Interface strength and mechanical properties of Inconel 718 processed sequentially by casting, milling, and direct metal deposition
Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of manufacturing technologies. The combination of these processes with AM, typically referred to as hybrid manufacturing, can overcome limitations that exi...
Saved in:
| Published in: | Journal of materials processing technology Vol. 291; p. 117021 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2021
|
| Subjects: | |
| ISSN: | 0924-0136 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of manufacturing technologies. The combination of these processes with AM, typically referred to as hybrid manufacturing, can overcome limitations that exist in conventional process chains. However, different cooling rates of the material during hybrid manufacturing cause local variations in microstructure and mechanical properties within the components. Thus, quantification of the impact of individual process steps on the resulting properties could reveal most suitable process combinations. The present study focuses on the fabrication and repair of parts by casting, interface milling, and direct metal deposition (DMD). Four processing routes are investigated where heat treatment and interface conditions are varied before applying the DMD process. The cast components are either solution annealed or without heat treatment, and the interface to the DMD part remains either as-cast or it is milled. The results show that all conditions allow dense bonding between the cast section and the additively manufactured structure. The tensile properties of the test specimens exceed the level of conventionally cast parts and can be predicted by numerical simulation. The proposed combination of casting, milling, and DMD may therefore be applied to hybrid manufacturing process chains to increase the level of material efficiency and design flexibility. |
|---|---|
| AbstractList | Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of manufacturing technologies. The combination of these processes with AM, typically referred to as hybrid manufacturing, can overcome limitations that exist in conventional process chains. However, different cooling rates of the material during hybrid manufacturing cause local variations in microstructure and mechanical properties within the components. Thus, quantification of the impact of individual process steps on the resulting properties could reveal most suitable process combinations. The present study focuses on the fabrication and repair of parts by casting, interface milling, and direct metal deposition (DMD). Four processing routes are investigated where heat treatment and interface conditions are varied before applying the DMD process. The cast components are either solution annealed or without heat treatment, and the interface to the DMD part remains either as-cast or it is milled. The results show that all conditions allow dense bonding between the cast section and the additively manufactured structure. The tensile properties of the test specimens exceed the level of conventionally cast parts and can be predicted by numerical simulation. The proposed combination of casting, milling, and DMD may therefore be applied to hybrid manufacturing process chains to increase the level of material efficiency and design flexibility. |
| ArticleNumber | 117021 |
| Author | Soffel, F. Hosseini, E. Eisenbarth, D. Wegener, K. |
| Author_xml | – sequence: 1 givenname: F. surname: Soffel fullname: Soffel, F. email: soffel@inspire.ethz.ch organization: inspire AG, Technoparkstrasse 1, 8005, Zürich, Switzerland – sequence: 2 givenname: D. surname: Eisenbarth fullname: Eisenbarth, D. organization: inspire AG, Technoparkstrasse 1, 8005, Zürich, Switzerland – sequence: 3 givenname: E. surname: Hosseini fullname: Hosseini, E. organization: Empa Swiss Federal Laboratories for Materials Science & Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland – sequence: 4 givenname: K. surname: Wegener fullname: Wegener, K. organization: Institute of Machine Tools and Manufacturing, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland |
| BookMark | eNqNkM1OwzAMgHMYEhvwDnkAOpIma5MLEkz8TJrEBc5RlrhbqjYtSUDamRenpUhIXOBky5Y_298CzXznASFMyZISWlzVy7rVqQ9dArPMST6UaUlyOkNzInOeEcqKU7SIsSZkaAgxRx8bnyBU2gCOKYDfpwPW3uIWzEF7Z3SDB14PITmIuKvwxpthaYNLKsaOgRjB4givb-CT001zxLsjNjom5_eXuHVN85WMUOsCmDSw04C10HfRJdf5c3RS6SbCxXc8Qy_3d8_rx2z79LBZ32wzwwqRMmktZRUpuZCGcciZkRUHaQSjsmJFQVe2XHGuea7LkkrKi1xUTOTFjlqx0pKdoeuJa0IXY4BKGZf0eEEK2jWKEjVqVLX60ahGjWrSOADEL0AfXKvD8T-jt9MoDA--OwgqGgfewORE2c79DfkE8bWZsA |
| CitedBy_id | crossref_primary_10_3390_jmmp8040136 crossref_primary_10_3390_ma17133119 crossref_primary_10_3390_met13030585 crossref_primary_10_1016_j_optlastec_2024_111591 crossref_primary_10_1088_1757_899X_1193_1_012095 crossref_primary_10_1016_j_jmatprotec_2022_117542 crossref_primary_10_1080_09603409_2025_2536399 crossref_primary_10_1038_s41598_023_28128_8 crossref_primary_10_3390_ma16072765 crossref_primary_10_3390_ma17051197 crossref_primary_10_1016_j_ijfatigue_2023_107650 crossref_primary_10_1108_RPJ_10_2024_0435 crossref_primary_10_1016_j_jallcom_2025_183236 crossref_primary_10_1007_s00170_021_06925_7 crossref_primary_10_1016_j_msea_2022_144517 crossref_primary_10_1080_09506608_2022_2097411 crossref_primary_10_1016_j_matdes_2025_114637 crossref_primary_10_1016_j_triboint_2023_109120 crossref_primary_10_1016_j_mtcomm_2022_104007 crossref_primary_10_3390_app15116102 crossref_primary_10_3390_ma15062038 crossref_primary_10_3390_ma18184249 crossref_primary_10_4028_www_scientific_net_KEM_907_215 crossref_primary_10_1016_j_matchar_2023_112815 crossref_primary_10_1016_j_surfcoat_2024_131575 crossref_primary_10_3390_jcs9030100 crossref_primary_10_1016_j_ceramint_2022_09_225 crossref_primary_10_1007_s10853_023_09249_x crossref_primary_10_3390_ma15010177 crossref_primary_10_1007_s00170_022_09693_0 crossref_primary_10_1007_s11665_024_10539_x crossref_primary_10_1016_j_msea_2022_143871 |
| Cites_doi | 10.1038/s41563-019-0408-2 10.1007/s11661-014-2397-8 10.1016/j.optlastec.2017.06.027 10.1016/j.promfg.2019.06.140 10.3390/ma13092128 10.3390/ma11122583 10.1016/j.ijmachtools.2015.11.007 10.3390/ma12132159 10.3390/coatings8020061 10.1016/j.optlastec.2018.04.007 10.1016/j.rcim.2009.07.001 10.2320/matertrans.46.2478 10.2514/1.18239 10.1115/1.4041570 10.1007/s41777-019-0021-8 10.1080/10940340008945703 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors |
| Copyright_xml | – notice: 2020 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jmatprotec.2020.117021 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_jmatprotec_2020_117021 S092401362030443X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SSM SST SSZ T5K WUQ XFK ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c368t-9dd13f07489c34e23c9f4e9c8319f36615d7544a42a771914628f3826b1d85a93 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616025100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-0136 |
| IngestDate | Sat Nov 29 07:12:35 EST 2025 Tue Nov 18 21:17:25 EST 2025 Fri Feb 23 02:48:38 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process chain Direct metal deposition Hybrid manufacturing Tensile properties Inconel |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-9dd13f07489c34e23c9f4e9c8319f36615d7544a42a771914628f3826b1d85a93 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jmatprotec.2020.117021 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jmatprotec_2020_117021 crossref_primary_10_1016_j_jmatprotec_2020_117021 elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2020_117021 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of materials processing technology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hosseini, Popovich (bib0055) 2019; 30 El-Bagoury, Matsuba, Yamamoto, Miyahara, Ogi (bib0045) 2005; 46 Zhang, Yang, Chen, Zhang, Huang, Dai (bib0110) 2017; 97 Ostra, Alonso, Veiga, Ortiz, Ramiro, Alberdi (bib0070) 2019; 12 Yilmaz, Gindy, Gao (bib0095) 2010; 26 Stastny, H., Richard, F., Cote, M., 2016. Production of turbine components with heat-extractive features using additive manufacturing. Patent appl. US20160109130A1. Praniewicz, Kurfess, Saldana (bib0085) 2018; 141 Eisenbarth, Breuch, Soffel, Wegener (bib0035) 2019 Cortina, Arrizubieta, Ruiz, Ukar, Lamikiz (bib0020) 2018; 11 DebRoy, Mukherjee, Milewski, Elmer, Ribic, Blecher, Zhang (bib0025) 2019; 18 Arunachalam, Mannan (bib0005) 2000; 4 Polenz, Oettel, López, Leyens (bib0075) 2019; 12 Nagamatsu, Sasahara, Mitsutake, Hamamoto (bib0065) 2020; 31 Zhang, Yao, Mazumder (bib0105) 2011; 18 Chen, Frank (bib0010) 2019; 34 Flynn, Shokrani, Newman, Dhokia (bib0050) 2016 Pollock, Tin (bib0080) 2006; 22 Eisenbarth, Soffel, Wegener (bib0040) 2019 Liu, Lippold, Li, Rohklin, Vollbrecht, Grylls (bib0060) 2014; 45 Zhang, Zhang, Zhuang, Lu, Yao (bib0115) 2020; 13 DuPont, Lippold, Kiser (bib0030) 2009 Yu, Choi, Shim, Park (bib0100) 2018; 106 Cortina, Arrizubieta, Ukar, Lamikiz (bib0015) 2018; 8 Yu (10.1016/j.jmatprotec.2020.117021_bib0100) 2018; 106 Flynn (10.1016/j.jmatprotec.2020.117021_bib0050) 2016 Zhang (10.1016/j.jmatprotec.2020.117021_bib0110) 2017; 97 DebRoy (10.1016/j.jmatprotec.2020.117021_bib0025) 2019; 18 Polenz (10.1016/j.jmatprotec.2020.117021_bib0075) 2019; 12 Cortina (10.1016/j.jmatprotec.2020.117021_bib0015) 2018; 8 Ostra (10.1016/j.jmatprotec.2020.117021_bib0070) 2019; 12 Praniewicz (10.1016/j.jmatprotec.2020.117021_bib0085) 2018; 141 Pollock (10.1016/j.jmatprotec.2020.117021_bib0080) 2006; 22 Zhang (10.1016/j.jmatprotec.2020.117021_bib0105) 2011; 18 Zhang (10.1016/j.jmatprotec.2020.117021_bib0115) 2020; 13 El-Bagoury (10.1016/j.jmatprotec.2020.117021_bib0045) 2005; 46 Arunachalam (10.1016/j.jmatprotec.2020.117021_bib0005) 2000; 4 Cortina (10.1016/j.jmatprotec.2020.117021_bib0020) 2018; 11 10.1016/j.jmatprotec.2020.117021_bib0090 Eisenbarth (10.1016/j.jmatprotec.2020.117021_bib0040) 2019 Hosseini (10.1016/j.jmatprotec.2020.117021_bib0055) 2019; 30 Nagamatsu (10.1016/j.jmatprotec.2020.117021_bib0065) 2020; 31 Liu (10.1016/j.jmatprotec.2020.117021_bib0060) 2014; 45 Yilmaz (10.1016/j.jmatprotec.2020.117021_bib0095) 2010; 26 Chen (10.1016/j.jmatprotec.2020.117021_bib0010) 2019; 34 DuPont (10.1016/j.jmatprotec.2020.117021_bib0030) 2009 Eisenbarth (10.1016/j.jmatprotec.2020.117021_bib0035) 2019 |
| References_xml | – volume: 18 start-page: 1026 year: 2019 end-page: 1032 ident: bib0025 article-title: Scientific, technological and economic issues in metal printing and their solutions publication-title: Nat. Mater. – start-page: 237 year: 2009 end-page: 242 ident: bib0030 article-title: Welding Metallurgy and Weldability of Nickel‐Base Alloys – volume: 31 start-page: 100896 year: 2020 ident: bib0065 article-title: Development of a cooperative system for wire and arc additive manufacturing and machining publication-title: Addit. Manuf. – volume: 22 start-page: 361 year: 2006 end-page: 374 ident: bib0080 article-title: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties publication-title: J. Propul. Power – volume: 34 start-page: 205 year: 2019 end-page: 213 ident: bib0010 article-title: Process planning for hybrid additive and subtractive manufacturing to integrate machining and directed energy deposition publication-title: Procedia Manuf. – reference: Stastny, H., Richard, F., Cote, M., 2016. Production of turbine components with heat-extractive features using additive manufacturing. Patent appl. US20160109130A1. – start-page: 83 year: 2019 end-page: 86 ident: bib0035 article-title: Challenges of combining direct metal deposition with milling for the fabrication of a rocket nozzle publication-title: Proceedings of the Special Interest Group Meeting on Advancing Precision in Additive Manufacturing, Nantes, France – volume: 45 start-page: 4454 year: 2014 end-page: 4469 ident: bib0060 article-title: Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components publication-title: Metall. Mater. Trans. A – volume: 8 start-page: 61 year: 2018 ident: bib0015 article-title: Analysis of the influence of the use of cutting fluid in hybrid processes of machining and laser metal deposition (LMD) publication-title: Coatings – volume: 18 start-page: 73 year: 2011 end-page: 78 ident: bib0105 article-title: Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy publication-title: J. Iron Steel Res. Int. – start-page: 125 year: 2019 end-page: 130 ident: bib0040 article-title: Geometry-based process adaption to fabricate parts with varying wall thickness by direct metal deposition publication-title: Progress in Digital and Physical Manufacturing, Proceedings of ProDPM’19 – volume: 30 start-page: 100877 year: 2019 ident: bib0055 article-title: A review of mechanical properties of additively manufactured Inconel 718 publication-title: Addit. Manuf. – volume: 4 start-page: 127 year: 2000 end-page: 168 ident: bib0005 article-title: Machinability of nickel-based high temperature alloys publication-title: Mach. Sci. Technol. – volume: 11 start-page: 2583 year: 2018 ident: bib0020 article-title: Latest developments in industrial hybrid machine tools that combine additive and subtractive operations publication-title: Materials – volume: 46 start-page: 2478 year: 2005 end-page: 2483 ident: bib0045 article-title: Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy publication-title: Mater. Trans. – start-page: 79 year: 2016 end-page: 101 ident: bib0050 article-title: Hybrid additive and subtractive machine tools – research and industrial developments publication-title: Int. J. Mach. Tools Manuf. – volume: 141 start-page: 011006 year: 2018 ident: bib0085 article-title: An adaptive geometry transformation and repair method for hybrid manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 97 start-page: 172 year: 2017 end-page: 179 ident: bib0110 article-title: Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy publication-title: Opt. Laser Technol. – volume: 12 start-page: 2159 year: 2019 ident: bib0070 article-title: Analysis of the machining process of Inconel 718 parts manufactured by laser metal deposition publication-title: Materials – volume: 12 start-page: 44 year: 2019 end-page: 49 ident: bib0075 article-title: Hybrid process chain from die casting and additive manufacturing publication-title: Lightweight des. worldw. – volume: 106 start-page: 87 year: 2018 end-page: 93 ident: bib0100 article-title: Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties publication-title: Opt. Laser Technol. – volume: 13 start-page: 2128 year: 2020 ident: bib0115 article-title: Hot corrosion and mechanical performance of repaired inconel 718 components via laser additive manufacturing publication-title: Materials – volume: 26 start-page: 190 year: 2010 end-page: 201 ident: bib0095 article-title: A repair and overhaul methodology for aeroengine components publication-title: Rob. Cim-Int. Manuf. – volume: 18 start-page: 73 year: 2011 ident: 10.1016/j.jmatprotec.2020.117021_bib0105 article-title: Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy publication-title: J. Iron Steel Res. Int. – volume: 18 start-page: 1026 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0025 article-title: Scientific, technological and economic issues in metal printing and their solutions publication-title: Nat. Mater. doi: 10.1038/s41563-019-0408-2 – start-page: 125 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0040 article-title: Geometry-based process adaption to fabricate parts with varying wall thickness by direct metal deposition – volume: 45 start-page: 4454 issue: 10 year: 2014 ident: 10.1016/j.jmatprotec.2020.117021_bib0060 article-title: Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2397-8 – volume: 97 start-page: 172 year: 2017 ident: 10.1016/j.jmatprotec.2020.117021_bib0110 article-title: Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.06.027 – start-page: 83 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0035 article-title: Challenges of combining direct metal deposition with milling for the fabrication of a rocket nozzle publication-title: Proceedings of the Special Interest Group Meeting on Advancing Precision in Additive Manufacturing, Nantes, France – volume: 34 start-page: 205 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0010 article-title: Process planning for hybrid additive and subtractive manufacturing to integrate machining and directed energy deposition publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.06.140 – volume: 13 start-page: 2128 issue: 9 year: 2020 ident: 10.1016/j.jmatprotec.2020.117021_bib0115 article-title: Hot corrosion and mechanical performance of repaired inconel 718 components via laser additive manufacturing publication-title: Materials doi: 10.3390/ma13092128 – volume: 11 start-page: 2583 issue: 12 year: 2018 ident: 10.1016/j.jmatprotec.2020.117021_bib0020 article-title: Latest developments in industrial hybrid machine tools that combine additive and subtractive operations publication-title: Materials doi: 10.3390/ma11122583 – start-page: 79 year: 2016 ident: 10.1016/j.jmatprotec.2020.117021_bib0050 article-title: Hybrid additive and subtractive machine tools – research and industrial developments publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2015.11.007 – volume: 31 start-page: 100896 year: 2020 ident: 10.1016/j.jmatprotec.2020.117021_bib0065 article-title: Development of a cooperative system for wire and arc additive manufacturing and machining publication-title: Addit. Manuf. – volume: 12 start-page: 2159 issue: 13 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0070 article-title: Analysis of the machining process of Inconel 718 parts manufactured by laser metal deposition publication-title: Materials doi: 10.3390/ma12132159 – volume: 8 start-page: 61 issue: 2 year: 2018 ident: 10.1016/j.jmatprotec.2020.117021_bib0015 article-title: Analysis of the influence of the use of cutting fluid in hybrid processes of machining and laser metal deposition (LMD) publication-title: Coatings doi: 10.3390/coatings8020061 – volume: 106 start-page: 87 year: 2018 ident: 10.1016/j.jmatprotec.2020.117021_bib0100 article-title: Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.04.007 – start-page: 237 year: 2009 ident: 10.1016/j.jmatprotec.2020.117021_bib0030 – volume: 26 start-page: 190 issue: 2 year: 2010 ident: 10.1016/j.jmatprotec.2020.117021_bib0095 article-title: A repair and overhaul methodology for aeroengine components publication-title: Rob. Cim-Int. Manuf. doi: 10.1016/j.rcim.2009.07.001 – volume: 46 start-page: 2478 year: 2005 ident: 10.1016/j.jmatprotec.2020.117021_bib0045 article-title: Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy publication-title: Mater. Trans. doi: 10.2320/matertrans.46.2478 – volume: 22 start-page: 361 issue: 2 year: 2006 ident: 10.1016/j.jmatprotec.2020.117021_bib0080 article-title: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties publication-title: J. Propul. Power doi: 10.2514/1.18239 – volume: 141 start-page: 011006 issue: 1 year: 2018 ident: 10.1016/j.jmatprotec.2020.117021_bib0085 article-title: An adaptive geometry transformation and repair method for hybrid manufacturing publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4041570 – ident: 10.1016/j.jmatprotec.2020.117021_bib0090 – volume: 12 start-page: 44 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0075 article-title: Hybrid process chain from die casting and additive manufacturing publication-title: Lightweight des. worldw. doi: 10.1007/s41777-019-0021-8 – volume: 30 start-page: 100877 year: 2019 ident: 10.1016/j.jmatprotec.2020.117021_bib0055 article-title: A review of mechanical properties of additively manufactured Inconel 718 publication-title: Addit. Manuf. – volume: 4 start-page: 127 year: 2000 ident: 10.1016/j.jmatprotec.2020.117021_bib0005 article-title: Machinability of nickel-based high temperature alloys publication-title: Mach. Sci. Technol. doi: 10.1080/10940340008945703 |
| SSID | ssj0017088 |
| Score | 2.4923701 |
| Snippet | Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 117021 |
| SubjectTerms | Direct metal deposition Hybrid manufacturing Inconel Process chain Tensile properties |
| Title | Interface strength and mechanical properties of Inconel 718 processed sequentially by casting, milling, and direct metal deposition |
| URI | https://dx.doi.org/10.1016/j.jmatprotec.2020.117021 |
| Volume | 291 |
| WOSCitedRecordID | wos000616025100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0924-0136 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017088 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8ID7F-JIfeOtSNU6a2OJpgk4DpAmJIfoWOY49tcqyqi3T9rx_a38cd7bjFDa0gcRLFFnyOfH9Ep_Pd78j5G2elXHFcoNVA1iUlrGMZFplkQTzudRIACZLW2wiPzjg06n40utdtrkwp3XeNPzsTCz-q6qhDZSNqbN_oe4gFBrgHpQOV1A7XG-leOvjM9JSxy51c-Rz14415vhalSzQAb9EJlWXSAJbYl0PYPkYLFzaABihLsQaPv-6PkcTVcnV2pc_wUJF_hYFu0URS1HjeY9uo8D-YPWCgewmoR3Lpmtd8e9_PTHGxQ_sDYPRP1vpBgMQrCfoQ2jfh3Vez2xpqsEktH7XR9on83webvo2WNxFErZOSoYxMo4ipf1fM1fey_9xsXKOy7G-shg4v8R8OIdXc6wXQxjEnlP7Lr_yb_-2LoZoxTYQbl50kgqUVDhJd8gWy8eC98nW7sfJ9FM4xcpHtu5peAsfSebiC69_quvNow2T5_AheeC1Rncdxh6Rnm4ek_sbDJZPyEVAG23RRgEUtEMb7dBGTwz1aKOANhrQRjfRRstz6tG2Qz3WdqxQhzRqkUY7pD0l3_Ymh-_3I1_XI1JJxteRqKo4MSPkPVJJqlmihEm1UByWA5OAwTiukJZRpkzmOfIPZoybBPbB8FvhYymSZ6TfwLM-J1QoGSvY0jB0bJSl4UKPqkxprnk5TqTZJnk7nYXypPdYe6UublLqNolDz4UjfrlFn3etxgpvwLqZKQCSN_Z-8Q8jviT3uu_mFemvlz_0a3JXna5nq-Ubj8efCPbGww |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+strength+and+mechanical+properties+of+Inconel+718+processed+sequentially+by+casting%2C+milling%2C+and+direct+metal+deposition&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Soffel%2C+F.&rft.au=Eisenbarth%2C+D.&rft.au=Hosseini%2C+E.&rft.au=Wegener%2C+K.&rft.date=2021-05-01&rft.issn=0924-0136&rft.volume=291&rft.spage=117021&rft_id=info:doi/10.1016%2Fj.jmatprotec.2020.117021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmatprotec_2020_117021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon |