Anomaly Detection Algorithm for Urban Infrastructure Construction Equipment based on Multidimensional Time Series

Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series data. By detecting anomalies in these multidimensional time subsequences (MTSs), decision support can be provided for early warning of urban...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainability Ročník 16; číslo 8; s. 3335
Hlavní autori: Wu, Bingjian, Zhang, Fan, Wang, Yi, Hu, Min, Bai, Xue
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.04.2024
Predmet:
ISSN:2071-1050, 2071-1050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series data. By detecting anomalies in these multidimensional time subsequences (MTSs), decision support can be provided for early warning of urban construction and operation risks. Considering the complexity of urban infrastructure, there is an urgent need for fast and accurate anomaly detection. This paper proposes a real-time anomaly detection algorithm based on improved distance measurement (RADIM). RADIM retains the relationships between dimensions in multidimensional subsequences, using an Extended Frobenius Norm with Local Weights (EFN_lw) and a Euclidean distance based on multidimensional data (ED_mv) to measure the similarity of MTSs. Moreover, a threshold update mechanism based on First-order Mean Difference (TMFD) is designed to detect real-time anomalies by assessing deviations. This method has been applied to tunnel construction. According to comparative experiments, RADIM exhibits better adaptability, real-time performance, and accuracy in risk warning of tunnel boring machines and construction status.
AbstractList Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series data. By detecting anomalies in these multidimensional time subsequences (MTSs), decision support can be provided for early warning of urban construction and operation risks. Considering the complexity of urban infrastructure, there is an urgent need for fast and accurate anomaly detection. This paper proposes a real-time anomaly detection algorithm based on improved distance measurement (RADIM). RADIM retains the relationships between dimensions in multidimensional subsequences, using an Extended Frobenius Norm with Local Weights (EFN_lw) and a Euclidean distance based on multidimensional data (ED_mv) to measure the similarity of MTSs. Moreover, a threshold update mechanism based on First-order Mean Difference (TMFD) is designed to detect real-time anomalies by assessing deviations. This method has been applied to tunnel construction. According to comparative experiments, RADIM exhibits better adaptability, real-time performance, and accuracy in risk warning of tunnel boring machines and construction status.
Audience Academic
Author Wang, Yi
Bai, Xue
Hu, Min
Wu, Bingjian
Zhang, Fan
Author_xml – sequence: 1
  givenname: Bingjian
  surname: Wu
  fullname: Wu, Bingjian
– sequence: 2
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-0920-1613
  surname: Wang
  fullname: Wang, Yi
– sequence: 4
  givenname: Min
  orcidid: 0000-0003-2353-1923
  surname: Hu
  fullname: Hu, Min
– sequence: 5
  givenname: Xue
  surname: Bai
  fullname: Bai, Xue
BookMark eNptkU1rGzEQhkVJoI6TS3-BIKcU7Eqr_dLRuG5rSAkk7nkZSyNXYVeyJS3E_z4yLrQpGR1m9PK8IzFzRS6cd0jIJ87mQkj2JY68Zq0QovpAJgVr-Iyzil38U38kNzE-sxxCcMnrCTksnB-gP9KvmFAl6x1d9DsfbPo9UOMD_RW24OjamQAxhVGlMSBdene-nPjVYbT7AV2iW4ioaZZ-jn2y2mYxZgJ6usk1fcJgMV6TSwN9xJs_eUo231ab5Y_Z_cP39XJxP1OibtMMirYQRkvUgAW0ZcG3sinrFkttWtgq3rTIjUShpNYlYAMS60JrhZKDZGJKbs9t98EfRoype_ZjyH-JnWBlwxrJuczU_EztoMfOOuNTAJWPxsGqPF5js75opKiqsqxObe_eGDKT8CXtYIyxWz89vmXZmVXBxxjQdMomOM0sP2L7jrPutLfu796y5fN_ln2wA4Tje_Aru7Cb3Q
CitedBy_id crossref_primary_10_3390_s25010190
Cites_doi 10.1007/978-94-015-3994-4
10.1016/j.compeleceng.2019.106458
10.1145/1032604.1032616
10.1016/j.is.2015.02.005
10.1126/science.290.5500.2323
10.1016/J.ENG.2017.05.015
10.1093/comjnl/bxaa174
10.4028/www.scientific.net/AMM.48-49.71
10.1109/MITE.2015.7375303
10.1177/0278364914525244
10.1016/j.patcog.2022.108945
10.1016/j.jprocont.2018.02.002
10.1016/j.asoc.2022.109146
10.1016/j.neucom.2019.07.034
10.1016/j.asoc.2020.106919
10.1016/j.ifacol.2019.11.567
10.1007/s10845-020-01583-0
10.1016/j.measurement.2022.110791
10.1109/ACCESS.2021.3110288
10.1109/ACCESS.2018.2840086
10.1145/1541880.1541882
10.1016/j.measurement.2018.10.089
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su16083335
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Engineering
EISSN 2071-1050
ExternalDocumentID A793554450
10_3390_su16083335
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c368t-a2823fd9edae2a8421b97468e4df8abc178e1f9e3c9dd4ae7a9e62ddce91a903
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210163600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 07:57:21 EDT 2025
Tue Nov 04 18:22:27 EST 2025
Thu Nov 13 16:27:58 EST 2025
Sat Nov 29 07:12:06 EST 2025
Tue Nov 18 22:12:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-a2823fd9edae2a8421b97468e4df8abc178e1f9e3c9dd4ae7a9e62ddce91a903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2353-1923
0000-0002-0920-1613
OpenAccessLink https://www.proquest.com/docview/3047079119?pq-origsite=%requestingapplication%
PQID 3047079119
PQPubID 2032327
ParticipantIDs proquest_journals_3047079119
gale_infotracacademiconefile_A793554450
gale_incontextgauss_ISR_A793554450
crossref_citationtrail_10_3390_su16083335
crossref_primary_10_3390_su16083335
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xiang (ref_1) 2021; 9
Audibert (ref_19) 2022; 132
Habeeb (ref_4) 2018; 45
Hu (ref_7) 2018; 6
Gauci (ref_20) 2014; 33
Navi (ref_8) 2018; 64
ref_12
ref_31
Han (ref_11) 2014; 31
Wang (ref_17) 2022; 191
Roweis (ref_9) 2000; 290
Zheng (ref_15) 2022; 125
Chandola (ref_22) 2009; 41
Zhong (ref_3) 2017; 3
Guo (ref_24) 2014; 48
Kaya (ref_28) 2015; 51
Wang (ref_27) 2019; 134
Li (ref_16) 2021; 100
Weng (ref_25) 2007; 33
Wang (ref_14) 2021; 32
Canizo (ref_10) 2019; 363
ref_23
ref_21
Hu (ref_30) 2011; 48–49
Hu (ref_2) 2020; 40
Ding (ref_5) 2019; 79
Tran (ref_13) 2019; 52
ref_29
ref_26
Wambura (ref_18) 2021; 65
ref_6
References_xml – ident: ref_21
  doi: 10.1007/978-94-015-3994-4
– volume: 79
  start-page: 106458
  year: 2019
  ident: ref_5
  article-title: Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.106458
– ident: ref_23
  doi: 10.1145/1032604.1032616
– ident: ref_26
– volume: 51
  start-page: 27
  year: 2015
  ident: ref_28
  article-title: A distance based time series classification framework
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2015.02.005
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref_9
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 3
  start-page: 616
  year: 2017
  ident: ref_3
  article-title: Intelligent Manufacturing in the Context of Industry 4.0: A Review
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.015
– volume: 48
  start-page: 111
  year: 2014
  ident: ref_24
  article-title: Analysis on similarity of multivariate time series based on Eros
  publication-title: Comput. Eng. Appl.
– volume: 65
  start-page: 1242
  year: 2021
  ident: ref_18
  article-title: Robust Anomaly Detection in Feature-Evolving Time Series
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxaa174
– volume: 48–49
  start-page: 71
  year: 2011
  ident: ref_30
  article-title: A New Hazard Identification Method-State Transition Graph
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.48-49.71
– ident: ref_12
  doi: 10.1109/MITE.2015.7375303
– ident: ref_6
– volume: 33
  start-page: 102
  year: 2007
  ident: ref_25
  article-title: Outlier Mining for Multivariate Time Series Based on Sliding Window
  publication-title: Comput. Eng.
– volume: 33
  start-page: 1145
  year: 2014
  ident: ref_20
  article-title: Self-organized aggregation without computation
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914525244
– ident: ref_31
– ident: ref_29
– volume: 132
  start-page: 108945
  year: 2022
  ident: ref_19
  article-title: Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108945
– volume: 64
  start-page: 37
  year: 2018
  ident: ref_8
  article-title: Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.02.002
– volume: 40
  start-page: 1553
  year: 2020
  ident: ref_2
  article-title: Review of anomaly detection algorithms for multi-dimensional time series
  publication-title: J. Comput. Appl.
– volume: 31
  start-page: 182
  year: 2014
  ident: ref_11
  article-title: An adaptive K-means initialization method based on data density
  publication-title: Comput. Appl. Softw.
– volume: 125
  start-page: 109146
  year: 2022
  ident: ref_15
  article-title: A deep hypersphere approach to high-dimensional anomaly detection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109146
– volume: 363
  start-page: 246
  year: 2019
  ident: ref_10
  article-title: Multi-head CNN–RNN for multitime series anomaly detection: An industrial case study
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.034
– volume: 100
  start-page: 106919
  year: 2021
  ident: ref_16
  article-title: Clustering-based anomaly detection in multivariate time series data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106919
– volume: 45
  start-page: 289
  year: 2018
  ident: ref_4
  article-title: Real-time big data processing for anomaly detection: A Survey
  publication-title: IJIM
– volume: 52
  start-page: 2408
  year: 2019
  ident: ref_13
  article-title: Anomaly detection using Long Short Term Memory Networks and its applications in Supply Chain Management
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.567
– volume: 32
  start-page: 1711
  year: 2021
  ident: ref_14
  article-title: Bound smoothing based time series anomaly detection using multiple similarity measures
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01583-0
– volume: 191
  start-page: 110791
  year: 2022
  ident: ref_17
  article-title: Variational transformer-based anomaly detection approach for multivariate time series
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110791
– volume: 9
  start-page: 124253
  year: 2021
  ident: ref_1
  article-title: Fast crdnn: Towards on site training of mobile construction machines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110288
– volume: 6
  start-page: 27760
  year: 2018
  ident: ref_7
  article-title: Detecting Anomalies in Time Series Data via a Meta-Feature Based Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2840086
– volume: 41
  start-page: 15
  year: 2009
  ident: ref_22
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 134
  start-page: 326
  year: 2019
  ident: ref_27
  article-title: Multi-sensors based condition monitoring of rotary machines: An approach of multi-dimensional time-series analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.10.089
SSID ssj0000331916
Score 2.3358088
Snippet Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3335
SubjectTerms Accuracy
Algorithms
Behavior
Construction equipment
Construction equipment industry
Engineering
Methods
Neural networks
Sensors
Sustainable urban development
Time series
Title Anomaly Detection Algorithm for Urban Infrastructure Construction Equipment based on Multidimensional Time Series
URI https://www.proquest.com/docview/3047079119
Volume 16
WOSCitedRecordID wos001210163600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFAk48AhUBEq1AiTEwart3Xq9JxTAFTk0ikqRysla76NUCk4TJ0hc-O3M2OsGpIoLR9uzWkszO6-d-QbgtVVaSmV5hOajioQ1PFLay4iEywqfykx2wybkdJqfn6tZSLg1oayy14mtorYLQznyQ7oeiiUeTfXuahnR1Ci6XQ0jNHZgl5DK0gHsvi-ms9PrLEvMUcSSrMMl5RjfI3-TDN0O3s5321qim_Vxa2SOH_zv7z2E-8G9ZONOHh7BLVcP4U7ffdwM4d4fAIRD2Cu2fW64LBz05jEsx7hAz3-yj27dFmvVbDy_wA3X374z9HPZl1Wlazap_Up3ELSblWM0_bPHo2XFcnPZFiMxspSW4au229fSPIEOC4RRAwqjBJ1rnsDZcXH24VMUpjNEhmf5OtIYrHFvlbPapToXaVJhbJLlTlif68okMneJV44bZa3QTmrlstRa41SiVcz3YFAvavcU2FGljLOxslJYge5klXmOJtOjM1SZVLgRvO0ZVZqAXE4DNOYlRjDE1HLL1BG8uqa96vA6bqR6SfwuCQCjpgqbC71pmnLy-bQcS0KcF-IoHsGbQOQXuJ3RoWEBf5ows_6i3O-FogwqoCm3EvHs35-fw90UPaWuHGgfBsgn9wJumx_ry2Z1ECT6AHZOfhX4NJuczL7-BrVsBrU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFKlw4BGoCBSweAhxWLG7dtbrA0KBpmrUElUlSL1ZXttbKoVNk01A_VH8R2b20YBUceuB6669D_vz-LM98w3AK6eMlMrxAKePLBDO8kCZXAYELifyWCayTjYhx-P05EQdbcCvNhaG3Cpbm1gZajeztEf-jo6HQolDU304nweUNYpOV9sUGjUsDvzFT1yyle9Hu9i_r-N4bzj5tB80WQUCy5N0GRhcZPDcKe-Mj00q4ihDTp2kXrg8NZmNZOqjXHlulXPCeGmUT2LnrFeRUSHHx96ATcFFX3Rg8-NwfHR8uakTckR0lNQyqJyrEOEUJchyeJVObj3xXW3-qzlt7-5_1hr34E5DntmgRvt92PBFF7ba2OqyC7f_kFfswvZwHcWH1RozVj6A-QArmOkF2_XLyhWtYIPpKf7f8tt3hiyefV1kpmCjIl-YWmB3tfCMcpu2artsOF-dVa5WjHiAY3ipimV2lC2hVjphFF7DaPvRlw9hch3tsg2dYlb4R8D6mbLehcpJ4QSS5SzJORKCHKleZmPhe_C2xYW2jS47pQeZalyfEYb0GkM9eHlZ9rxWI7my1AuClyZ5j4L8h07Nqiz16MuxHkjS0xeiH_bgTVMon-HrrGnCMfCjSRHsr5I7LQZ1Y-BKvQbg43_ffg5b-5PPh_pwND54Ardi5IS149MOdLDP_FO4aX8sz8rFs2YwMdDXDNjfJphjfw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aG2LwwKUwURhgcRHiIVoSe3H8gFChraiGqmoMaW-W48s2qaRr04L20_h3HCfOCtLE2x54TY5zsT_bn-1zvgPw2gjFuTA0wumjiJjRNBLK8ciDyzCX8ow3ySb4eJwfH4vJBvxqY2G8W2U7JtYDtZlpv0e-54-HYo5dU-y54BYx6Q8_nM8jn0HKn7S26TQaiBzYi5-4fKvej_rY1m_SdDg4-vQ5ChkGIk2zfBkpXHBQZ4Q1yqYqZ2lSIL_OcsuMy1WhE57bxAlLtTCGKcuVsFlqjLYiUSKm-NgbsMWpiLFzbX0cjCeHlxs8MUV0J1kjiUrRBKGVZMh4aJ1abj0JXj0V1PPb8N5_XDP34W4g1aTX9IIHsGHLDmy3MddVB-78IbvYgZ3BOroPi4XhrXoI8x4WUNML0rfL2kWtJL3pCf7f8vQ7QXZPvi0KVZJR6RaqEd5dLSzxOU9bFV4ymK_Oahcs4vmBIXipjnE2PotCo4BCfNgN8duStnoER9dRLzuwWc5K-xjIfiG0NbEwnBmGJLrIHEWi4JACFjpltgvvWoxIHfTafdqQqcR1m8eTXOOpC68ubc8blZIrrV56qEkv-1F6mJyoVVXJ0ddD2eNeZ5-x_bgLb4ORm-HrtAphGvjRXinsL8vdFo8yDHyVXIPxyb9vv4BbiFL5ZTQ-eAq3U6SKjT_ULmxik9lncFP_WJ5Vi-ehXxGQ14zX3z3RbEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+Algorithm+for+Urban+Infrastructure+Construction+Equipment+based+on+Multidimensional+Time+Series&rft.jtitle=Sustainability&rft.au=Wu%2C+Bingjian&rft.au=Zhang%2C+Fan&rft.au=Wang%2C+Yi&rft.au=Hu%2C+Min&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=8&rft_id=info:doi/10.3390%2Fsu16083335&rft.externalDocID=A793554450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon