Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutio...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 372; p. 113379 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.12.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutional autoencoder is used as the top level to encode the high dimensional input data along spatial dimensions into a sequence of latent variables. A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal evolution of the dynamics. The use of dilated temporal convolutions grows the receptive field exponentially with network depth, allowing for efficient processing of long temporal sequences typical of scientific computations. A fully-connected network is used as the third level to learn the mapping between these latent variables and the global parameters from training data, and predict them for new parameters. For future state predictions, the second level uses a temporal convolutional network to predict subsequent steps of the output sequence from the top level. Latent variables at the bottom-most level are decoded to obtain the dynamics in physical space at new global parameters and/or at a future time. Predictive capabilities are evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. The sensitivity of the results to different modeling choices is assessed. The results suggest that given adequate data and careful training, effective data-driven predictive models can be constructed. Perspectives are provided on the present approach and its place in the landscape of model reduction.
•A data-driven framework is proposed for parametric prediction of spatio-temporal dynamics, leveraging nested neural networks.•Convolutional autoencoders are used in space and time to obtain reduced dimensional nonlinear manifolds.•The framework is evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. |
|---|---|
| AbstractList | A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutional autoencoder is used as the top level to encode the high dimensional input data along spatial dimensions into a sequence of latent variables. A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal evolution of the dynamics. The use of dilated temporal convolutions grows the receptive field exponentially with network depth, allowing for efficient processing of long temporal sequences typical of scientific computations. A fully-connected network is used as the third level to learn the mapping between these latent variables and the global parameters from training data, and predict them for new parameters. For future state predictions, the second level uses a temporal convolutional network to predict subsequent steps of the output sequence from the top level. Latent variables at the bottom-most level are decoded to obtain the dynamics in physical space at new global parameters and/or at a future time. Predictive capabilities are evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. The sensitivity of the results to different modeling choices is assessed. The results suggest that given adequate data and careful training, effective data-driven predictive models can be constructed. Perspectives are provided on the present approach and its place in the landscape of model reduction. A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three levels of neural networks are used, with the goal of predicting the future state of a system of interest in a parametric setting. A convolutional autoencoder is used as the top level to encode the high dimensional input data along spatial dimensions into a sequence of latent variables. A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal evolution of the dynamics. The use of dilated temporal convolutions grows the receptive field exponentially with network depth, allowing for efficient processing of long temporal sequences typical of scientific computations. A fully-connected network is used as the third level to learn the mapping between these latent variables and the global parameters from training data, and predict them for new parameters. For future state predictions, the second level uses a temporal convolutional network to predict subsequent steps of the output sequence from the top level. Latent variables at the bottom-most level are decoded to obtain the dynamics in physical space at new global parameters and/or at a future time. Predictive capabilities are evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. The sensitivity of the results to different modeling choices is assessed. The results suggest that given adequate data and careful training, effective data-driven predictive models can be constructed. Perspectives are provided on the present approach and its place in the landscape of model reduction. •A data-driven framework is proposed for parametric prediction of spatio-temporal dynamics, leveraging nested neural networks.•Convolutional autoencoders are used in space and time to obtain reduced dimensional nonlinear manifolds.•The framework is evaluated on a range of problems involving discontinuities, wave propagation, strong transients, and coherent structures. |
| ArticleNumber | 113379 |
| Author | Duraisamy, Karthik Xu, Jiayang |
| Author_xml | – sequence: 1 givenname: Jiayang surname: Xu fullname: Xu, Jiayang email: davidxu@umich.edu – sequence: 2 givenname: Karthik surname: Duraisamy fullname: Duraisamy, Karthik email: kdur@umich.edu |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnrfmY7dJ8STFL6h40XOYJrOQurtZk2yl_96UevLgXGYG5hl4nxmZ9L5HQq4ZXTDKlre7helgwSnPOxNCrs7IlCm5KjkTakKmlFZ1KRWvL8gsxh3NpRifEvs6tsmVLe6xLYzv974dk_M9tAWMyWNvvMVQ9Ji-ffiMReNDMUCADlNwphgCWmeOQOGbIg6QxzJhN_iQP9hDD50z8ZKcN9BGvPrtc_Lx-PC-fi43b08v6_tNacRSpRK4NJVaVUY2SnGQyG2lBFJGbS3rylZbWAmD2FiAetlsgYoKtwgNV4ZLLsSc3Jz-DsF_jRiT3vkx5CxR80pKyajgNF-x05UJPsaAjR6C6yAcNKP6KFPvdJapjzL1SWZm5B_GuHQM26cArv2XvDuRmIPvHQYdjctas7eAJmnr3T_0D-s_k0E |
| CitedBy_id | crossref_primary_10_1017_jfm_2021_697 crossref_primary_10_1016_j_physd_2023_133857 crossref_primary_10_1002_fld_5234 crossref_primary_10_1002_nme_6625 crossref_primary_10_1007_s11042_022_12907_y crossref_primary_10_1038_s41598_025_93165_4 crossref_primary_10_1186_s40323_023_00254_y crossref_primary_10_1007_s11071_022_07733_8 crossref_primary_10_1007_s10915_023_02128_2 crossref_primary_10_1063_5_0217845 crossref_primary_10_1016_j_engappai_2023_107536 crossref_primary_10_1063_5_0087977 crossref_primary_10_1080_09540091_2022_2131737 crossref_primary_10_1016_j_engappai_2025_110463 crossref_primary_10_1109_ACCESS_2023_3284837 crossref_primary_10_1002_gamm_202100007 crossref_primary_10_1007_s00366_023_01782_2 crossref_primary_10_1016_j_enganabound_2022_02_016 crossref_primary_10_1016_j_cja_2024_08_012 crossref_primary_10_1016_j_cma_2022_115831 crossref_primary_10_1007_s00162_021_00580_0 crossref_primary_10_1063_5_0088070 crossref_primary_10_1016_j_engstruct_2022_114020 crossref_primary_10_1002_env_2754 crossref_primary_10_1016_j_cma_2021_114502 crossref_primary_10_1016_j_ijmecsci_2023_108497 crossref_primary_10_1016_j_cma_2025_118245 crossref_primary_10_1007_s10409_023_22491_x crossref_primary_10_1016_j_ijmecsci_2025_110335 crossref_primary_10_1017_dce_2024_21 crossref_primary_10_1007_s42979_024_02602_0 crossref_primary_10_1016_j_camwa_2024_10_036 crossref_primary_10_1063_5_0152212 crossref_primary_10_7717_peerj_15147 crossref_primary_10_1002_nme_7072 crossref_primary_10_1109_TII_2021_3092372 crossref_primary_10_1016_j_jcp_2022_111739 crossref_primary_10_1017_jfm_2021_271 crossref_primary_10_1063_5_0207978 crossref_primary_10_1016_j_buildenv_2022_108966 crossref_primary_10_1016_j_jcp_2021_110666 crossref_primary_10_3390_axioms14050385 crossref_primary_10_1016_j_cma_2025_117921 crossref_primary_10_1016_j_cma_2023_116155 crossref_primary_10_1016_j_trb_2023_102869 crossref_primary_10_1016_j_matdes_2022_111236 crossref_primary_10_1016_j_oceaneng_2022_110554 crossref_primary_10_1016_j_engappai_2022_105454 crossref_primary_10_1007_s10845_025_02598_1 crossref_primary_10_1016_j_combustflame_2025_113981 crossref_primary_10_1016_j_neunet_2021_11_022 crossref_primary_10_1016_j_compfluid_2025_106626 crossref_primary_10_1007_s00170_024_13932_x crossref_primary_10_1016_j_engappai_2023_105978 crossref_primary_10_1016_j_ijthermalsci_2023_108619 crossref_primary_10_1016_j_cma_2021_113999 crossref_primary_10_1016_j_mechmat_2024_105168 crossref_primary_10_1038_s41598_023_41039_y crossref_primary_10_1109_JIOT_2024_3362343 crossref_primary_10_1007_s10915_022_02078_1 crossref_primary_10_1016_j_ces_2022_118434 crossref_primary_10_1016_j_ymssp_2023_110789 crossref_primary_10_1016_j_neunet_2024_106198 crossref_primary_10_1038_s44172_024_00327_9 crossref_primary_10_1016_j_jcp_2023_112537 crossref_primary_10_1016_j_ijimpeng_2023_104825 crossref_primary_10_1016_j_physd_2025_134650 crossref_primary_10_1007_s42979_021_00867_3 crossref_primary_10_1007_s00366_023_01916_6 crossref_primary_10_1016_j_engappai_2021_104652 crossref_primary_10_1016_j_physd_2020_132797 crossref_primary_10_1186_s40323_023_00244_0 crossref_primary_10_1016_j_cma_2022_115771 crossref_primary_10_1016_j_enganabound_2025_106204 crossref_primary_10_3390_pr13041093 crossref_primary_10_1063_5_0179132 crossref_primary_10_1016_j_camwa_2023_08_026 crossref_primary_10_3389_fphy_2022_910381 crossref_primary_10_1017_jfm_2024_592 crossref_primary_10_1002_nme_7372 crossref_primary_10_1016_j_jmsy_2024_10_009 crossref_primary_10_1007_s40997_023_00632_2 crossref_primary_10_1016_j_nucengdes_2022_111716 crossref_primary_10_1007_s10237_024_01817_7 crossref_primary_10_1016_j_cma_2025_117807 crossref_primary_10_3390_math8040570 crossref_primary_10_1016_j_cma_2022_115768 crossref_primary_10_1080_10407790_2024_2379006 crossref_primary_10_1016_j_jcp_2023_112621 |
| Cites_doi | 10.1109/TCAD.2011.2142184 10.1007/BF03024948 10.1016/0021-9991(78)90023-2 10.2514/3.10041 10.18653/v1/D16-1058 10.1016/j.crma.2004.08.006 10.1137/100813051 10.1109/TAC.2008.2006102 10.1109/CVPR.2017.113 10.1162/neco.1997.9.8.1735 10.1016/j.eswa.2014.12.003 10.1146/annurev.fl.25.010193.002543 10.1023/A:1018977404843 10.1109/TAC.1981.1102568 10.1016/j.cma.2018.07.017 10.1109/ICCV.2015.123 10.2514/1.J058392 10.1137/130932715 10.1016/j.jcp.2019.01.031 10.1016/j.physd.2020.132368 10.2514/1.6786 10.1016/j.jcp.2010.09.015 10.1016/j.cma.2012.04.015 10.1038/ncomms9133 10.1137/0910047 10.1002/nme.3050 10.1137/140989169 10.1002/nme.4490 10.2514/1.J057791 10.1016/j.jcp.2018.10.045 10.1115/1.1448332 10.1016/j.jcp.2018.02.037 10.1142/S0218127405012429 10.1207/s15516709cog1402_1 10.1088/1478-3975/8/5/055011 10.1073/pnas.1517384113 10.1177/1744259116649405 10.1137/090776925 10.1109/9.29399 10.1137/19M1267246 10.1098/rspa.2017.0385 10.1016/j.physd.2003.03.001 10.1016/j.jcp.2019.05.041 10.1063/1.5067313 10.1016/j.energy.2018.01.177 10.1137/15M1019271 10.1016/j.jcp.2016.10.033 10.1016/j.jcp.2005.01.008 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Dec 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Dec 1, 2020 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2020.113379 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2020_113379 S0045782520305648 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c368t-a27c4894c7f882a7e2d483e010d5754d4ba93ceefdaa56fba034ebeaf28c27233 |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592539200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sun Nov 09 06:14:26 EST 2025 Sat Nov 29 07:27:54 EST 2025 Tue Nov 18 22:22:09 EST 2025 Fri Feb 23 02:45:36 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data-driven modeling Convolutional neural networks Autoencoders Reduced order modeling Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-a27c4894c7f882a7e2d483e010d5754d4ba93ceefdaa56fba034ebeaf28c27233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.1016/j.cma.2020.113379 |
| PQID | 2477710320 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2477710320 crossref_primary_10_1016_j_cma_2020_113379 crossref_citationtrail_10_1016_j_cma_2020_113379 elsevier_sciencedirect_doi_10_1016_j_cma_2020_113379 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Xu, Huang, Duraisamy (b15) 2019 Carlberg, Jameson, Kochenderfer, Morton, Peng, Witherden (b31) 2019 Gu (b40) 2011; 30 Gonzalez, Balajewicz (b53) 2018 Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b61) 2016 Carlberg, Bou-Mosleh, Farhat (b13) 2011; 86 Rather, Agarwal, Sastry (b63) 2015; 42 Carlberg, Barone, Antil (b17) 2017; 330 Rumelhart, Hinton, Williams (b51) 1988; 5 Maulik, Mohan, Lusch, Madireddy, Balaprakash, Livescu (b54) 2020 Berger, Gasparin, Chhay, Mendes (b11) 2016; 40 Rowley, Colonius, Murray (b3) 2004; 189 Astrid (b33) 2004 Hartman, Mestha (b25) 2017 Guo, Hesthaven (b46) 2018; 341 Dumoulin, Visin (b71) 2016 Barthelmann, Novak, Ritter (b45) 2000; 12 Xingjian, Chen, Wang, Yeung, Wong, Woo (b55) 2015 Barrault, Maday, Nguyen, Patera (b35) 2004; 339 Moore (b4) 1981; 26 Brunton, Proctor, Kutz (b39) 2016; 113 Baur, Beattie, Benner, Gugercin (b9) 2011; 33 Guo, Li, Iorio (b29) 2016 Sod (b73) 1978; 27 Benner, Gugercin, Willcox (b1) 2015; 57 Parish, Wentland, Duraisamy (b20) 2018 Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b65) 2016 Gouasmi, Parish, Duraisamy (b21) 2017; 473 Wang, Hesthaven, Ray (b48) 2019; 384 Drmac, Gugercin (b37) 2016; 38 Lee, You (b50) 2018 Amsallem, Farhat (b24) 2011; 33 Rozza, Huynh, Patera (b8) 2007; 15 Bai, Kolter, Koltun (b66) 2018 Puligilla, Jayaraman (b30) 2018 Wang, Akhtar, Borggaard, Iliescu (b19) 2012; 237 Wilcox (b78) 1988; 26 Couplet, Basdevant, Sagaut (b32) 2005; 207 Kramer, Willcox (b41) 2019; 57 Safonov, Chiang (b5) 1989; 34 Hochreiter, Schmidhuber (b58) 1997; 9 Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, Lipson (b43) 2011; 8 DeMers, Cottrell (b26) 1993 Huang, Duraisamy, Merkle (b79) 2020 Daniels, Nemenman (b44) 2015; 6 Wang, Akhtar, Borggaard, Iliescu (b18) 2011; 230 Omata, Shirayama (b27) 2019; 9 Peterson (b6) 1989; 10 Gin, Lusch, Brunton, Kutz (b83) 2019 Gehring, Auli, Grangier, Dauphin (b67) 2016 C. Lea, M.D. Flynn, R. Vidal, A. Reiter, G.D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165. Kramer, Willcox (b42) 2019 Peherstorfer, Willcox (b22) 2015; 37 Prud’Homme, Rovas, Veroy, Machiels, Maday, Patera, Turinici (b7) 2001; 124 Lee, Carlberg (b28) 2018 Raissi, Perdikaris, Karniadakis (b80) 2019; 378 Huang, Xu, Duraisamy, Merkle (b16) 2018 Berkooz, Holmes, Lumley (b2) 1993; 25 Peherstorfer, Drmač, Gugercin (b38) 2018 Eck, Schmidhuber (b64) 2002 K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. Swischuk, Kramer, Huang, Willcox (b82) 2019 Kipf, Welling (b84) 2016 Peherstorfer (b23) 2018 Danaila, Joly, Kaber, Postel (b74) 2007 Parish, Carlberg (b75) 2019 Dauphin, Fan, Auli, Grangier (b69) 2017 de Almeida (b10) 2013; 94 Yu, Yin, Zhu (b56) 2017 Elman (b57) 1990; 14 Astrid, Weiland, Willcox, Backx (b34) 2008; 53 Kingma, Ba (b72) 2014 Huang, Duraisamy, Merkle (b76) 2019; 57 Pan, Duraisamy (b81) 2020 Mohan, Daniel, Chertkov, Livescu (b49) 2019 Cho, Van Merriënboer, Bahdanau, Bengio (b59) 2014 Hijazi, Stabile, Mola, Rozza (b14) 2019 Qing, Niu (b62) 2018; 148 Rowley (b12) 2005; 15 Lee, Sezer-Uzol, Horn, Long (b77) 2005; 42 Hesthaven, Ubbiali (b47) 2018; 363 Hochreiter, Schmidhuber (b52) 1997 Chaturantabut, Sorensen (b36) 2009 Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for aspect-level sentiment classification, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 606–615. Benner (10.1016/j.cma.2020.113379_b1) 2015; 57 Huang (10.1016/j.cma.2020.113379_b16) 2018 Swischuk (10.1016/j.cma.2020.113379_b82) 2019 Huang (10.1016/j.cma.2020.113379_b76) 2019; 57 Lee (10.1016/j.cma.2020.113379_b28) 2018 Barthelmann (10.1016/j.cma.2020.113379_b45) 2000; 12 Eck (10.1016/j.cma.2020.113379_b64) 2002 Wilcox (10.1016/j.cma.2020.113379_b78) 1988; 26 Peherstorfer (10.1016/j.cma.2020.113379_b38) 2018 Kramer (10.1016/j.cma.2020.113379_b42) 2019 Wang (10.1016/j.cma.2020.113379_b48) 2019; 384 Gonzalez (10.1016/j.cma.2020.113379_b53) 2018 Gehring (10.1016/j.cma.2020.113379_b67) 2016 Raissi (10.1016/j.cma.2020.113379_b80) 2019; 378 Bai (10.1016/j.cma.2020.113379_b66) 2018 Brunton (10.1016/j.cma.2020.113379_b39) 2016; 113 Parish (10.1016/j.cma.2020.113379_b75) 2019 Rozza (10.1016/j.cma.2020.113379_b8) 2007; 15 Berger (10.1016/j.cma.2020.113379_b11) 2016; 40 Safonov (10.1016/j.cma.2020.113379_b5) 1989; 34 Omata (10.1016/j.cma.2020.113379_b27) 2019; 9 Wu (10.1016/j.cma.2020.113379_b61) 2016 Berkooz (10.1016/j.cma.2020.113379_b2) 1993; 25 Prud’Homme (10.1016/j.cma.2020.113379_b7) 2001; 124 Lee (10.1016/j.cma.2020.113379_b77) 2005; 42 Maulik (10.1016/j.cma.2020.113379_b54) 2020 Carlberg (10.1016/j.cma.2020.113379_b13) 2011; 86 Rumelhart (10.1016/j.cma.2020.113379_b51) 1988; 5 Elman (10.1016/j.cma.2020.113379_b57) 1990; 14 Gin (10.1016/j.cma.2020.113379_b83) 2019 Couplet (10.1016/j.cma.2020.113379_b32) 2005; 207 Qing (10.1016/j.cma.2020.113379_b62) 2018; 148 Baur (10.1016/j.cma.2020.113379_b9) 2011; 33 Parish (10.1016/j.cma.2020.113379_b20) 2018 Wang (10.1016/j.cma.2020.113379_b19) 2012; 237 Xu (10.1016/j.cma.2020.113379_b15) 2019 Hochreiter (10.1016/j.cma.2020.113379_b52) 1997 Amsallem (10.1016/j.cma.2020.113379_b24) 2011; 33 Mohan (10.1016/j.cma.2020.113379_b49) 2019 Pan (10.1016/j.cma.2020.113379_b81) 2020 Schmidt (10.1016/j.cma.2020.113379_b43) 2011; 8 Carlberg (10.1016/j.cma.2020.113379_b17) 2017; 330 Peherstorfer (10.1016/j.cma.2020.113379_b23) 2018 Xingjian (10.1016/j.cma.2020.113379_b55) 2015 10.1016/j.cma.2020.113379_b70 Moore (10.1016/j.cma.2020.113379_b4) 1981; 26 Hartman (10.1016/j.cma.2020.113379_b25) 2017 DeMers (10.1016/j.cma.2020.113379_b26) 1993 Kramer (10.1016/j.cma.2020.113379_b41) 2019; 57 Kingma (10.1016/j.cma.2020.113379_b72) 2014 Gouasmi (10.1016/j.cma.2020.113379_b21) 2017; 473 Dauphin (10.1016/j.cma.2020.113379_b69) 2017 Yu (10.1016/j.cma.2020.113379_b56) 2017 Rowley (10.1016/j.cma.2020.113379_b3) 2004; 189 Wang (10.1016/j.cma.2020.113379_b18) 2011; 230 Puligilla (10.1016/j.cma.2020.113379_b30) 2018 Daniels (10.1016/j.cma.2020.113379_b44) 2015; 6 Lee (10.1016/j.cma.2020.113379_b50) 2018 Danaila (10.1016/j.cma.2020.113379_b74) 2007 Astrid (10.1016/j.cma.2020.113379_b33) 2004 Rowley (10.1016/j.cma.2020.113379_b12) 2005; 15 Drmac (10.1016/j.cma.2020.113379_b37) 2016; 38 Peterson (10.1016/j.cma.2020.113379_b6) 1989; 10 Kipf (10.1016/j.cma.2020.113379_b84) 2016 Sod (10.1016/j.cma.2020.113379_b73) 1978; 27 Huang (10.1016/j.cma.2020.113379_b79) 2020 Rather (10.1016/j.cma.2020.113379_b63) 2015; 42 10.1016/j.cma.2020.113379_b68 Peherstorfer (10.1016/j.cma.2020.113379_b22) 2015; 37 Hochreiter (10.1016/j.cma.2020.113379_b58) 1997; 9 Carlberg (10.1016/j.cma.2020.113379_b31) 2019 Astrid (10.1016/j.cma.2020.113379_b34) 2008; 53 Guo (10.1016/j.cma.2020.113379_b46) 2018; 341 Hesthaven (10.1016/j.cma.2020.113379_b47) 2018; 363 Guo (10.1016/j.cma.2020.113379_b29) 2016 10.1016/j.cma.2020.113379_b60 Dumoulin (10.1016/j.cma.2020.113379_b71) 2016 Oord (10.1016/j.cma.2020.113379_b65) 2016 Hijazi (10.1016/j.cma.2020.113379_b14) 2019 Gu (10.1016/j.cma.2020.113379_b40) 2011; 30 Cho (10.1016/j.cma.2020.113379_b59) 2014 de Almeida (10.1016/j.cma.2020.113379_b10) 2013; 94 Barrault (10.1016/j.cma.2020.113379_b35) 2004; 339 Chaturantabut (10.1016/j.cma.2020.113379_b36) 2009 |
| References_xml | – volume: 33 start-page: 2169 year: 2011 end-page: 2198 ident: b24 article-title: An online method for interpolating linear parametric reduced-order models publication-title: SIAM J. Sci. Comput. – year: 2016 ident: b67 article-title: A convolutional encoder model for neural machine translation – year: 2018 ident: b28 article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders – volume: 384 start-page: 289 year: 2019 end-page: 307 ident: b48 article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem publication-title: J. Comput. Phys. – year: 2014 ident: b72 article-title: Adam: A method for stochastic optimization – volume: 12 start-page: 273 year: 2000 end-page: 288 ident: b45 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Adv. Comput. Math. – start-page: 213 year: 2007 end-page: 233 ident: b74 article-title: Gas dynamics: The Riemann problem and discontinuous solutions: Application to the shock tube problem publication-title: Introduction to Scientific Computing – volume: 38 start-page: A631 year: 2016 end-page: A648 ident: b37 article-title: A new selection operator for the discrete empirical interpolation method—Improved a priori error bound and extensions publication-title: SIAM J. Sci. Comput. – volume: 230 start-page: 126 year: 2011 end-page: 146 ident: b18 article-title: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition publication-title: J. Comput. Phys. – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. – volume: 189 start-page: 115 year: 2004 end-page: 129 ident: b3 article-title: Model reduction for compressible flows using POD and Galerkin projection publication-title: Physica D – year: 2018 ident: b50 article-title: Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning – year: 2019 ident: b14 article-title: Data-driven POD-Galerkin reduced order model for turbulent flows – year: 2016 ident: b65 article-title: Wavenet: A generative model for raw audio – start-page: 802 year: 2015 end-page: 810 ident: b55 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – volume: 30 start-page: 1307 year: 2011 end-page: 1320 ident: b40 article-title: QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. – volume: 341 start-page: 807 year: 2018 end-page: 826 ident: b46 article-title: Reduced order modeling for nonlinear structural analysis using gaussian process regression publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2018 ident: b53 article-title: Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems – volume: 8 year: 2011 ident: b43 article-title: Automated refinement and inference of analytical models for metabolic networks publication-title: Phys. Biol. – year: 2019 ident: b49 article-title: Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3D turbulence – volume: 363 start-page: 55 year: 2018 end-page: 78 ident: b47 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. – year: 2016 ident: b84 article-title: Semi-supervised classification with graph convolutional networks – year: 2020 ident: b54 article-title: Time-series learning of latent-space dynamics for reduced-order model closure publication-title: Physica D – start-page: 4316 year: 2009 end-page: 4321 ident: b36 article-title: Discrete empirical interpolation for nonlinear model reduction publication-title: Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on – volume: 40 start-page: 235 year: 2016 end-page: 262 ident: b11 article-title: Estimation of temperature-dependent thermal conductivity using proper generalised decomposition for building energy management publication-title: J. Build. Phys. – volume: 148 start-page: 461 year: 2018 end-page: 468 ident: b62 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy – volume: 42 start-page: 3234 year: 2015 end-page: 3241 ident: b63 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Syst. Appl. – volume: 27 start-page: 1 year: 1978 end-page: 31 ident: b73 article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws publication-title: J. Comput. Phys. – start-page: 1917 year: 2017 end-page: 1922 ident: b25 article-title: A deep learning framework for model reduction of dynamical systems publication-title: 2017 IEEE Conference on Control Technology and Applications (CCTA) – start-page: 48 year: 2002 ident: b64 article-title: A First Look at Music Composition using Lstm Recurrent Neural Networks, Vol. 103 – year: 2019 ident: b75 article-title: Time-series machine-learning error models for approximate solutions to parameterized dynamical systems – year: 2018 ident: b38 article-title: Stabilizing discrete empirical interpolation via randomized and deterministic oversampling – year: 2019 ident: b82 article-title: Learning physics-based reduced-order models for a single-injector combustion process – volume: 124 start-page: 70 year: 2001 end-page: 80 ident: b7 article-title: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods publication-title: J. Fluids Eng. – volume: 37 start-page: A2123 year: 2015 end-page: A2150 ident: b22 article-title: Online adaptive model reduction for nonlinear systems via low-rank updates publication-title: SIAM J. Sci. Comput. – start-page: 3091 year: 2018 ident: b30 article-title: Deep multilayer convolution frameworks for data-driven learning of fluid flow dynamics publication-title: 2018 Fluid Dynamics Conference – volume: 94 start-page: 961 year: 2013 end-page: 984 ident: b10 article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics publication-title: Internat. J. Numer. Methods Engrg. – start-page: 473 year: 1997 end-page: 479 ident: b52 article-title: LSTM can solve hard long time lag problems publication-title: Advances in Neural Information Processing Systems – reference: Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for aspect-level sentiment classification, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, pp. 606–615. – volume: 207 start-page: 192 year: 2005 end-page: 220 ident: b32 article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling publication-title: J. Comput. Phys. – year: 2016 ident: b61 article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation – volume: 34 start-page: 729 year: 1989 end-page: 733 ident: b5 article-title: A Schur method for balanced-truncation model reduction publication-title: IEEE Trans. Automat. Control – volume: 15 start-page: 997 year: 2005 end-page: 1013 ident: b12 article-title: Model reduction for fluids, using balanced proper orthogonal decomposition publication-title: Int. J. Bifurcation Chaos – year: 2018 ident: b23 article-title: Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling – year: 2016 ident: b71 article-title: A guide to convolution arithmetic for deep learning – year: 2017 ident: b56 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: b39 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. – volume: 5 start-page: 1 year: 1988 ident: b51 article-title: Learning representations by back-propagating errors publication-title: Cogn. Model. – volume: 15 start-page: 1 year: 2007 ident: b8 article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations publication-title: Arch. Comput. Methods Eng. – volume: 26 start-page: 17 year: 1981 end-page: 32 ident: b4 article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction publication-title: IEEE Trans. Automat. Control – volume: 26 start-page: 1299 year: 1988 end-page: 1310 ident: b78 article-title: Reassessment of the scale-determining equation for advanced turbulence models publication-title: AIAA J. – start-page: 2141 year: 2020 ident: b79 article-title: Data-informed species limiters for local robustness control of reduced-order models of reacting flow publication-title: AIAA Scitech 2020 Forum – volume: 10 start-page: 777 year: 1989 end-page: 786 ident: b6 article-title: The reduced basis method for incompressible viscous flow calculations publication-title: SIAM J. Sci. Stat. Comput. – start-page: 1183 year: 2018 ident: b16 article-title: Exploration of reduced-order models for rocket combustion applications publication-title: 2018 AIAA Aerospace Sciences Meeting – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b80 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – start-page: 1 year: 2019 end-page: 15 ident: b15 article-title: Reduced-order modeling framework for combustor instabilities using truncated domain training publication-title: AIAA J. – year: 2019 ident: b31 article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning publication-title: J. Comput. Phys. – year: 2018 ident: b66 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – year: 2019 ident: b83 article-title: Deep learning models for global coordinate transformations that linearize PDEs – volume: 25 start-page: 539 year: 1993 end-page: 575 ident: b2 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b58 article-title: Long short-term memory publication-title: Neural Comput. – volume: 57 start-page: 5377 year: 2019 end-page: 5389 ident: b76 article-title: Investigations and improvement of robustness of reduced-order models of reacting flow publication-title: AIAA J. – volume: 57 start-page: 483 year: 2015 end-page: 531 ident: b1 article-title: A survey of projection-based model reduction methods for parametric dynamical systems publication-title: SIAM Rev. – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b57 article-title: Finding structure in time publication-title: Cogn. Sci. – year: 2020 ident: b81 article-title: Physics-informed probabilistic learning of linear embeddings of non-linear dynamics with guaranteed stability publication-title: SIAM J. Appl. Dyn. Syst. – volume: 57 start-page: 2297 year: 2019 end-page: 2307 ident: b41 article-title: Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition publication-title: AIAA J. – start-page: 481 year: 2016 end-page: 490 ident: b29 article-title: Convolutional neural networks for steady flow approximation publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 33 start-page: 2489 year: 2011 end-page: 2518 ident: b9 article-title: Interpolatory projection methods for parameterized model reduction publication-title: SIAM J. Sci. Comput. – start-page: 580 year: 1993 end-page: 587 ident: b26 article-title: Non-linear dimensionality reduction publication-title: Advances in Neural Information Processing Systems – volume: 9 year: 2019 ident: b27 article-title: A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder publication-title: AIP Adv. – volume: 339 start-page: 667 year: 2004 end-page: 672 ident: b35 article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations publication-title: C. R. Math. – reference: C. Lea, M.D. Flynn, R. Vidal, A. Reiter, G.D. Hager, Temporal convolutional networks for action segmentation and detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165. – year: 2019 ident: b42 article-title: Balanced truncation model reduction for lifted nonlinear systems – volume: 86 start-page: 155 year: 2011 end-page: 181 ident: b13 article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations publication-title: Internat. J. Numer. Methods Engrg. – volume: 6 start-page: 8133 year: 2015 ident: b44 article-title: Automated adaptive inference of phenomenological dynamical models publication-title: Nature Commun. – volume: 473 year: 2017 ident: b21 article-title: A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism publication-title: Proc. R. Soc. A – start-page: 933 year: 2017 end-page: 941 ident: b69 article-title: Language modeling with gated convolutional networks publication-title: International Conference on Machine Learning – volume: 237 start-page: 10 year: 2012 end-page: 26 ident: b19 article-title: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2004 ident: b33 article-title: Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach – year: 2018 ident: b20 article-title: The adjoint Petrov-Galerkin method for non-linear model reduction – volume: 42 start-page: 448 year: 2005 end-page: 461 ident: b77 article-title: Simulation of helicopter shipboard launch and recovery with time-accurate airwakes publication-title: J. Aircr. – volume: 330 start-page: 693 year: 2017 end-page: 734 ident: b17 article-title: Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction publication-title: J. Comput. Phys. – volume: 53 start-page: 2237 year: 2008 end-page: 2251 ident: b34 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Trans. Automat. Control – year: 2014 ident: b59 article-title: On the properties of neural machine translation: Encoder-decoder approaches – volume: 30 start-page: 1307 issue: 9 year: 2011 ident: 10.1016/j.cma.2020.113379_b40 article-title: QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2011.2142184 – volume: 15 start-page: 1 issue: 3 year: 2007 ident: 10.1016/j.cma.2020.113379_b8 article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF03024948 – start-page: 4316 year: 2009 ident: 10.1016/j.cma.2020.113379_b36 article-title: Discrete empirical interpolation for nonlinear model reduction – year: 2019 ident: 10.1016/j.cma.2020.113379_b42 – year: 2019 ident: 10.1016/j.cma.2020.113379_b83 – volume: 27 start-page: 1 issue: 1 year: 1978 ident: 10.1016/j.cma.2020.113379_b73 article-title: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(78)90023-2 – year: 2018 ident: 10.1016/j.cma.2020.113379_b23 – volume: 5 start-page: 1 issue: 3 year: 1988 ident: 10.1016/j.cma.2020.113379_b51 article-title: Learning representations by back-propagating errors publication-title: Cogn. Model. – volume: 26 start-page: 1299 issue: 11 year: 1988 ident: 10.1016/j.cma.2020.113379_b78 article-title: Reassessment of the scale-determining equation for advanced turbulence models publication-title: AIAA J. doi: 10.2514/3.10041 – ident: 10.1016/j.cma.2020.113379_b60 doi: 10.18653/v1/D16-1058 – volume: 339 start-page: 667 issue: 9 year: 2004 ident: 10.1016/j.cma.2020.113379_b35 article-title: An ‘empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations publication-title: C. R. Math. doi: 10.1016/j.crma.2004.08.006 – start-page: 1183 year: 2018 ident: 10.1016/j.cma.2020.113379_b16 article-title: Exploration of reduced-order models for rocket combustion applications – start-page: 481 year: 2016 ident: 10.1016/j.cma.2020.113379_b29 article-title: Convolutional neural networks for steady flow approximation – start-page: 2141 year: 2020 ident: 10.1016/j.cma.2020.113379_b79 article-title: Data-informed species limiters for local robustness control of reduced-order models of reacting flow – volume: 33 start-page: 2169 issue: 5 year: 2011 ident: 10.1016/j.cma.2020.113379_b24 article-title: An online method for interpolating linear parametric reduced-order models publication-title: SIAM J. Sci. Comput. doi: 10.1137/100813051 – start-page: 580 year: 1993 ident: 10.1016/j.cma.2020.113379_b26 article-title: Non-linear dimensionality reduction – volume: 53 start-page: 2237 issue: 10 year: 2008 ident: 10.1016/j.cma.2020.113379_b34 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2008.2006102 – ident: 10.1016/j.cma.2020.113379_b68 doi: 10.1109/CVPR.2017.113 – year: 2019 ident: 10.1016/j.cma.2020.113379_b82 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.cma.2020.113379_b58 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2019 ident: 10.1016/j.cma.2020.113379_b75 – year: 2019 ident: 10.1016/j.cma.2020.113379_b14 – volume: 42 start-page: 3234 issue: 6 year: 2015 ident: 10.1016/j.cma.2020.113379_b63 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.003 – year: 2018 ident: 10.1016/j.cma.2020.113379_b66 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 10.1016/j.cma.2020.113379_b2 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.25.010193.002543 – volume: 12 start-page: 273 issue: 4 year: 2000 ident: 10.1016/j.cma.2020.113379_b45 article-title: High dimensional polynomial interpolation on sparse grids publication-title: Adv. Comput. Math. doi: 10.1023/A:1018977404843 – start-page: 213 year: 2007 ident: 10.1016/j.cma.2020.113379_b74 article-title: Gas dynamics: The Riemann problem and discontinuous solutions: Application to the shock tube problem – volume: 26 start-page: 17 issue: 1 year: 1981 ident: 10.1016/j.cma.2020.113379_b4 article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1981.1102568 – volume: 341 start-page: 807 year: 2018 ident: 10.1016/j.cma.2020.113379_b46 article-title: Reduced order modeling for nonlinear structural analysis using gaussian process regression publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.07.017 – ident: 10.1016/j.cma.2020.113379_b70 doi: 10.1109/ICCV.2015.123 – year: 2018 ident: 10.1016/j.cma.2020.113379_b38 – volume: 57 start-page: 5377 issue: 12 year: 2019 ident: 10.1016/j.cma.2020.113379_b76 article-title: Investigations and improvement of robustness of reduced-order models of reacting flow publication-title: AIAA J. doi: 10.2514/1.J058392 – volume: 57 start-page: 483 issue: 4 year: 2015 ident: 10.1016/j.cma.2020.113379_b1 article-title: A survey of projection-based model reduction methods for parametric dynamical systems publication-title: SIAM Rev. doi: 10.1137/130932715 – year: 2004 ident: 10.1016/j.cma.2020.113379_b33 – volume: 384 start-page: 289 year: 2019 ident: 10.1016/j.cma.2020.113379_b48 article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.01.031 – year: 2020 ident: 10.1016/j.cma.2020.113379_b54 article-title: Time-series learning of latent-space dynamics for reduced-order model closure publication-title: Physica D doi: 10.1016/j.physd.2020.132368 – year: 2016 ident: 10.1016/j.cma.2020.113379_b67 – volume: 42 start-page: 448 issue: 2 year: 2005 ident: 10.1016/j.cma.2020.113379_b77 article-title: Simulation of helicopter shipboard launch and recovery with time-accurate airwakes publication-title: J. Aircr. doi: 10.2514/1.6786 – volume: 230 start-page: 126 issue: 1 year: 2011 ident: 10.1016/j.cma.2020.113379_b18 article-title: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.09.015 – volume: 237 start-page: 10 year: 2012 ident: 10.1016/j.cma.2020.113379_b19 article-title: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.04.015 – volume: 6 start-page: 8133 year: 2015 ident: 10.1016/j.cma.2020.113379_b44 article-title: Automated adaptive inference of phenomenological dynamical models publication-title: Nature Commun. doi: 10.1038/ncomms9133 – volume: 10 start-page: 777 issue: 4 year: 1989 ident: 10.1016/j.cma.2020.113379_b6 article-title: The reduced basis method for incompressible viscous flow calculations publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0910047 – year: 2014 ident: 10.1016/j.cma.2020.113379_b59 – volume: 86 start-page: 155 issue: 2 year: 2011 ident: 10.1016/j.cma.2020.113379_b13 article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.3050 – start-page: 473 year: 1997 ident: 10.1016/j.cma.2020.113379_b52 article-title: LSTM can solve hard long time lag problems – volume: 37 start-page: A2123 issue: 4 year: 2015 ident: 10.1016/j.cma.2020.113379_b22 article-title: Online adaptive model reduction for nonlinear systems via low-rank updates publication-title: SIAM J. Sci. Comput. doi: 10.1137/140989169 – year: 2014 ident: 10.1016/j.cma.2020.113379_b72 – volume: 94 start-page: 961 issue: 10 year: 2013 ident: 10.1016/j.cma.2020.113379_b10 article-title: A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4490 – start-page: 1917 year: 2017 ident: 10.1016/j.cma.2020.113379_b25 article-title: A deep learning framework for model reduction of dynamical systems – volume: 57 start-page: 2297 issue: 6 year: 2019 ident: 10.1016/j.cma.2020.113379_b41 article-title: Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition publication-title: AIAA J. doi: 10.2514/1.J057791 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2020.113379_b80 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 124 start-page: 70 issue: 1 year: 2001 ident: 10.1016/j.cma.2020.113379_b7 article-title: Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods publication-title: J. Fluids Eng. doi: 10.1115/1.1448332 – volume: 363 start-page: 55 year: 2018 ident: 10.1016/j.cma.2020.113379_b47 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.02.037 – year: 2018 ident: 10.1016/j.cma.2020.113379_b53 – volume: 15 start-page: 997 issue: 03 year: 2005 ident: 10.1016/j.cma.2020.113379_b12 article-title: Model reduction for fluids, using balanced proper orthogonal decomposition publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127405012429 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.cma.2020.113379_b57 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – year: 2016 ident: 10.1016/j.cma.2020.113379_b65 – year: 2018 ident: 10.1016/j.cma.2020.113379_b28 – volume: 8 issue: 5 year: 2011 ident: 10.1016/j.cma.2020.113379_b43 article-title: Automated refinement and inference of analytical models for metabolic networks publication-title: Phys. Biol. doi: 10.1088/1478-3975/8/5/055011 – start-page: 48 year: 2002 ident: 10.1016/j.cma.2020.113379_b64 – year: 2016 ident: 10.1016/j.cma.2020.113379_b61 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10.1016/j.cma.2020.113379_b39 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – volume: 40 start-page: 235 issue: 3 year: 2016 ident: 10.1016/j.cma.2020.113379_b11 article-title: Estimation of temperature-dependent thermal conductivity using proper generalised decomposition for building energy management publication-title: J. Build. Phys. doi: 10.1177/1744259116649405 – volume: 33 start-page: 2489 issue: 5 year: 2011 ident: 10.1016/j.cma.2020.113379_b9 article-title: Interpolatory projection methods for parameterized model reduction publication-title: SIAM J. Sci. Comput. doi: 10.1137/090776925 – year: 2017 ident: 10.1016/j.cma.2020.113379_b56 – volume: 34 start-page: 729 issue: 7 year: 1989 ident: 10.1016/j.cma.2020.113379_b5 article-title: A Schur method for balanced-truncation model reduction publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.29399 – year: 2020 ident: 10.1016/j.cma.2020.113379_b81 article-title: Physics-informed probabilistic learning of linear embeddings of non-linear dynamics with guaranteed stability publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/19M1267246 – volume: 473 issue: 2205 year: 2017 ident: 10.1016/j.cma.2020.113379_b21 article-title: A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2017.0385 – year: 2016 ident: 10.1016/j.cma.2020.113379_b71 – start-page: 1 year: 2019 ident: 10.1016/j.cma.2020.113379_b15 article-title: Reduced-order modeling framework for combustor instabilities using truncated domain training publication-title: AIAA J. – start-page: 3091 year: 2018 ident: 10.1016/j.cma.2020.113379_b30 article-title: Deep multilayer convolution frameworks for data-driven learning of fluid flow dynamics – volume: 189 start-page: 115 issue: 1–2 year: 2004 ident: 10.1016/j.cma.2020.113379_b3 article-title: Model reduction for compressible flows using POD and Galerkin projection publication-title: Physica D doi: 10.1016/j.physd.2003.03.001 – start-page: 933 year: 2017 ident: 10.1016/j.cma.2020.113379_b69 article-title: Language modeling with gated convolutional networks – year: 2019 ident: 10.1016/j.cma.2020.113379_b31 article-title: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.041 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.cma.2020.113379_b27 article-title: A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder publication-title: AIP Adv. doi: 10.1063/1.5067313 – volume: 148 start-page: 461 year: 2018 ident: 10.1016/j.cma.2020.113379_b62 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – year: 2019 ident: 10.1016/j.cma.2020.113379_b49 – volume: 38 start-page: A631 issue: 2 year: 2016 ident: 10.1016/j.cma.2020.113379_b37 article-title: A new selection operator for the discrete empirical interpolation method—Improved a priori error bound and extensions publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1019271 – volume: 330 start-page: 693 year: 2017 ident: 10.1016/j.cma.2020.113379_b17 article-title: Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.033 – year: 2018 ident: 10.1016/j.cma.2020.113379_b50 – year: 2016 ident: 10.1016/j.cma.2020.113379_b84 – year: 2018 ident: 10.1016/j.cma.2020.113379_b20 – volume: 207 start-page: 192 issue: 1 year: 2005 ident: 10.1016/j.cma.2020.113379_b32 article-title: Calibrated reduced-order POD-Galerkin system for fluid flow modelling publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.01.008 – start-page: 802 year: 2015 ident: 10.1016/j.cma.2020.113379_b55 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting |
| SSID | ssj0000812 |
| Score | 2.663267 |
| Snippet | A data-driven framework is proposed towards the end of predictive modeling of complex spatio-temporal dynamics, leveraging nested non-linear manifolds. Three... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113379 |
| SubjectTerms | Autoencoders Convolutional neural networks Data-driven modeling Machine learning Mathematical models Model reduction Modelling Neural networks Nonlinear dynamics Parameters Prediction models Reduced order modeling Spatial data Training Wave propagation |
| Title | Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics |
| URI | https://dx.doi.org/10.1016/j.cma.2020.113379 https://www.proquest.com/docview/2477710320 |
| Volume | 372 |
| WOSCitedRecordID | wos000592539200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLVg4wAHfgwQg4F8QByYjFLbqZPjBJ0AVYVDh3KzXNvRMtq0NCna_nv8c8kqqODAJarcpqn6nr98X_z5PQBeDxKRao0lmg2pQCYDL1GeyxzRNMtVyrAoZw7pMZtMsqLIv4almMbZCbC6zi4v89V_hdqMGbDt1tl_gPv6S82AeW1AN0cDuzn-FfBuSy2a22Yg11MeLmY1ATbt0upWWvmI2rd_OzWGY6v_vbDWWtJqBqhKxjSycf3WKOhXzY-V969v-ilt9IUIZtSuv1aE3Hah7cbiKAStO-3DiHOxcTSqxJXoBj9s1qJqxOIq7FZrz6vv_acTeLvTo9s2860fhWmKTGaS9qMw8Q4-IY4Ofhvd_YOGi3fSKUZhZ0hDvBfNTSXtyRd-ejYe8-momL5Z_UDWZMwuxgfHldtgH7M0N0Fw_-TTqPjc3bqzgZeXDz8wLoO7hsCtq_4pkdm6pbs8ZfoQ3A8FBjzxxHgEbun6ADwIxQYMobw5APd6SpSPgeqxBt5gDeyxBkbWQMMa2LEGdqyByxJusQZG1jwBZ6ej6fuPKBhwIEmGWYsEZpJmOZWsNIWYYBormhFtSngzjVOq6EzkxGRZpRIiHZYzkRBqgoIocSYxw4Q8BXv1stbPADSFAVF0SKRTpJRpLrVKBirLqC4ZmSWHIIn_JpdBnd6apMx5bEO84AYAbgHgHoBD8Pb6lJWXZtn1YRoh4iG39DkjN-TaddpRhJOHOd5wTBljVogyeb777RfgbjcnjsBeu97ol-CO_NlWzfpVIN8vTjSoxQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+convolutional+autoencoder+networks+for+parametric+prediction+of+spatio-temporal+dynamics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Xu%2C+Jiayang&rft.au=Duraisamy%2C+Karthik&rft.date=2020-12-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=372&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2020.113379&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |