
  start-page: 208
  year: 2021
  end-page: 228
  ident: b4
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
– year: 2020
  ident: b6
  article-title: Deep learning of physical laws from scarce data
– reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in: ICML, 2010.
– volume: 18
  year: 2018
  ident: b2
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: b38
  article-title: Learning mesh-based simulation with graph networks
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b1
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b9
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
– year: 2020
  ident: b20
  article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
– volume: 365
  year: 2020
  ident: b17
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 118
  year: 2021
  ident: b11
  article-title: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
  publication-title: Proc. Natl. Acad. Sci.
– volume: 363
  year: 2020
  ident: b34
  article-title: FEA-net: A physics-guided data-driven model for efficient mechanical response prediction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 33
  year: 2021
  ident: b24
  article-title: Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in three dimensions
  publication-title: Phys. Fluids
– start-page: 8459
  year: 2020
  end-page: 8468
  ident: b39
  article-title: Learning to simulate complex physics with graph networks
  publication-title: International Conference on Machine Learning
– start-page: 593
  year: 2018
  end-page: 607
  ident: b49
  article-title: Modeling relational data with graph convolutional networks
  publication-title: European Semantic Web Conference
– year: 2021
  ident: b51
  article-title: Graph neural networks with convolutional arma filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: b15
  article-title: NVIDIA SimNet̂
– volume: 215
  year: 2020
  ident: b22
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
– volume: 411
  year: 2020
  ident: b30
  article-title: Weak adversarial networks for high-dimensional partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 298
  year: 2020
  end-page: 307
  ident: b33
  article-title: Varnet: Variational neural networks for the solution of partial differential equations
  publication-title: Learning for Dynamics and Control
– volume: 358
  year: 2020
  ident: b10
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 374
  year: 2021
  ident: b32
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 71
  year: 2020
  end-page: 80
  ident: b54
  article-title: SSR-VFD: Spatial super-resolution for vector field data analysis and visualization
  publication-title: 2020 IEEE Pacific Visualization Symposium (PacificVis)
– year: 2020
  ident: b47
  article-title: Transformers for modeling physical systems
– volume: 369
  year: 2020
  ident: b23
  article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: b12
  article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks
  publication-title: Phys. Fluids
– volume: 403
  year: 2020
  ident: b21
  article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
  publication-title: J. Comput. Phys.
– volume: 336
  start-page: 51
  year: 2001
  end-page: 60
  ident: b42
  article-title: Discrete nodal domain theorems
  publication-title: Linear Algebra Appl.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b28
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– volume: 361
  year: 2020
  ident: b8
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 147
  year: 2021
  ident: b5
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: J. Eng. Mech.
– volume: 362
  year: 2020
  ident: b29
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 6861
  year: 2019
  end-page: 6871
  ident: b50
  article-title: Simplifying graph convolutional networks
  publication-title: International Conference on Machine Learning
– year: 2020
  ident: b52
  article-title: Masked label prediction: Unified message passing model for semi-supervised classification
– year: 2020
  ident: b16
  article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks
– volume: 33
  year: 2021
  ident: b53
  article-title: Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
  publication-title: Phys. Fluids
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: b19
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– volume: 360
  year: 2020
  ident: b14
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 64
  start-page: 525
  year: 2019
  end-page: 545
  ident: b46
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
– year: 2014
  ident: b56
  article-title: Adam: A method for stochastic optimization
– volume: 35
  start-page: 381
  year: 1980
  end-page: 404
  ident: b44
  article-title: A mixed finite element approximation of the Navier–Stokes equations
  publication-title: Numer. Math.
– volume: 28
  start-page: 11618
  year: 2020
  end-page: 11633
  ident: b3
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
– volume: 29
  start-page: 3844
  year: 2016
  end-page: 3852
  ident: b41
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2015
  ident: b48
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: 10
  start-page: 161
  year: 2020
  end-page: 169
  ident: b55
  article-title: Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data
  publication-title: Theoret. Appl. Mech. Lett.
– start-page: 4470
  year: 2018
  end-page: 4479
  ident: b35
  article-title: Graph networks as learnable physics engines for inference and control
  publication-title: International Conference on Machine Learning
– volume: 12
  start-page: 673
  year: 1996
  end-page: 705
  ident: b27
  article-title: H-p clouds—An h-p meshless method
  publication-title: Numer. Methods Partial Differential Equations: Int. J.
– year: 2020
  ident: b40
  article-title: Multipole graph neural operator for parametric partial differential equations
– year: 2019
  ident: b37
  article-title: Site-specific graph neural network for predicting protonation energy of oxygenate molecules
– volume: 378
  year: 2021
  ident: b25
  article-title: Discretizationnet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2016
  ident: b36
  article-title: Interaction networks for learning about objects, relations and physics
– year: 2019
  ident: b31
  article-title: Variational physics-informed neural networks for solving partial differential equations
– volume: 372
  year: 2020
  ident: b45
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 29
  start-page: 3844
  year: 2016
  ident: 10.1016/j.cma.2021.114502_b41
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 6861
  year: 2019
  ident: 10.1016/j.cma.2021.114502_b50
  article-title: Simplifying graph convolutional networks
– volume: 360
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b14
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b15
– volume: 10
  start-page: 161
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b55
  article-title: Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data
  publication-title: Theoret. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2020.01.031
– volume: 18
  year: 2018
  ident: 10.1016/j.cma.2021.114502_b2
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.cma.2021.114502_b36
– volume: 12
  start-page: 673
  issue: 6
  year: 1996
  ident: 10.1016/j.cma.2021.114502_b27
  article-title: H-p clouds—An h-p meshless method
  publication-title: Numer. Methods Partial Differential Equations: Int. J.
  doi: 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b52
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.cma.2021.114502_b19
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– volume: 369
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b23
  article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113226
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b16
– volume: 33
  issue: 4
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b24
  article-title: Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in three dimensions
  publication-title: Phys. Fluids
  doi: 10.1063/5.0047428
– start-page: 298
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b33
  article-title: Varnet: Variational neural networks for the solution of partial differential equations
– year: 2021
  ident: 10.1016/j.cma.2021.114502_b51
  article-title: Graph neural networks with convolutional arma filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054830
– volume: 33
  issue: 7
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b53
  article-title: Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
  publication-title: Phys. Fluids
  doi: 10.1063/5.0054312
– volume: 363
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b34
  article-title: FEA-net: A physics-guided data-driven model for efficient mechanical response prediction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.112892
– year: 2012
  ident: 10.1016/j.cma.2021.114502_b26
– year: 2014
  ident: 10.1016/j.cma.2021.114502_b56
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2021.114502_b28
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b20
  article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
– volume: 411
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b30
  article-title: Weak adversarial networks for high-dimensional partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109409
– year: 2015
  ident: 10.1016/j.cma.2021.114502_b48
– volume: 28
  start-page: 11618
  issue: 8
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b3
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.384875
– volume: 403
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b21
  article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109056
– volume: 374
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b32
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113547
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b6
– volume: 361
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b8
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112732
– volume: 426
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b13
  article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109951
– start-page: 71
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b54
  article-title: SSR-VFD: Spatial super-resolution for vector field data analysis and visualization
– volume: 147
  issue: 8
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b5
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: J. Eng. Mech.
– year: 2019
  ident: 10.1016/j.cma.2021.114502_b31
– volume: 215
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b22
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110704
– start-page: 4470
  year: 2018
  ident: 10.1016/j.cma.2021.114502_b35
  article-title: Graph networks as learnable physics engines for inference and control
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.cma.2021.114502_b18
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– volume: 365
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b17
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113028
– year: 2021
  ident: 10.1016/j.cma.2021.114502_b12
  article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0055600
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b29
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– start-page: 8459
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b39
  article-title: Learning to simulate complex physics with graph networks
– volume: 63
  start-page: 208
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b4
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 118
  issue: 13
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b11
  article-title: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2100697118
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b9
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 35
  start-page: 381
  issue: 4
  year: 1980
  ident: 10.1016/j.cma.2021.114502_b44
  article-title: A mixed finite element approximation of the Navier–Stokes equations
  publication-title: Numer. Math.
  doi: 10.1007/BF01399007
– year: 2019
  ident: 10.1016/j.cma.2021.114502_b37
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b40
– volume: 336
  start-page: 51
  issue: 1–3
  year: 2001
  ident: 10.1016/j.cma.2021.114502_b42
  article-title: Discrete nodal domain theorems
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(01)00313-5
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b47
– volume: 64
  start-page: 525
  issue: 2
  year: 2019
  ident: 10.1016/j.cma.2021.114502_b46
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01740-0
– start-page: 593
  year: 2018
  ident: 10.1016/j.cma.2021.114502_b49
  article-title: Modeling relational data with graph convolutional networks
– volume: 358
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b10
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112623
– volume: 372
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b45
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113379
– volume: 8
  start-page: 42
  year: 2020
  ident: 10.1016/j.cma.2021.114502_b7
  article-title: Physics-informed neural networks for cardiac activation mapping
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00042
– volume: 378
  year: 2021
  ident: 10.1016/j.cma.2021.114502_b25
  article-title: Discretizationnet: A machine-learning based solver for Navier–Stokes equations using finite volume discretization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113722
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2021.114502_b1
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– ident: 10.1016/j.cma.2021.114502_b43
– year: 2020
  ident: 10.1016/j.cma.2021.114502_b38
SSID ssj0000812
Score 2.7157378
Snippet Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114502
SubjectTerms Artificial neural networks
Boundary conditions
Computational geometry
Continuity (mathematics)
Convexity
Graph convolutional neural networks
Inverse problem
Inverse problems
Mechanics
Neural networks
Optimization
Partial differential equations
Physics-informed machine learning
Polynomials
Training
Title Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems
URI https://dx.doi.org/10.1016/j.cma.2021.114502
https://www.proquest.com/docview/2635268634
Volume 390
WOSCitedRecordID wos000781386000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxoEdGAwQYwP5wInJVRzbib1bBR1jh2mHIVVcosRJYNPIpqadpv0r_LM8_0pC0SZ24JK2kW1ZeV-fPzvvfQ-h93XBdVJwSViZwAZFxJLkIsoJU7msWUUjmZe22ER6fCxnM3UyGv0KuTDXF2nTyJsbdfVfTQ33wNgmdfYB5u4GhRvwHYwOVzA7XP_J8DamU7fESaICn7Sa1HtGuBLM8RkWBHM8Dr9t_HfrUtOXzVltyGgdYrVs-CFM1J43nHyaku-2KK9pcjk3kbZetslEdZhcK1uWph1S3VAvwheptnG3uee8PyuTcBwEoqteE7ELB8rtEe5hj91v-Y-5Sy6yBcr3jsb9uwAfVQxIJ7NlMzzIgD2wKasihs6ZCwKERQydM3PFRL17hc2bsAnaf3t-dwhxPtZWTSqm477tnyrbK6tfF5MYwt3OMxgiM0NkbohHaD1OhQKXuT75Mp0d9Qu9pE6M3s87vDS34YMr87iL9qwQAMtqTp-hp347gicORs_RqGq20KbfmmDv-NsttDHQrXyBblcxhi3GsMMYDhjDAWP7eII9wnCHMAxdsUcYHiIMe4RhwAb2CMMBYS_R14Pp6cdD4ot4EM0SuSAF4znVSalKIVmlKg78l9Ulj3VCqSqYBoKUpirXVV2WtDQfsqhpWUew0-WKs1dorblsqtcIR4mCgQQ8da04TWVBKZPAp4o0AlIfs20UhWecaa9wbwqtXGR32nYbfei6XDl5l_sa82C4zPNTxzszAOF93XaDkTPvJ9rMaEDFiUwYf_OQKeygJ_1fZxetLebL6i16rK8XZ-38nQfob06UvJ4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+graph+neural+Galerkin+networks%3A+A+unified+framework+for+solving+PDE-governed+forward+and+inverse+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Gao%2C+Han&rft.au=Zahr%2C+Matthew+J.&rft.au=Wang%2C+Jian-Xun&rft.date=2022-02-15&rft.issn=0045-7825&rft.volume=390&rft.spage=114502&rft_id=info:doi/10.1016%2Fj.cma.2021.114502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2021_114502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon