Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics

A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutio...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 372; p. 113379
Main Authors: Xu, Jiayang, Duraisamy, Karthik
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.12.2020
Elsevier BV
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutional autoencoder is used as the top level to encode the high dimensional input data along spatial dimensions into a sequence of latent variables. A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal evolution of the dynamics. The use of dilated temporal convolutions grows the receptive field exponentially with network depth, allowing for efficient processing of long temporal sequences typical of scientific computations. A fully-connected network is used as the third level to learn the mapping between these latent variables and the global parameters from training data, and predict them for new parameters. For future state predictions, the second level uses a temporal convolutional network to predict subsequent steps of the output sequence from the top level. Latent variables at the bottom-most level are decoded to obtain the dynamics in physical space at new global parameters and/or at a future time. Predictive capabilities are evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. The sensitivity of the results to different modeling choices is assessed. The results suggest that given adequate data and careful training, effective data-driven predictive models can be constructed. Perspectives are provided on the present approach and its place in the landscape of model reduction. •A data-driven framework is proposed for parametric prediction of spatio-temporal dynamics, leveraging nested neural networks.•Convolutional autoencoders are used in space and time to obtain reduced dimensional nonlinear manifolds.•The framework is evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures.
AbstractList A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutional autoencoder is used as the top level to encode the high dimensional input data along spatial dimensions into a sequence of latent variables. A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal evolution of the dynamics. The use of dilated temporal convolutions grows the receptive field exponentially with network depth, allowing for efficient processing of long temporal sequences typical of scientific computations. A fully-connected network is used as the third level to learn the mapping between these latent variables and the global parameters from training data, and predict them for new parameters. For future state predictions, the second level uses a temporal convolutional network to predict subsequent steps of the output sequence from the top level. Latent variables at the bottom-most level are decoded to obtain the dynamics in physical space at new global parameters and/or at a future time. Predictive capabilities are evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. The sensitivity of the results to different modeling choices is assessed. The results suggest that given adequate data and careful training, effective data-driven predictive models can be constructed. Perspectives are provided on the present approach and its place in the landscape of model reduction.
A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutional autoencoder is used as the top level to encode the high dimensional input data along spatial dimensions into a sequence of latent variables. A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal evolution of the dynamics. The use of dilated temporal convolutions grows the receptive field exponentially with network depth, allowing for efficient processing of long temporal sequences typical of scientific computations. A fully-connected network is used as the third level to learn the mapping between these latent variables and the global parameters from training data, and predict them for new parameters. For future state predictions, the second level uses a temporal convolutional network to predict subsequent steps of the output sequence from the top level. Latent variables at the bottom-most level are decoded to obtain the dynamics in physical space at new global parameters and/or at a future time. Predictive capabilities are evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. The sensitivity of the results to different modeling choices is assessed. The results suggest that given adequate data and careful training, effective data-driven predictive models can be constructed. Perspectives are provided on the present approach and its place in the landscape of model reduction. •A data-driven framework is proposed for parametric prediction of spatio-temporal dynamics, leveraging nested neural networks.•Convolutional autoencoders are used in space and time to obtain reduced dimensional nonlinear manifolds.•The framework is evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures.
ArticleNumber 113379
Author Duraisamy, Karthik
Xu, Jiayang
Author_xml – sequence: 1
  givenname: Jiayang
  surname: Xu
  fullname: Xu, Jiayang
  email: davidxu@umich.edu
– sequence: 2
  givenname: Karthik
  surname: Duraisamy
  fullname: Duraisamy, Karthik
  email: kdur@umich.edu
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnrfmY7dJ8STFL6h40XOYJrOQurtZk2yl_96UevLgXGYG5hl4nxmZ9L5HQq4ZXTDKlre7helgwSnPOxNCrs7IlCm5KjkTakKmlFZ1KRWvL8gsxh3NpRifEvs6tsmVLe6xLYzv974dk_M9tAWMyWNvvMVQ9Ji-ffiMReNDMUCADlNwphgCWmeOQOGbIg6QxzJhN_iQP9hDD50z8ZKcN9BGvPrtc_Lx-PC-fi43b08v6_tNacRSpRK4NJVaVUY2SnGQyG2lBFJGbS3rylZbWAmD2FiAetlsgYoKtwgNV4ZLLsSc3Jz-DsF_jRiT3vkx5CxR80pKyajgNF-x05UJPsaAjR6C6yAcNKP6KFPvdJapjzL1SWZm5B_GuHQM26cArv2XvDuRmIPvHQYdjctas7eAJmnr3T_0D-s_k0E
CitedBy_id crossref_primary_10_1017_jfm_2021_697
crossref_primary_10_1016_j_physd_2023_133857
crossref_primary_10_1002_fld_5234
crossref_primary_10_1002_nme_6625
crossref_primary_10_1007_s11042_022_12907_y
crossref_primary_10_1038_s41598_025_93165_4
crossref_primary_10_1186_s40323_023_00254_y
crossref_primary_10_1007_s11071_022_07733_8
crossref_primary_10_1007_s10915_023_02128_2
crossref_primary_10_1063_5_0217845
crossref_primary_10_1016_j_engappai_2023_107536
crossref_primary_10_1063_5_0087977
crossref_primary_10_1080_09540091_2022_2131737
crossref_primary_10_1016_j_engappai_2025_110463
crossref_primary_10_1109_ACCESS_2023_3284837
crossref_primary_10_1002_gamm_202100007
crossref_primary_10_1007_s00366_023_01782_2
crossref_primary_10_1016_j_enganabound_2022_02_016
crossref_primary_10_1016_j_cja_2024_08_012
crossref_primary_10_1016_j_cma_2022_115831
crossref_primary_10_1007_s00162_021_00580_0
crossref_primary_10_1063_5_0088070
crossref_primary_10_1016_j_engstruct_2022_114020
crossref_primary_10_1002_env_2754
crossref_primary_10_1016_j_cma_2021_114502
crossref_primary_10_1016_j_ijmecsci_2023_108497
crossref_primary_10_1016_j_cma_2025_118245
crossref_primary_10_1007_s10409_023_22491_x
crossref_primary_10_1016_j_ijmecsci_2025_110335
crossref_primary_10_1017_dce_2024_21
crossref_primary_10_1007_s42979_024_02602_0
crossref_primary_10_1016_j_camwa_2024_10_036
crossref_primary_10_1063_5_0152212
crossref_primary_10_7717_peerj_15147
crossref_primary_10_1002_nme_7072
crossref_primary_10_1109_TII_2021_3092372
crossref_primary_10_1016_j_jcp_2022_111739
crossref_primary_10_1017_jfm_2021_271
crossref_primary_10_1063_5_0207978
crossref_primary_10_1016_j_buildenv_2022_108966
crossref_primary_10_1016_j_jcp_2021_110666
crossref_primary_10_3390_axioms14050385
crossref_primary_10_1016_j_cma_2025_117921
crossref_primary_10_1016_j_cma_2023_116155
crossref_primary_10_1016_j_trb_2023_102869
crossref_primary_10_1016_j_matdes_2022_111236
crossref_primary_10_1016_j_oceaneng_2022_110554
crossref_primary_10_1016_j_engappai_2022_105454
crossref_primary_10_1007_s10845_025_02598_1
crossref_primary_10_1016_j_combustflame_2025_113981
crossref_primary_10_1016_j_neunet_2021_11_022
crossref_primary_10_1016_j_compfluid_2025_106626
crossref_primary_10_1007_s00170_024_13932_x
crossref_primary_10_1016_j_engappai_2023_105978
crossref_primary_10_1016_j_ijthermalsci_2023_108619
crossref_primary_10_1016_j_cma_2021_113999
crossref_primary_10_1016_j_mechmat_2024_105168
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_1109_JIOT_2024_3362343
crossref_primary_10_1007_s10915_022_02078_1
crossref_primary_10_1016_j_ces_2022_118434
crossref_primary_10_1016_j_ymssp_2023_110789
crossref_primary_10_1016_j_neunet_2024_106198
crossref_primary_10_1038_s44172_024_00327_9
crossref_primary_10_1016_j_jcp_2023_112537
crossref_primary_10_1016_j_ijimpeng_2023_104825
crossref_primary_10_1016_j_physd_2025_134650
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_1007_s00366_023_01916_6
crossref_primary_10_1016_j_engappai_2021_104652
crossref_primary_10_1016_j_physd_2020_132797
crossref_primary_10_1186_s40323_023_00244_0
crossref_primary_10_1016_j_cma_2022_115771
crossref_primary_10_1016_j_enganabound_2025_106204
crossref_primary_10_3390_pr13041093
crossref_primary_10_1063_5_0179132
crossref_primary_10_1016_j_camwa_2023_08_026
crossref_primary_10_3389_fphy_2022_910381
crossref_primary_10_1017_jfm_2024_592
crossref_primary_10_1002_nme_7372
crossref_primary_10_1016_j_jmsy_2024_10_009
crossref_primary_10_1007_s40997_023_00632_2
crossref_primary_10_1016_j_nucengdes_2022_111716
crossref_primary_10_1007_s10237_024_01817_7
crossref_primary_10_1016_j_cma_2025_117807
crossref_primary_10_3390_math8040570
crossref_primary_10_1016_j_cma_2022_115768
crossref_primary_10_1080_10407790_2024_2379006
crossref_primary_10_1016_j_jcp_2023_112621
Cites_doi 10.1109/TCAD.2011.2142184
10.1007/BF03024948
10.1016/0021-9991(78)90023-2
10.2514/3.10041
10.18653/v1/D16-1058
10.1016/j.crma.2004.08.006
10.1137/100813051
10.1109/TAC.2008.2006102
10.1109/CVPR.2017.113
10.1162/neco.1997.9.8.1735
10.1016/j.eswa.2014.12.003
10.1146/annurev.fl.25.010193.002543
10.1023/A:1018977404843
10.1109/TAC.1981.1102568
10.1016/j.cma.2018.07.017
10.1109/ICCV.2015.123
10.2514/1.J058392
10.1137/130932715
10.1016/j.jcp.2019.01.031
10.1016/j.physd.2020.132368
10.2514/1.6786
10.1016/j.jcp.2010.09.015
10.1016/j.cma.2012.04.015
10.1038/ncomms9133
10.1137/0910047
10.1002/nme.3050
10.1137/140989169
10.1002/nme.4490
10.2514/1.J057791
10.1016/j.jcp.2018.10.045
10.1115/1.1448332
10.1016/j.jcp.2018.02.037
10.1142/S0218127405012429
10.1207/s15516709cog1402_1
10.1088/1478-3975/8/5/055011
10.1073/pnas.1517384113
10.1177/1744259116649405
10.1137/090776925
10.1109/9.29399
10.1137/19M1267246
10.1098/rspa.2017.0385
10.1016/j.physd.2003.03.001
10.1016/j.jcp.2019.05.041
10.1063/1.5067313
10.1016/j.energy.2018.01.177
10.1137/15M1019271
10.1016/j.jcp.2016.10.033
10.1016/j.jcp.2005.01.008
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Dec 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2020.113379
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2020_113379
S0045782520305648
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-a27c4894c7f882a7e2d483e010d5754d4ba93ceefdaa56fba034ebeaf28c27233
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592539200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 09 06:14:26 EST 2025
Sat Nov 29 07:27:54 EST 2025
Tue Nov 18 22:22:09 EST 2025
Fri Feb 23 02:45:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data-driven modeling
Convolutional neural networks
Autoencoders
Reduced order modeling
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-a27c4894c7f882a7e2d483e010d5754d4ba93ceefdaa56fba034ebeaf28c27233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.cma.2020.113379
PQID 2477710320
PQPubID 2045269
ParticipantIDs proquest_journals_2477710320
crossref_primary_10_1016_j_cma_2020_113379
crossref_citationtrail_10_1016_j_cma_2020_113379
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113379
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Xu, Huang, Duraisamy (b15) 2019
Carlberg, Jameson, Kochenderfer, Morton, Peng, Witherden (b31) 2019
Gu (b40) 2011; 30
Gonzalez, Balajewicz (b53) 2018
Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b61) 2016
Carlberg, Bou-Mosleh, Farhat (b13) 2011; 86
Rather, Agarwal, Sastry (b63) 2015; 42
Carlberg, Barone, Antil (b17) 2017; 330
Rumelhart, Hinton, Williams (b51) 1988; 5
Maulik, Mohan, Lusch, Madireddy, Balaprakash, Livescu (b54) 2020
Berger, Gasparin, Chhay, Mendes (b11) 2016; 40
Rowley, Colonius, Murray (b3) 2004; 189
Astrid (b33) 2004
Hartman, Mestha (b25) 2017
Guo, Hesthaven (b46) 2018; 341
Dumoulin, Visin (b71) 2016
Barthelmann, Novak, Ritter (b45) 2000; 12
Xingjian, Chen, Wang, Yeung, Wong, Woo (b55) 2015
Barrault, Maday, Nguyen, Patera (b35) 2004; 339
Moore (b4) 1981; 26
Brunton, Proctor, Kutz (b39) 2016; 113
Baur, Beattie, Benner, Gugercin (b9) 2011; 33
Guo, Li, Iorio (b29) 2016
Sod (b73) 1978; 27
Benner, Gugercin, Willcox (b1) 2015; 57
Parish, Wentland, Duraisamy (b20) 2018
Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b65) 2016
Gouasmi, Parish, Duraisamy (b21) 2017; 473
Wang, Hesthaven, Ray (b48) 2019; 384
Drmac, Gugercin (b37) 2016; 38
Lee, You (b50) 2018
Amsallem, Farhat (b24) 2011; 33
Rozza, Huynh, Patera (b8) 2007; 15
Bai, Kolter, Koltun (b66) 2018
Puligilla, Jayaraman (b30) 2018
Wang, Akhtar, Borggaard, Iliescu (b19) 2012; 237
Wilcox (b78) 1988; 26
Couplet, Basdevant, Sagaut (b32) 2005; 207
Kramer, Willcox (b41) 2019; 57
Safonov, Chiang (b5) 1989; 34
Hochreiter, Schmidhuber (b58) 1997; 9
Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, Lipson (b43) 2011; 8
DeMers, Cottrell (b26) 1993
Huang, Duraisamy, Merkle (b79) 2020
Daniels, Nemenman (b44) 2015; 6
Wang, Akhtar, Borggaard, Iliescu (b18) 2011; 230
Omata, Shirayama (b27) 2019; 9
Peterson (b6) 1989; 10
Gin, Lusch, Brunton, Kutz (b83) 2019
Gehring, Auli, Grangier, Dauphin (b67) 2016
C. Lea, M.D. Flynn, R. Vidal, A. Reiter, G.D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165.
Kramer, Willcox (b42) 2019
Peherstorfer, Willcox (b22) 2015; 37
Prud’Homme, Rovas, Veroy, Machiels, Maday, Patera, Turinici (b7) 2001; 124
Lee, Carlberg (b28) 2018
Raissi, Perdikaris, Karniadakis (b80) 2019; 378
Huang, Xu, Duraisamy, Merkle (b16) 2018
Berkooz, Holmes, Lumley (b2) 1993; 25
Peherstorfer, Drmač, Gugercin (b38) 2018
Eck, Schmidhuber (b64) 2002
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
Swischuk, Kramer, Huang, Willcox (b82) 2019
Kipf, Welling (b84) 2016
Peherstorfer (b23) 2018
Danaila, Joly, Kaber, Postel (b74) 2007
Parish, Carlberg (b75) 2019
Dauphin, Fan, Auli, Grangier (b69) 2017
de Almeida (b10) 2013; 94
Yu, Yin, Zhu (b56) 2017
Elman (b57) 1990; 14
Astrid, Weiland, Willcox, Backx (b34) 2008; 53
Kingma, Ba (b72) 2014
Huang, Duraisamy, Merkle (b76) 2019; 57
Pan, Duraisamy (b81) 2020
Mohan, Daniel, Chertkov, Livescu (b49) 2019
Cho, Van Merriënboer, Bahdanau, Bengio (b59) 2014
Hijazi, Stabile, Mola, Rozza (b14) 2019
Qing, Niu (b62) 2018; 148
Rowley (b12) 2005; 15
Lee, Sezer-Uzol, Horn, Long (b77) 2005; 42
Hesthaven, Ubbiali (b47) 2018; 363
Hochreiter, Schmidhuber (b52) 1997
Chaturantabut, Sorensen (b36) 2009
Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for aspect-level sentiment classification, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 606–615.
Benner (10.1016/j.cma.2020.113379_b1) 2015; 57
Huang (10.1016/j.cma.2020.113379_b16) 2018
Swischuk (10.1016/j.cma.2020.113379_b82) 2019
Huang (10.1016/j.cma.2020.113379_b76) 2019; 57
Lee (10.1016/j.cma.2020.113379_b28) 2018
Barthelmann (10.1016/j.cma.2020.113379_b45) 2000; 12
Eck (10.1016/j.cma.2020.113379_b64) 2002
Wilcox (10.1016/j.cma.2020.113379_b78) 1988; 26
Peherstorfer (10.1016/j.cma.2020.113379_b38) 2018
Kramer (10.1016/j.cma.2020.113379_b42) 2019
Wang (10.1016/j.cma.2020.113379_b48) 2019; 384
Gonzalez (10.1016/j.cma.2020.113379_b53) 2018
Gehring (10.1016/j.cma.2020.113379_b67) 2016
Raissi (10.1016/j.cma.2020.113379_b80) 2019; 378
Bai (10.1016/j.cma.2020.113379_b66) 2018
Brunton (10.1016/j.cma.2020.113379_b39) 2016; 113
Parish (10.1016/j.cma.2020.113379_b75) 2019
Rozza (10.1016/j.cma.2020.113379_b8) 2007; 15
Berger (10.1016/j.cma.2020.113379_b11) 2016; 40
Safonov (10.1016/j.cma.2020.113379_b5) 1989; 34
Omata (10.1016/j.cma.2020.113379_b27) 2019; 9
Wu (10.1016/j.cma.2020.113379_b61) 2016
Berkooz (10.1016/j.cma.2020.113379_b2) 1993; 25
Prud’Homme (10.1016/j.cma.2020.113379_b7) 2001; 124
Lee (10.1016/j.cma.2020.113379_b77) 2005; 42
Maulik (10.1016/j.cma.2020.113379_b54) 2020
Carlberg (10.1016/j.cma.2020.113379_b13) 2011; 86
Rumelhart (10.1016/j.cma.2020.113379_b51) 1988; 5
Elman (10.1016/j.cma.2020.113379_b57) 1990; 14
Gin (10.1016/j.cma.2020.113379_b83) 2019
Couplet (10.1016/j.cma.2020.113379_b32) 2005; 207
Qing (10.1016/j.cma.2020.113379_b62) 2018; 148
Baur (10.1016/j.cma.2020.113379_b9) 2011; 33
Parish (10.1016/j.cma.2020.113379_b20) 2018
Wang (10.1016/j.cma.2020.113379_b19) 2012; 237
Xu (10.1016/j.cma.2020.113379_b15) 2019
Hochreiter (10.1016/j.cma.2020.113379_b52) 1997
Amsallem (10.1016/j.cma.2020.113379_b24) 2011; 33
Mohan (10.1016/j.cma.2020.113379_b49) 2019
Pan (10.1016/j.cma.2020.113379_b81) 2020
Schmidt (10.1016/j.cma.2020.113379_b43) 2011; 8
Carlberg (10.1016/j.cma.2020.113379_b17) 2017; 330
Peherstorfer (10.1016/j.cma.2020.113379_b23) 2018
Xingjian (10.1016/j.cma.2020.113379_b55) 2015
10.1016/j.cma.2020.113379_b70
Moore (10.1016/j.cma.2020.113379_b4) 1981; 26
Hartman (10.1016/j.cma.2020.113379_b25) 2017
DeMers (10.1016/j.cma.2020.113379_b26) 1993
Kramer (10.1016/j.cma.2020.113379_b41) 2019; 57
Kingma (10.1016/j.cma.2020.113379_b72) 2014
Gouasmi (10.1016/j.cma.2020.113379_b21) 2017; 473
Dauphin (10.1016/j.cma.2020.113379_b69) 2017
Yu (10.1016/j.cma.2020.113379_b56) 2017
Rowley (10.1016/j.cma.2020.113379_b3) 2004; 189
Wang (10.1016/j.cma.2020.113379_b18) 2011; 230
Puligilla (10.1016/j.cma.2020.113379_b30) 2018
Daniels (10.1016/j.cma.2020.113379_b44) 2015; 6
Lee (10.1016/j.cma.2020.113379_b50) 2018
Danaila (10.1016/j.cma.2020.113379_b74) 2007
Astrid (10.1016/j.cma.2020.113379_b33) 2004
Rowley (10.1016/j.cma.2020.113379_b12) 2005; 15
Drmac (10.1016/j.cma.2020.113379_b37) 2016; 38
Peterson (10.1016/j.cma.2020.113379_b6) 1989; 10
Kipf (10.1016/j.cma.2020.113379_b84) 2016
Sod (10.1016/j.cma.2020.113379_b73) 1978; 27
Huang (10.1016/j.cma.2020.113379_b79) 2020
Rather (10.1016/j.cma.2020.113379_b63) 2015; 42
10.1016/j.cma.2020.113379_b68
Peherstorfer (10.1016/j.cma.2020.113379_b22) 2015; 37
Hochreiter (10.1016/j.cma.2020.113379_b58) 1997; 9
Carlberg (10.1016/j.cma.2020.113379_b31) 2019
Astrid (10.1016/j.cma.2020.113379_b34) 2008; 53
Guo (10.1016/j.cma.2020.113379_b46) 2018; 341
Hesthaven (10.1016/j.cma.2020.113379_b47) 2018; 363
Guo (10.1016/j.cma.2020.113379_b29) 2016
10.1016/j.cma.2020.113379_b60
Dumoulin (10.1016/j.cma.2020.113379_b71) 2016
Oord (10.1016/j.cma.2020.113379_b65) 2016
Hijazi (10.1016/j.cma.2020.113379_b14) 2019
Gu (10.1016/j.cma.2020.113379_b40) 2011; 30
Cho (10.1016/j.cma.2020.113379_b59) 2014
de Almeida (10.1016/j.cma.2020.113379_b10) 2013; 94
Barrault (10.1016/j.cma.2020.113379_b35) 2004; 339
Chaturantabut (10.1016/j.cma.2020.113379_b36) 2009
References_xml – volume: 33
  start-page: 2169
  year: 2011
  end-page: 2198
  ident: b24
  article-title: An online method for interpolating linear parametric reduced-order models
  publication-title: SIAM J. Sci. Comput.
– year: 2016
  ident: b67
  article-title: A convolutional encoder model for neural machine translation
– year: 2018
  ident: b28
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
– volume: 384
  start-page: 289
  year: 2019
  end-page: 307
  ident: b48
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J. Comput. Phys.
– year: 2014
  ident: b72
  article-title: Adam: A method for stochastic optimization
– volume: 12
  start-page: 273
  year: 2000
  end-page: 288
  ident: b45
  article-title: High dimensional polynomial interpolation on sparse grids
  publication-title: Adv. Comput. Math.
– start-page: 213
  year: 2007
  end-page: 233
  ident: b74
  article-title: Gas dynamics: The Riemann problem and discontinuous solutions: Application to the shock tube problem
  publication-title: Introduction to Scientific Computing
– volume: 38
  start-page: A631
  year: 2016
  end-page: A648
  ident: b37
  article-title: A new selection operator for the discrete empirical interpolation method—Improved a priori error bound and extensions
  publication-title: SIAM J. Sci. Comput.
– volume: 230
  start-page: 126
  year: 2011
  end-page: 146
  ident: b18
  article-title: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition
  publication-title: J. Comput. Phys.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
– volume: 189
  start-page: 115
  year: 2004
  end-page: 129
  ident: b3
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D
– year: 2018
  ident: b50
  article-title: Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning
– year: 2019
  ident: b14
  article-title: Data-driven POD-Galerkin reduced order model for turbulent flows
– year: 2016
  ident: b65
  article-title: Wavenet: A generative model for raw audio
– start-page: 802
  year: 2015
  end-page: 810
  ident: b55
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  start-page: 1307
  year: 2011
  end-page: 1320
  ident: b40
  article-title: QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– volume: 341
  start-page: 807
  year: 2018
  end-page: 826
  ident: b46
  article-title: Reduced order modeling for nonlinear structural analysis using gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2018
  ident: b53
  article-title: Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
– volume: 8
  year: 2011
  ident: b43
  article-title: Automated refinement and inference of analytical models for metabolic networks
  publication-title: Phys. Biol.
– year: 2019
  ident: b49
  article-title: Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3D turbulence
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: b47
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
– year: 2016
  ident: b84
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2020
  ident: b54
  article-title: Time-series learning of latent-space dynamics for reduced-order model closure
  publication-title: Physica D
– start-page: 4316
  year: 2009
  end-page: 4321
  ident: b36
  article-title: Discrete empirical interpolation for nonlinear model reduction
  publication-title: Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
– volume: 40
  start-page: 235
  year: 2016
  end-page: 262
  ident: b11
  article-title: Estimation of temperature-dependent thermal conductivity using proper generalised decomposition for building energy management
  publication-title: J. Build. Phys.
– volume: 148
  start-page: 461
  year: 2018
  end-page: 468
  ident: b62
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
– volume: 42
  start-page: 3234
  year: 2015
  end-page: 3241
  ident: b63
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 1
  year: 1978
  end-page: 31
  ident: b73
  article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
  publication-title: J. Comput. Phys.
– start-page: 1917
  year: 2017
  end-page: 1922
  ident: b25
  article-title: A deep learning framework for model reduction of dynamical systems
  publication-title: 2017 IEEE Conference on Control Technology and Applications (CCTA)
– start-page: 48
  year: 2002
  ident: b64
  article-title: A First Look at Music Composition using Lstm Recurrent Neural Networks, Vol. 103
– year: 2019
  ident: b75
  article-title: Time-series machine-learning error models for approximate solutions to parameterized dynamical systems
– year: 2018
  ident: b38
  article-title: Stabilizing discrete empirical interpolation via randomized and deterministic oversampling
– year: 2019
  ident: b82
  article-title: Learning physics-based reduced-order models for a single-injector combustion process
– volume: 124
  start-page: 70
  year: 2001
  end-page: 80
  ident: b7
  article-title: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods
  publication-title: J. Fluids Eng.
– volume: 37
  start-page: A2123
  year: 2015
  end-page: A2150
  ident: b22
  article-title: Online adaptive model reduction for nonlinear systems via low-rank updates
  publication-title: SIAM J. Sci. Comput.
– start-page: 3091
  year: 2018
  ident: b30
  article-title: Deep multilayer convolution frameworks for data-driven learning of fluid flow dynamics
  publication-title: 2018 Fluid Dynamics Conference
– volume: 94
  start-page: 961
  year: 2013
  end-page: 984
  ident: b10
  article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 473
  year: 1997
  end-page: 479
  ident: b52
  article-title: LSTM can solve hard long time lag problems
  publication-title: Advances in Neural Information Processing Systems
– reference: Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for aspect-level sentiment classification, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 606–615.
– volume: 207
  start-page: 192
  year: 2005
  end-page: 220
  ident: b32
  article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling
  publication-title: J. Comput. Phys.
– year: 2016
  ident: b61
  article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation
– volume: 34
  start-page: 729
  year: 1989
  end-page: 733
  ident: b5
  article-title: A Schur method for balanced-truncation model reduction
  publication-title: IEEE Trans. Automat. Control
– volume: 15
  start-page: 997
  year: 2005
  end-page: 1013
  ident: b12
  article-title: Model reduction for fluids, using balanced proper orthogonal decomposition
  publication-title: Int. J. Bifurcation Chaos
– year: 2018
  ident: b23
  article-title: Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling
– year: 2016
  ident: b71
  article-title: A guide to convolution arithmetic for deep learning
– year: 2017
  ident: b56
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: b39
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  start-page: 1
  year: 1988
  ident: b51
  article-title: Learning representations by back-propagating errors
  publication-title: Cogn. Model.
– volume: 15
  start-page: 1
  year: 2007
  ident: b8
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
  publication-title: Arch. Comput. Methods Eng.
– volume: 26
  start-page: 17
  year: 1981
  end-page: 32
  ident: b4
  article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction
  publication-title: IEEE Trans. Automat. Control
– volume: 26
  start-page: 1299
  year: 1988
  end-page: 1310
  ident: b78
  article-title: Reassessment of the scale-determining equation for advanced turbulence models
  publication-title: AIAA J.
– start-page: 2141
  year: 2020
  ident: b79
  article-title: Data-informed species limiters for local robustness control of reduced-order models of reacting flow
  publication-title: AIAA Scitech 2020 Forum
– volume: 10
  start-page: 777
  year: 1989
  end-page: 786
  ident: b6
  article-title: The reduced basis method for incompressible viscous flow calculations
  publication-title: SIAM J. Sci. Stat. Comput.
– start-page: 1183
  year: 2018
  ident: b16
  article-title: Exploration of reduced-order models for rocket combustion applications
  publication-title: 2018 AIAA Aerospace Sciences Meeting
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b80
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2019
  end-page: 15
  ident: b15
  article-title: Reduced-order modeling framework for combustor instabilities using truncated domain training
  publication-title: AIAA J.
– year: 2019
  ident: b31
  article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning
  publication-title: J. Comput. Phys.
– year: 2018
  ident: b66
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– year: 2019
  ident: b83
  article-title: Deep learning models for global coordinate transformations that linearize PDEs
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: b2
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b58
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 57
  start-page: 5377
  year: 2019
  end-page: 5389
  ident: b76
  article-title: Investigations and improvement of robustness of reduced-order models of reacting flow
  publication-title: AIAA J.
– volume: 57
  start-page: 483
  year: 2015
  end-page: 531
  ident: b1
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b57
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
– year: 2020
  ident: b81
  article-title: Physics-informed probabilistic learning of linear embeddings of non-linear dynamics with guaranteed stability
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 57
  start-page: 2297
  year: 2019
  end-page: 2307
  ident: b41
  article-title: Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition
  publication-title: AIAA J.
– start-page: 481
  year: 2016
  end-page: 490
  ident: b29
  article-title: Convolutional neural networks for steady flow approximation
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 33
  start-page: 2489
  year: 2011
  end-page: 2518
  ident: b9
  article-title: Interpolatory projection methods for parameterized model reduction
  publication-title: SIAM J. Sci. Comput.
– start-page: 580
  year: 1993
  end-page: 587
  ident: b26
  article-title: Non-linear dimensionality reduction
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  year: 2019
  ident: b27
  article-title: A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder
  publication-title: AIP Adv.
– volume: 339
  start-page: 667
  year: 2004
  end-page: 672
  ident: b35
  article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: C. R. Math.
– reference: C. Lea, M.D. Flynn, R. Vidal, A. Reiter, G.D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165.
– year: 2019
  ident: b42
  article-title: Balanced truncation model reduction for lifted nonlinear systems
– volume: 86
  start-page: 155
  year: 2011
  end-page: 181
  ident: b13
  article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 6
  start-page: 8133
  year: 2015
  ident: b44
  article-title: Automated adaptive inference of phenomenological dynamical models
  publication-title: Nature Commun.
– volume: 473
  year: 2017
  ident: b21
  article-title: A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism
  publication-title: Proc. R. Soc. A
– start-page: 933
  year: 2017
  end-page: 941
  ident: b69
  article-title: Language modeling with gated convolutional networks
  publication-title: International Conference on Machine Learning
– volume: 237
  start-page: 10
  year: 2012
  end-page: 26
  ident: b19
  article-title: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2004
  ident: b33
  article-title: Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach
– year: 2018
  ident: b20
  article-title: The adjoint Petrov-Galerkin method for non-linear model reduction
– volume: 42
  start-page: 448
  year: 2005
  end-page: 461
  ident: b77
  article-title: Simulation of helicopter shipboard launch and recovery with time-accurate airwakes
  publication-title: J. Aircr.
– volume: 330
  start-page: 693
  year: 2017
  end-page: 734
  ident: b17
  article-title: Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
  publication-title: J. Comput. Phys.
– volume: 53
  start-page: 2237
  year: 2008
  end-page: 2251
  ident: b34
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans. Automat. Control
– year: 2014
  ident: b59
  article-title: On the properties of neural machine translation: Encoder-decoder approaches
– volume: 30
  start-page: 1307
  issue: 9
  year: 2011
  ident: 10.1016/j.cma.2020.113379_b40
  article-title: QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2011.2142184
– volume: 15
  start-page: 1
  issue: 3
  year: 2007
  ident: 10.1016/j.cma.2020.113379_b8
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF03024948
– start-page: 4316
  year: 2009
  ident: 10.1016/j.cma.2020.113379_b36
  article-title: Discrete empirical interpolation for nonlinear model reduction
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b42
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b83
– volume: 27
  start-page: 1
  issue: 1
  year: 1978
  ident: 10.1016/j.cma.2020.113379_b73
  article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(78)90023-2
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b23
– volume: 5
  start-page: 1
  issue: 3
  year: 1988
  ident: 10.1016/j.cma.2020.113379_b51
  article-title: Learning representations by back-propagating errors
  publication-title: Cogn. Model.
– volume: 26
  start-page: 1299
  issue: 11
  year: 1988
  ident: 10.1016/j.cma.2020.113379_b78
  article-title: Reassessment of the scale-determining equation for advanced turbulence models
  publication-title: AIAA J.
  doi: 10.2514/3.10041
– ident: 10.1016/j.cma.2020.113379_b60
  doi: 10.18653/v1/D16-1058
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  ident: 10.1016/j.cma.2020.113379_b35
  article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2004.08.006
– start-page: 1183
  year: 2018
  ident: 10.1016/j.cma.2020.113379_b16
  article-title: Exploration of reduced-order models for rocket combustion applications
– start-page: 481
  year: 2016
  ident: 10.1016/j.cma.2020.113379_b29
  article-title: Convolutional neural networks for steady flow approximation
– start-page: 2141
  year: 2020
  ident: 10.1016/j.cma.2020.113379_b79
  article-title: Data-informed species limiters for local robustness control of reduced-order models of reacting flow
– volume: 33
  start-page: 2169
  issue: 5
  year: 2011
  ident: 10.1016/j.cma.2020.113379_b24
  article-title: An online method for interpolating linear parametric reduced-order models
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100813051
– start-page: 580
  year: 1993
  ident: 10.1016/j.cma.2020.113379_b26
  article-title: Non-linear dimensionality reduction
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  ident: 10.1016/j.cma.2020.113379_b34
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2006102
– ident: 10.1016/j.cma.2020.113379_b68
  doi: 10.1109/CVPR.2017.113
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b82
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.cma.2020.113379_b58
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b75
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b14
– volume: 42
  start-page: 3234
  issue: 6
  year: 2015
  ident: 10.1016/j.cma.2020.113379_b63
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.12.003
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b66
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.cma.2020.113379_b2
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 12
  start-page: 273
  issue: 4
  year: 2000
  ident: 10.1016/j.cma.2020.113379_b45
  article-title: High dimensional polynomial interpolation on sparse grids
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018977404843
– start-page: 213
  year: 2007
  ident: 10.1016/j.cma.2020.113379_b74
  article-title: Gas dynamics: The Riemann problem and discontinuous solutions: Application to the shock tube problem
– volume: 26
  start-page: 17
  issue: 1
  year: 1981
  ident: 10.1016/j.cma.2020.113379_b4
  article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1981.1102568
– volume: 341
  start-page: 807
  year: 2018
  ident: 10.1016/j.cma.2020.113379_b46
  article-title: Reduced order modeling for nonlinear structural analysis using gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.07.017
– ident: 10.1016/j.cma.2020.113379_b70
  doi: 10.1109/ICCV.2015.123
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b38
– volume: 57
  start-page: 5377
  issue: 12
  year: 2019
  ident: 10.1016/j.cma.2020.113379_b76
  article-title: Investigations and improvement of robustness of reduced-order models of reacting flow
  publication-title: AIAA J.
  doi: 10.2514/1.J058392
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2020.113379_b1
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– year: 2004
  ident: 10.1016/j.cma.2020.113379_b33
– volume: 384
  start-page: 289
  year: 2019
  ident: 10.1016/j.cma.2020.113379_b48
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.031
– year: 2020
  ident: 10.1016/j.cma.2020.113379_b54
  article-title: Time-series learning of latent-space dynamics for reduced-order model closure
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132368
– year: 2016
  ident: 10.1016/j.cma.2020.113379_b67
– volume: 42
  start-page: 448
  issue: 2
  year: 2005
  ident: 10.1016/j.cma.2020.113379_b77
  article-title: Simulation of helicopter shipboard launch and recovery with time-accurate airwakes
  publication-title: J. Aircr.
  doi: 10.2514/1.6786
– volume: 230
  start-page: 126
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2020.113379_b18
  article-title: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.09.015
– volume: 237
  start-page: 10
  year: 2012
  ident: 10.1016/j.cma.2020.113379_b19
  article-title: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.04.015
– volume: 6
  start-page: 8133
  year: 2015
  ident: 10.1016/j.cma.2020.113379_b44
  article-title: Automated adaptive inference of phenomenological dynamical models
  publication-title: Nature Commun.
  doi: 10.1038/ncomms9133
– volume: 10
  start-page: 777
  issue: 4
  year: 1989
  ident: 10.1016/j.cma.2020.113379_b6
  article-title: The reduced basis method for incompressible viscous flow calculations
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910047
– year: 2014
  ident: 10.1016/j.cma.2020.113379_b59
– volume: 86
  start-page: 155
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2020.113379_b13
  article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3050
– start-page: 473
  year: 1997
  ident: 10.1016/j.cma.2020.113379_b52
  article-title: LSTM can solve hard long time lag problems
– volume: 37
  start-page: A2123
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2020.113379_b22
  article-title: Online adaptive model reduction for nonlinear systems via low-rank updates
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140989169
– year: 2014
  ident: 10.1016/j.cma.2020.113379_b72
– volume: 94
  start-page: 961
  issue: 10
  year: 2013
  ident: 10.1016/j.cma.2020.113379_b10
  article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4490
– start-page: 1917
  year: 2017
  ident: 10.1016/j.cma.2020.113379_b25
  article-title: A deep learning framework for model reduction of dynamical systems
– volume: 57
  start-page: 2297
  issue: 6
  year: 2019
  ident: 10.1016/j.cma.2020.113379_b41
  article-title: Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition
  publication-title: AIAA J.
  doi: 10.2514/1.J057791
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2020.113379_b80
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 124
  start-page: 70
  issue: 1
  year: 2001
  ident: 10.1016/j.cma.2020.113379_b7
  article-title: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.1448332
– volume: 363
  start-page: 55
  year: 2018
  ident: 10.1016/j.cma.2020.113379_b47
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.037
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b53
– volume: 15
  start-page: 997
  issue: 03
  year: 2005
  ident: 10.1016/j.cma.2020.113379_b12
  article-title: Model reduction for fluids, using balanced proper orthogonal decomposition
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127405012429
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.cma.2020.113379_b57
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– year: 2016
  ident: 10.1016/j.cma.2020.113379_b65
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b28
– volume: 8
  issue: 5
  year: 2011
  ident: 10.1016/j.cma.2020.113379_b43
  article-title: Automated refinement and inference of analytical models for metabolic networks
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/8/5/055011
– start-page: 48
  year: 2002
  ident: 10.1016/j.cma.2020.113379_b64
– year: 2016
  ident: 10.1016/j.cma.2020.113379_b61
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.cma.2020.113379_b39
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 40
  start-page: 235
  issue: 3
  year: 2016
  ident: 10.1016/j.cma.2020.113379_b11
  article-title: Estimation of temperature-dependent thermal conductivity using proper generalised decomposition for building energy management
  publication-title: J. Build. Phys.
  doi: 10.1177/1744259116649405
– volume: 33
  start-page: 2489
  issue: 5
  year: 2011
  ident: 10.1016/j.cma.2020.113379_b9
  article-title: Interpolatory projection methods for parameterized model reduction
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090776925
– year: 2017
  ident: 10.1016/j.cma.2020.113379_b56
– volume: 34
  start-page: 729
  issue: 7
  year: 1989
  ident: 10.1016/j.cma.2020.113379_b5
  article-title: A Schur method for balanced-truncation model reduction
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.29399
– year: 2020
  ident: 10.1016/j.cma.2020.113379_b81
  article-title: Physics-informed probabilistic learning of linear embeddings of non-linear dynamics with guaranteed stability
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/19M1267246
– volume: 473
  issue: 2205
  year: 2017
  ident: 10.1016/j.cma.2020.113379_b21
  article-title: A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2017.0385
– year: 2016
  ident: 10.1016/j.cma.2020.113379_b71
– start-page: 1
  year: 2019
  ident: 10.1016/j.cma.2020.113379_b15
  article-title: Reduced-order modeling framework for combustor instabilities using truncated domain training
  publication-title: AIAA J.
– start-page: 3091
  year: 2018
  ident: 10.1016/j.cma.2020.113379_b30
  article-title: Deep multilayer convolution frameworks for data-driven learning of fluid flow dynamics
– volume: 189
  start-page: 115
  issue: 1–2
  year: 2004
  ident: 10.1016/j.cma.2020.113379_b3
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D
  doi: 10.1016/j.physd.2003.03.001
– start-page: 933
  year: 2017
  ident: 10.1016/j.cma.2020.113379_b69
  article-title: Language modeling with gated convolutional networks
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b31
  article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.041
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2020.113379_b27
  article-title: A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder
  publication-title: AIP Adv.
  doi: 10.1063/1.5067313
– volume: 148
  start-page: 461
  year: 2018
  ident: 10.1016/j.cma.2020.113379_b62
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– year: 2019
  ident: 10.1016/j.cma.2020.113379_b49
– volume: 38
  start-page: A631
  issue: 2
  year: 2016
  ident: 10.1016/j.cma.2020.113379_b37
  article-title: A new selection operator for the discrete empirical interpolation method—Improved a priori error bound and extensions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1019271
– volume: 330
  start-page: 693
  year: 2017
  ident: 10.1016/j.cma.2020.113379_b17
  article-title: Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.033
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b50
– year: 2016
  ident: 10.1016/j.cma.2020.113379_b84
– year: 2018
  ident: 10.1016/j.cma.2020.113379_b20
– volume: 207
  start-page: 192
  issue: 1
  year: 2005
  ident: 10.1016/j.cma.2020.113379_b32
  article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.01.008
– start-page: 802
  year: 2015
  ident: 10.1016/j.cma.2020.113379_b55
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
SSID ssj0000812
Score 2.663267
Snippet A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113379
SubjectTerms Autoencoders
Convolutional neural networks
Data-driven modeling
Machine learning
Mathematical models
Model reduction
Modelling
Neural networks
Nonlinear dynamics
Parameters
Prediction models
Reduced order modeling
Spatial data
Training
Wave propagation
Title Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
URI https://dx.doi.org/10.1016/j.cma.2020.113379
https://www.proquest.com/docview/2477710320
Volume 372
WOSCitedRecordID wos000592539200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLVg4wAHfgwQg4F8QByYjFLbqZPjBJ0AVYVDh3KzXNvRMtq0NCna_nv8c8kqqODAJarcpqn6nr98X_z5PQBeDxKRao0lmg2pQCYDL1GeyxzRNMtVyrAoZw7pMZtMsqLIv4almMbZCbC6zi4v89V_hdqMGbDt1tl_gPv6S82AeW1AN0cDuzn-FfBuSy2a22Yg11MeLmY1ATbt0upWWvmI2rd_OzWGY6v_vbDWWtJqBqhKxjSycf3WKOhXzY-V969v-ilt9IUIZtSuv1aE3Hah7cbiKAStO-3DiHOxcTSqxJXoBj9s1qJqxOIq7FZrz6vv_acTeLvTo9s2860fhWmKTGaS9qMw8Q4-IY4Ofhvd_YOGi3fSKUZhZ0hDvBfNTSXtyRd-ejYe8-momL5Z_UDWZMwuxgfHldtgH7M0N0Fw_-TTqPjc3bqzgZeXDz8wLoO7hsCtq_4pkdm6pbs8ZfoQ3A8FBjzxxHgEbun6ADwIxQYMobw5APd6SpSPgeqxBt5gDeyxBkbWQMMa2LEGdqyByxJusQZG1jwBZ6ej6fuPKBhwIEmGWYsEZpJmOZWsNIWYYBormhFtSngzjVOq6EzkxGRZpRIiHZYzkRBqgoIocSYxw4Q8BXv1stbPADSFAVF0SKRTpJRpLrVKBirLqC4ZmSWHIIn_JpdBnd6apMx5bEO84AYAbgHgHoBD8Pb6lJWXZtn1YRoh4iG39DkjN-TaddpRhJOHOd5wTBljVogyeb777RfgbjcnjsBeu97ol-CO_NlWzfpVIN8vTjSoxQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+convolutional+autoencoder+networks+for+parametric+prediction+of+spatio-temporal+dynamics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Xu%2C+Jiayang&rft.au=Duraisamy%2C+Karthik&rft.date=2020-12-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=372&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2020.113379&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon