Anomaly Detection Algorithm for Urban Infrastructure Construction Equipment based on Multidimensional Time Series
Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series data. By detecting anomalies in these multidimensional time subsequences (MTSs), decision support can be provided for early warning of urban...
Uložené v:
| Vydané v: | Sustainability Ročník 16; číslo 8; s. 3335 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.04.2024
|
| Predmet: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series data. By detecting anomalies in these multidimensional time subsequences (MTSs), decision support can be provided for early warning of urban construction and operation risks. Considering the complexity of urban infrastructure, there is an urgent need for fast and accurate anomaly detection. This paper proposes a real-time anomaly detection algorithm based on improved distance measurement (RADIM). RADIM retains the relationships between dimensions in multidimensional subsequences, using an Extended Frobenius Norm with Local Weights (EFN_lw) and a Euclidean distance based on multidimensional data (ED_mv) to measure the similarity of MTSs. Moreover, a threshold update mechanism based on First-order Mean Difference (TMFD) is designed to detect real-time anomalies by assessing deviations. This method has been applied to tunnel construction. According to comparative experiments, RADIM exhibits better adaptability, real-time performance, and accuracy in risk warning of tunnel boring machines and construction status. |
|---|---|
| AbstractList | Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series data. By detecting anomalies in these multidimensional time subsequences (MTSs), decision support can be provided for early warning of urban construction and operation risks. Considering the complexity of urban infrastructure, there is an urgent need for fast and accurate anomaly detection. This paper proposes a real-time anomaly detection algorithm based on improved distance measurement (RADIM). RADIM retains the relationships between dimensions in multidimensional subsequences, using an Extended Frobenius Norm with Local Weights (EFN_lw) and a Euclidean distance based on multidimensional data (ED_mv) to measure the similarity of MTSs. Moreover, a threshold update mechanism based on First-order Mean Difference (TMFD) is designed to detect real-time anomalies by assessing deviations. This method has been applied to tunnel construction. According to comparative experiments, RADIM exhibits better adaptability, real-time performance, and accuracy in risk warning of tunnel boring machines and construction status. |
| Audience | Academic |
| Author | Wang, Yi Bai, Xue Hu, Min Wu, Bingjian Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Bingjian surname: Wu fullname: Wu, Bingjian – sequence: 2 givenname: Fan surname: Zhang fullname: Zhang, Fan – sequence: 3 givenname: Yi orcidid: 0000-0002-0920-1613 surname: Wang fullname: Wang, Yi – sequence: 4 givenname: Min orcidid: 0000-0003-2353-1923 surname: Hu fullname: Hu, Min – sequence: 5 givenname: Xue surname: Bai fullname: Bai, Xue |
| BookMark | eNptkU1rGzEQhkVJoI6TS3-BIKcU7Eqr_dLRuG5rSAkk7nkZSyNXYVeyJS3E_z4yLrQpGR1m9PK8IzFzRS6cd0jIJ87mQkj2JY68Zq0QovpAJgVr-Iyzil38U38kNzE-sxxCcMnrCTksnB-gP9KvmFAl6x1d9DsfbPo9UOMD_RW24OjamQAxhVGlMSBdene-nPjVYbT7AV2iW4ioaZZ-jn2y2mYxZgJ6usk1fcJgMV6TSwN9xJs_eUo231ab5Y_Z_cP39XJxP1OibtMMirYQRkvUgAW0ZcG3sinrFkttWtgq3rTIjUShpNYlYAMS60JrhZKDZGJKbs9t98EfRoype_ZjyH-JnWBlwxrJuczU_EztoMfOOuNTAJWPxsGqPF5js75opKiqsqxObe_eGDKT8CXtYIyxWz89vmXZmVXBxxjQdMomOM0sP2L7jrPutLfu796y5fN_ln2wA4Tje_Aru7Cb3Q |
| CitedBy_id | crossref_primary_10_3390_s25010190 |
| Cites_doi | 10.1007/978-94-015-3994-4 10.1016/j.compeleceng.2019.106458 10.1145/1032604.1032616 10.1016/j.is.2015.02.005 10.1126/science.290.5500.2323 10.1016/J.ENG.2017.05.015 10.1093/comjnl/bxaa174 10.4028/www.scientific.net/AMM.48-49.71 10.1109/MITE.2015.7375303 10.1177/0278364914525244 10.1016/j.patcog.2022.108945 10.1016/j.jprocont.2018.02.002 10.1016/j.asoc.2022.109146 10.1016/j.neucom.2019.07.034 10.1016/j.asoc.2020.106919 10.1016/j.ifacol.2019.11.567 10.1007/s10845-020-01583-0 10.1016/j.measurement.2022.110791 10.1109/ACCESS.2021.3110288 10.1109/ACCESS.2018.2840086 10.1145/1541880.1541882 10.1016/j.measurement.2018.10.089 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su16083335 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences Engineering |
| EISSN | 2071-1050 |
| ExternalDocumentID | A793554450 10_3390_su16083335 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c368t-a2823fd9edae2a8421b97468e4df8abc178e1f9e3c9dd4ae7a9e62ddce91a903 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210163600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Mon Jun 30 07:57:21 EDT 2025 Tue Nov 04 18:22:27 EST 2025 Thu Nov 13 16:27:58 EST 2025 Sat Nov 29 07:12:06 EST 2025 Tue Nov 18 22:12:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-a2823fd9edae2a8421b97468e4df8abc178e1f9e3c9dd4ae7a9e62ddce91a903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2353-1923 0000-0002-0920-1613 |
| OpenAccessLink | https://www.proquest.com/docview/3047079119?pq-origsite=%requestingapplication% |
| PQID | 3047079119 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_3047079119 gale_infotracacademiconefile_A793554450 gale_incontextgauss_ISR_A793554450 crossref_citationtrail_10_3390_su16083335 crossref_primary_10_3390_su16083335 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xiang (ref_1) 2021; 9 Audibert (ref_19) 2022; 132 Habeeb (ref_4) 2018; 45 Hu (ref_7) 2018; 6 Gauci (ref_20) 2014; 33 Navi (ref_8) 2018; 64 ref_12 ref_31 Han (ref_11) 2014; 31 Wang (ref_17) 2022; 191 Roweis (ref_9) 2000; 290 Zheng (ref_15) 2022; 125 Chandola (ref_22) 2009; 41 Zhong (ref_3) 2017; 3 Guo (ref_24) 2014; 48 Kaya (ref_28) 2015; 51 Wang (ref_27) 2019; 134 Li (ref_16) 2021; 100 Weng (ref_25) 2007; 33 Wang (ref_14) 2021; 32 Canizo (ref_10) 2019; 363 ref_23 ref_21 Hu (ref_30) 2011; 48–49 Hu (ref_2) 2020; 40 Ding (ref_5) 2019; 79 Tran (ref_13) 2019; 52 ref_29 ref_26 Wambura (ref_18) 2021; 65 ref_6 |
| References_xml | – ident: ref_21 doi: 10.1007/978-94-015-3994-4 – volume: 79 start-page: 106458 year: 2019 ident: ref_5 article-title: Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.106458 – ident: ref_23 doi: 10.1145/1032604.1032616 – ident: ref_26 – volume: 51 start-page: 27 year: 2015 ident: ref_28 article-title: A distance based time series classification framework publication-title: Inf. Syst. doi: 10.1016/j.is.2015.02.005 – volume: 290 start-page: 2323 year: 2000 ident: ref_9 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 3 start-page: 616 year: 2017 ident: ref_3 article-title: Intelligent Manufacturing in the Context of Industry 4.0: A Review publication-title: Engineering doi: 10.1016/J.ENG.2017.05.015 – volume: 48 start-page: 111 year: 2014 ident: ref_24 article-title: Analysis on similarity of multivariate time series based on Eros publication-title: Comput. Eng. Appl. – volume: 65 start-page: 1242 year: 2021 ident: ref_18 article-title: Robust Anomaly Detection in Feature-Evolving Time Series publication-title: Comput. J. doi: 10.1093/comjnl/bxaa174 – volume: 48–49 start-page: 71 year: 2011 ident: ref_30 article-title: A New Hazard Identification Method-State Transition Graph publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.48-49.71 – ident: ref_12 doi: 10.1109/MITE.2015.7375303 – ident: ref_6 – volume: 33 start-page: 102 year: 2007 ident: ref_25 article-title: Outlier Mining for Multivariate Time Series Based on Sliding Window publication-title: Comput. Eng. – volume: 33 start-page: 1145 year: 2014 ident: ref_20 article-title: Self-organized aggregation without computation publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914525244 – ident: ref_31 – ident: ref_29 – volume: 132 start-page: 108945 year: 2022 ident: ref_19 article-title: Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection? publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108945 – volume: 64 start-page: 37 year: 2018 ident: ref_8 article-title: Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.002 – volume: 40 start-page: 1553 year: 2020 ident: ref_2 article-title: Review of anomaly detection algorithms for multi-dimensional time series publication-title: J. Comput. Appl. – volume: 31 start-page: 182 year: 2014 ident: ref_11 article-title: An adaptive K-means initialization method based on data density publication-title: Comput. Appl. Softw. – volume: 125 start-page: 109146 year: 2022 ident: ref_15 article-title: A deep hypersphere approach to high-dimensional anomaly detection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109146 – volume: 363 start-page: 246 year: 2019 ident: ref_10 article-title: Multi-head CNN–RNN for multitime series anomaly detection: An industrial case study publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.034 – volume: 100 start-page: 106919 year: 2021 ident: ref_16 article-title: Clustering-based anomaly detection in multivariate time series data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106919 – volume: 45 start-page: 289 year: 2018 ident: ref_4 article-title: Real-time big data processing for anomaly detection: A Survey publication-title: IJIM – volume: 52 start-page: 2408 year: 2019 ident: ref_13 article-title: Anomaly detection using Long Short Term Memory Networks and its applications in Supply Chain Management publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.11.567 – volume: 32 start-page: 1711 year: 2021 ident: ref_14 article-title: Bound smoothing based time series anomaly detection using multiple similarity measures publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01583-0 – volume: 191 start-page: 110791 year: 2022 ident: ref_17 article-title: Variational transformer-based anomaly detection approach for multivariate time series publication-title: Measurement doi: 10.1016/j.measurement.2022.110791 – volume: 9 start-page: 124253 year: 2021 ident: ref_1 article-title: Fast crdnn: Towards on site training of mobile construction machines publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110288 – volume: 6 start-page: 27760 year: 2018 ident: ref_7 article-title: Detecting Anomalies in Time Series Data via a Meta-Feature Based Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2840086 – volume: 41 start-page: 15 year: 2009 ident: ref_22 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 134 start-page: 326 year: 2019 ident: ref_27 article-title: Multi-sensors based condition monitoring of rotary machines: An approach of multi-dimensional time-series analysis publication-title: Measurement doi: 10.1016/j.measurement.2018.10.089 |
| SSID | ssj0000331916 |
| Score | 2.3358088 |
| Snippet | Safety is the foundation of urban sustainable development. The urban construction and operation process involves a large amount of multidimensional time series... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3335 |
| SubjectTerms | Accuracy Algorithms Behavior Construction equipment Construction equipment industry Engineering Methods Neural networks Sensors Sustainable urban development Time series |
| Title | Anomaly Detection Algorithm for Urban Infrastructure Construction Equipment based on Multidimensional Time Series |
| URI | https://www.proquest.com/docview/3047079119 |
| Volume | 16 |
| WOSCitedRecordID | wos001210163600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFAk48AhUBEq1AiTEwart3Xq9JxTAFTk0ikqRysla76NUCk4TJ0hc-O3M2OsGpIoLR9uzWkszO6-d-QbgtVVaSmV5hOajioQ1PFLay4iEywqfykx2wybkdJqfn6tZSLg1oayy14mtorYLQznyQ7oeiiUeTfXuahnR1Ci6XQ0jNHZgl5DK0gHsvi-ms9PrLEvMUcSSrMMl5RjfI3-TDN0O3s5321qim_Vxa2SOH_zv7z2E-8G9ZONOHh7BLVcP4U7ffdwM4d4fAIRD2Cu2fW64LBz05jEsx7hAz3-yj27dFmvVbDy_wA3X374z9HPZl1Wlazap_Up3ELSblWM0_bPHo2XFcnPZFiMxspSW4au229fSPIEOC4RRAwqjBJ1rnsDZcXH24VMUpjNEhmf5OtIYrHFvlbPapToXaVJhbJLlTlif68okMneJV44bZa3QTmrlstRa41SiVcz3YFAvavcU2FGljLOxslJYge5klXmOJtOjM1SZVLgRvO0ZVZqAXE4DNOYlRjDE1HLL1BG8uqa96vA6bqR6SfwuCQCjpgqbC71pmnLy-bQcS0KcF-IoHsGbQOQXuJ3RoWEBf5ows_6i3O-FogwqoCm3EvHs35-fw90UPaWuHGgfBsgn9wJumx_ry2Z1ECT6AHZOfhX4NJuczL7-BrVsBrU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFKlw4BGoCBSweAhxWLG7dtbrA0KBpmrUElUlSL1ZXttbKoVNk01A_VH8R2b20YBUceuB6669D_vz-LM98w3AK6eMlMrxAKePLBDO8kCZXAYELifyWCayTjYhx-P05EQdbcCvNhaG3Cpbm1gZajeztEf-jo6HQolDU304nweUNYpOV9sUGjUsDvzFT1yyle9Hu9i_r-N4bzj5tB80WQUCy5N0GRhcZPDcKe-Mj00q4ihDTp2kXrg8NZmNZOqjXHlulXPCeGmUT2LnrFeRUSHHx96ATcFFX3Rg8-NwfHR8uakTckR0lNQyqJyrEOEUJchyeJVObj3xXW3-qzlt7-5_1hr34E5DntmgRvt92PBFF7ba2OqyC7f_kFfswvZwHcWH1RozVj6A-QArmOkF2_XLyhWtYIPpKf7f8tt3hiyefV1kpmCjIl-YWmB3tfCMcpu2artsOF-dVa5WjHiAY3ipimV2lC2hVjphFF7DaPvRlw9hch3tsg2dYlb4R8D6mbLehcpJ4QSS5SzJORKCHKleZmPhe_C2xYW2jS47pQeZalyfEYb0GkM9eHlZ9rxWI7my1AuClyZ5j4L8h07Nqiz16MuxHkjS0xeiH_bgTVMon-HrrGnCMfCjSRHsr5I7LQZ1Y-BKvQbg43_ffg5b-5PPh_pwND54Ardi5IS149MOdLDP_FO4aX8sz8rFs2YwMdDXDNjfJphjfw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aG2LwwKUwURhgcRHiIVoSe3H8gFChraiGqmoMaW-W48s2qaRr04L20_h3HCfOCtLE2x54TY5zsT_bn-1zvgPw2gjFuTA0wumjiJjRNBLK8ciDyzCX8ow3ySb4eJwfH4vJBvxqY2G8W2U7JtYDtZlpv0e-54-HYo5dU-y54BYx6Q8_nM8jn0HKn7S26TQaiBzYi5-4fKvej_rY1m_SdDg4-vQ5ChkGIk2zfBkpXHBQZ4Q1yqYqZ2lSIL_OcsuMy1WhE57bxAlLtTCGKcuVsFlqjLYiUSKm-NgbsMWpiLFzbX0cjCeHlxs8MUV0J1kjiUrRBKGVZMh4aJ1abj0JXj0V1PPb8N5_XDP34W4g1aTX9IIHsGHLDmy3MddVB-78IbvYgZ3BOroPi4XhrXoI8x4WUNML0rfL2kWtJL3pCf7f8vQ7QXZPvi0KVZJR6RaqEd5dLSzxOU9bFV4ymK_Oahcs4vmBIXipjnE2PotCo4BCfNgN8duStnoER9dRLzuwWc5K-xjIfiG0NbEwnBmGJLrIHEWi4JACFjpltgvvWoxIHfTafdqQqcR1m8eTXOOpC68ubc8blZIrrV56qEkv-1F6mJyoVVXJ0ddD2eNeZ5-x_bgLb4ORm-HrtAphGvjRXinsL8vdFo8yDHyVXIPxyb9vv4BbiFL5ZTQ-eAq3U6SKjT_ULmxik9lncFP_WJ5Vi-ehXxGQ14zX3z3RbEI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+Algorithm+for+Urban+Infrastructure+Construction+Equipment+based+on+Multidimensional+Time+Series&rft.jtitle=Sustainability&rft.au=Wu%2C+Bingjian&rft.au=Zhang%2C+Fan&rft.au=Wang%2C+Yi&rft.au=Hu%2C+Min&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=8&rft_id=info:doi/10.3390%2Fsu16083335&rft.externalDocID=A793554450 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |