Interface strength and mechanical properties of Inconel 718 processed sequentially by casting, milling, and direct metal deposition

Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of manufacturing technologies. The combination of these processes with AM, typically referred to as hybrid manufacturing, can overcome limitations that exi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology Vol. 291; p. 117021
Main Authors: Soffel, F., Eisenbarth, D., Hosseini, E., Wegener, K.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2021
Subjects:
ISSN:0924-0136
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of manufacturing technologies. The combination of these processes with AM, typically referred to as hybrid manufacturing, can overcome limitations that exist in conventional process chains. However, different cooling rates of the material during hybrid manufacturing cause local variations in microstructure and mechanical properties within the components. Thus, quantification of the impact of individual process steps on the resulting properties could reveal most suitable process combinations. The present study focuses on the fabrication and repair of parts by casting, interface milling, and direct metal deposition (DMD). Four processing routes are investigated where heat treatment and interface conditions are varied before applying the DMD process. The cast components are either solution annealed or without heat treatment, and the interface to the DMD part remains either as-cast or it is milled. The results show that all conditions allow dense bonding between the cast section and the additively manufactured structure. The tensile properties of the test specimens exceed the level of conventionally cast parts and can be predicted by numerical simulation. The proposed combination of casting, milling, and DMD may therefore be applied to hybrid manufacturing process chains to increase the level of material efficiency and design flexibility.
AbstractList Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of manufacturing technologies. The combination of these processes with AM, typically referred to as hybrid manufacturing, can overcome limitations that exist in conventional process chains. However, different cooling rates of the material during hybrid manufacturing cause local variations in microstructure and mechanical properties within the components. Thus, quantification of the impact of individual process steps on the resulting properties could reveal most suitable process combinations. The present study focuses on the fabrication and repair of parts by casting, interface milling, and direct metal deposition (DMD). Four processing routes are investigated where heat treatment and interface conditions are varied before applying the DMD process. The cast components are either solution annealed or without heat treatment, and the interface to the DMD part remains either as-cast or it is milled. The results show that all conditions allow dense bonding between the cast section and the additively manufactured structure. The tensile properties of the test specimens exceed the level of conventionally cast parts and can be predicted by numerical simulation. The proposed combination of casting, milling, and DMD may therefore be applied to hybrid manufacturing process chains to increase the level of material efficiency and design flexibility.
ArticleNumber 117021
Author Soffel, F.
Hosseini, E.
Eisenbarth, D.
Wegener, K.
Author_xml – sequence: 1
  givenname: F.
  surname: Soffel
  fullname: Soffel, F.
  email: soffel@inspire.ethz.ch
  organization: inspire AG, Technoparkstrasse 1, 8005, Zürich, Switzerland
– sequence: 2
  givenname: D.
  surname: Eisenbarth
  fullname: Eisenbarth, D.
  organization: inspire AG, Technoparkstrasse 1, 8005, Zürich, Switzerland
– sequence: 3
  givenname: E.
  surname: Hosseini
  fullname: Hosseini, E.
  organization: Empa Swiss Federal Laboratories for Materials Science & Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
– sequence: 4
  givenname: K.
  surname: Wegener
  fullname: Wegener, K.
  organization: Institute of Machine Tools and Manufacturing, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
BookMark eNqNkM1OwzAMgHMYEhvwDnkAOpIma5MLEkz8TJrEBc5RlrhbqjYtSUDamRenpUhIXOBky5Y_298CzXznASFMyZISWlzVy7rVqQ9dArPMST6UaUlyOkNzInOeEcqKU7SIsSZkaAgxRx8bnyBU2gCOKYDfpwPW3uIWzEF7Z3SDB14PITmIuKvwxpthaYNLKsaOgRjB4givb-CT001zxLsjNjom5_eXuHVN85WMUOsCmDSw04C10HfRJdf5c3RS6SbCxXc8Qy_3d8_rx2z79LBZ32wzwwqRMmktZRUpuZCGcciZkRUHaQSjsmJFQVe2XHGuea7LkkrKi1xUTOTFjlqx0pKdoeuJa0IXY4BKGZf0eEEK2jWKEjVqVLX60ahGjWrSOADEL0AfXKvD8T-jt9MoDA--OwgqGgfewORE2c79DfkE8bWZsA
CitedBy_id crossref_primary_10_3390_jmmp8040136
crossref_primary_10_3390_ma17133119
crossref_primary_10_3390_met13030585
crossref_primary_10_1016_j_optlastec_2024_111591
crossref_primary_10_1088_1757_899X_1193_1_012095
crossref_primary_10_1016_j_jmatprotec_2022_117542
crossref_primary_10_1080_09603409_2025_2536399
crossref_primary_10_1038_s41598_023_28128_8
crossref_primary_10_3390_ma16072765
crossref_primary_10_3390_ma17051197
crossref_primary_10_1016_j_ijfatigue_2023_107650
crossref_primary_10_1108_RPJ_10_2024_0435
crossref_primary_10_1016_j_jallcom_2025_183236
crossref_primary_10_1007_s00170_021_06925_7
crossref_primary_10_1016_j_msea_2022_144517
crossref_primary_10_1080_09506608_2022_2097411
crossref_primary_10_1016_j_matdes_2025_114637
crossref_primary_10_1016_j_triboint_2023_109120
crossref_primary_10_1016_j_mtcomm_2022_104007
crossref_primary_10_3390_app15116102
crossref_primary_10_3390_ma15062038
crossref_primary_10_3390_ma18184249
crossref_primary_10_4028_www_scientific_net_KEM_907_215
crossref_primary_10_1016_j_matchar_2023_112815
crossref_primary_10_1016_j_surfcoat_2024_131575
crossref_primary_10_3390_jcs9030100
crossref_primary_10_1016_j_ceramint_2022_09_225
crossref_primary_10_1007_s10853_023_09249_x
crossref_primary_10_3390_ma15010177
crossref_primary_10_1007_s00170_022_09693_0
crossref_primary_10_1007_s11665_024_10539_x
crossref_primary_10_1016_j_msea_2022_143871
Cites_doi 10.1038/s41563-019-0408-2
10.1007/s11661-014-2397-8
10.1016/j.optlastec.2017.06.027
10.1016/j.promfg.2019.06.140
10.3390/ma13092128
10.3390/ma11122583
10.1016/j.ijmachtools.2015.11.007
10.3390/ma12132159
10.3390/coatings8020061
10.1016/j.optlastec.2018.04.007
10.1016/j.rcim.2009.07.001
10.2320/matertrans.46.2478
10.2514/1.18239
10.1115/1.4041570
10.1007/s41777-019-0021-8
10.1080/10940340008945703
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jmatprotec.2020.117021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jmatprotec_2020_117021
S092401362030443X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
WUQ
XFK
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c368t-9dd13f07489c34e23c9f4e9c8319f36615d7544a42a771914628f3826b1d85a93
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616025100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-0136
IngestDate Sat Nov 29 07:12:35 EST 2025
Tue Nov 18 21:17:25 EST 2025
Fri Feb 23 02:48:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Process chain
Direct metal deposition
Hybrid manufacturing
Tensile properties
Inconel
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-9dd13f07489c34e23c9f4e9c8319f36615d7544a42a771914628f3826b1d85a93
OpenAccessLink https://dx.doi.org/10.1016/j.jmatprotec.2020.117021
ParticipantIDs crossref_citationtrail_10_1016_j_jmatprotec_2020_117021
crossref_primary_10_1016_j_jmatprotec_2020_117021
elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2020_117021
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Journal of materials processing technology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hosseini, Popovich (bib0055) 2019; 30
El-Bagoury, Matsuba, Yamamoto, Miyahara, Ogi (bib0045) 2005; 46
Zhang, Yang, Chen, Zhang, Huang, Dai (bib0110) 2017; 97
Ostra, Alonso, Veiga, Ortiz, Ramiro, Alberdi (bib0070) 2019; 12
Yilmaz, Gindy, Gao (bib0095) 2010; 26
Stastny, H., Richard, F., Cote, M., 2016. Production of turbine components with heat-extractive features using additive manufacturing. Patent appl. US20160109130A1.
Praniewicz, Kurfess, Saldana (bib0085) 2018; 141
Eisenbarth, Breuch, Soffel, Wegener (bib0035) 2019
Cortina, Arrizubieta, Ruiz, Ukar, Lamikiz (bib0020) 2018; 11
DebRoy, Mukherjee, Milewski, Elmer, Ribic, Blecher, Zhang (bib0025) 2019; 18
Arunachalam, Mannan (bib0005) 2000; 4
Polenz, Oettel, López, Leyens (bib0075) 2019; 12
Nagamatsu, Sasahara, Mitsutake, Hamamoto (bib0065) 2020; 31
Zhang, Yao, Mazumder (bib0105) 2011; 18
Chen, Frank (bib0010) 2019; 34
Flynn, Shokrani, Newman, Dhokia (bib0050) 2016
Pollock, Tin (bib0080) 2006; 22
Eisenbarth, Soffel, Wegener (bib0040) 2019
Liu, Lippold, Li, Rohklin, Vollbrecht, Grylls (bib0060) 2014; 45
Zhang, Zhang, Zhuang, Lu, Yao (bib0115) 2020; 13
DuPont, Lippold, Kiser (bib0030) 2009
Yu, Choi, Shim, Park (bib0100) 2018; 106
Cortina, Arrizubieta, Ukar, Lamikiz (bib0015) 2018; 8
Yu (10.1016/j.jmatprotec.2020.117021_bib0100) 2018; 106
Flynn (10.1016/j.jmatprotec.2020.117021_bib0050) 2016
Zhang (10.1016/j.jmatprotec.2020.117021_bib0110) 2017; 97
DebRoy (10.1016/j.jmatprotec.2020.117021_bib0025) 2019; 18
Polenz (10.1016/j.jmatprotec.2020.117021_bib0075) 2019; 12
Cortina (10.1016/j.jmatprotec.2020.117021_bib0015) 2018; 8
Ostra (10.1016/j.jmatprotec.2020.117021_bib0070) 2019; 12
Praniewicz (10.1016/j.jmatprotec.2020.117021_bib0085) 2018; 141
Pollock (10.1016/j.jmatprotec.2020.117021_bib0080) 2006; 22
Zhang (10.1016/j.jmatprotec.2020.117021_bib0105) 2011; 18
Zhang (10.1016/j.jmatprotec.2020.117021_bib0115) 2020; 13
El-Bagoury (10.1016/j.jmatprotec.2020.117021_bib0045) 2005; 46
Arunachalam (10.1016/j.jmatprotec.2020.117021_bib0005) 2000; 4
Cortina (10.1016/j.jmatprotec.2020.117021_bib0020) 2018; 11
10.1016/j.jmatprotec.2020.117021_bib0090
Eisenbarth (10.1016/j.jmatprotec.2020.117021_bib0040) 2019
Hosseini (10.1016/j.jmatprotec.2020.117021_bib0055) 2019; 30
Nagamatsu (10.1016/j.jmatprotec.2020.117021_bib0065) 2020; 31
Liu (10.1016/j.jmatprotec.2020.117021_bib0060) 2014; 45
Yilmaz (10.1016/j.jmatprotec.2020.117021_bib0095) 2010; 26
Chen (10.1016/j.jmatprotec.2020.117021_bib0010) 2019; 34
DuPont (10.1016/j.jmatprotec.2020.117021_bib0030) 2009
Eisenbarth (10.1016/j.jmatprotec.2020.117021_bib0035) 2019
References_xml – volume: 18
  start-page: 1026
  year: 2019
  end-page: 1032
  ident: bib0025
  article-title: Scientific, technological and economic issues in metal printing and their solutions
  publication-title: Nat. Mater.
– start-page: 237
  year: 2009
  end-page: 242
  ident: bib0030
  article-title: Welding Metallurgy and Weldability of Nickel‐Base Alloys
– volume: 31
  start-page: 100896
  year: 2020
  ident: bib0065
  article-title: Development of a cooperative system for wire and arc additive manufacturing and machining
  publication-title: Addit. Manuf.
– volume: 22
  start-page: 361
  year: 2006
  end-page: 374
  ident: bib0080
  article-title: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties
  publication-title: J. Propul. Power
– volume: 34
  start-page: 205
  year: 2019
  end-page: 213
  ident: bib0010
  article-title: Process planning for hybrid additive and subtractive manufacturing to integrate machining and directed energy deposition
  publication-title: Procedia Manuf.
– reference: Stastny, H., Richard, F., Cote, M., 2016. Production of turbine components with heat-extractive features using additive manufacturing. Patent appl. US20160109130A1.
– start-page: 83
  year: 2019
  end-page: 86
  ident: bib0035
  article-title: Challenges of combining direct metal deposition with milling for the fabrication of a rocket nozzle
  publication-title: Proceedings of the Special Interest Group Meeting on Advancing Precision in Additive Manufacturing, Nantes, France
– volume: 45
  start-page: 4454
  year: 2014
  end-page: 4469
  ident: bib0060
  article-title: Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components
  publication-title: Metall. Mater. Trans. A
– volume: 8
  start-page: 61
  year: 2018
  ident: bib0015
  article-title: Analysis of the influence of the use of cutting fluid in hybrid processes of machining and laser metal deposition (LMD)
  publication-title: Coatings
– volume: 18
  start-page: 73
  year: 2011
  end-page: 78
  ident: bib0105
  article-title: Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy
  publication-title: J. Iron Steel Res. Int.
– start-page: 125
  year: 2019
  end-page: 130
  ident: bib0040
  article-title: Geometry-based process adaption to fabricate parts with varying wall thickness by direct metal deposition
  publication-title: Progress in Digital and Physical Manufacturing, Proceedings of ProDPM’19
– volume: 30
  start-page: 100877
  year: 2019
  ident: bib0055
  article-title: A review of mechanical properties of additively manufactured Inconel 718
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 127
  year: 2000
  end-page: 168
  ident: bib0005
  article-title: Machinability of nickel-based high temperature alloys
  publication-title: Mach. Sci. Technol.
– volume: 11
  start-page: 2583
  year: 2018
  ident: bib0020
  article-title: Latest developments in industrial hybrid machine tools that combine additive and subtractive operations
  publication-title: Materials
– volume: 46
  start-page: 2478
  year: 2005
  end-page: 2483
  ident: bib0045
  article-title: Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy
  publication-title: Mater. Trans.
– start-page: 79
  year: 2016
  end-page: 101
  ident: bib0050
  article-title: Hybrid additive and subtractive machine tools – research and industrial developments
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 141
  start-page: 011006
  year: 2018
  ident: bib0085
  article-title: An adaptive geometry transformation and repair method for hybrid manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 97
  start-page: 172
  year: 2017
  end-page: 179
  ident: bib0110
  article-title: Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy
  publication-title: Opt. Laser Technol.
– volume: 12
  start-page: 2159
  year: 2019
  ident: bib0070
  article-title: Analysis of the machining process of Inconel 718 parts manufactured by laser metal deposition
  publication-title: Materials
– volume: 12
  start-page: 44
  year: 2019
  end-page: 49
  ident: bib0075
  article-title: Hybrid process chain from die casting and additive manufacturing
  publication-title: Lightweight des. worldw.
– volume: 106
  start-page: 87
  year: 2018
  end-page: 93
  ident: bib0100
  article-title: Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties
  publication-title: Opt. Laser Technol.
– volume: 13
  start-page: 2128
  year: 2020
  ident: bib0115
  article-title: Hot corrosion and mechanical performance of repaired inconel 718 components via laser additive manufacturing
  publication-title: Materials
– volume: 26
  start-page: 190
  year: 2010
  end-page: 201
  ident: bib0095
  article-title: A repair and overhaul methodology for aeroengine components
  publication-title: Rob. Cim-Int. Manuf.
– volume: 18
  start-page: 73
  year: 2011
  ident: 10.1016/j.jmatprotec.2020.117021_bib0105
  article-title: Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy
  publication-title: J. Iron Steel Res. Int.
– volume: 18
  start-page: 1026
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0025
  article-title: Scientific, technological and economic issues in metal printing and their solutions
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0408-2
– start-page: 125
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0040
  article-title: Geometry-based process adaption to fabricate parts with varying wall thickness by direct metal deposition
– volume: 45
  start-page: 4454
  issue: 10
  year: 2014
  ident: 10.1016/j.jmatprotec.2020.117021_bib0060
  article-title: Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2397-8
– volume: 97
  start-page: 172
  year: 2017
  ident: 10.1016/j.jmatprotec.2020.117021_bib0110
  article-title: Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.06.027
– start-page: 83
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0035
  article-title: Challenges of combining direct metal deposition with milling for the fabrication of a rocket nozzle
  publication-title: Proceedings of the Special Interest Group Meeting on Advancing Precision in Additive Manufacturing, Nantes, France
– volume: 34
  start-page: 205
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0010
  article-title: Process planning for hybrid additive and subtractive manufacturing to integrate machining and directed energy deposition
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2019.06.140
– volume: 13
  start-page: 2128
  issue: 9
  year: 2020
  ident: 10.1016/j.jmatprotec.2020.117021_bib0115
  article-title: Hot corrosion and mechanical performance of repaired inconel 718 components via laser additive manufacturing
  publication-title: Materials
  doi: 10.3390/ma13092128
– volume: 11
  start-page: 2583
  issue: 12
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.117021_bib0020
  article-title: Latest developments in industrial hybrid machine tools that combine additive and subtractive operations
  publication-title: Materials
  doi: 10.3390/ma11122583
– start-page: 79
  year: 2016
  ident: 10.1016/j.jmatprotec.2020.117021_bib0050
  article-title: Hybrid additive and subtractive machine tools – research and industrial developments
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2015.11.007
– volume: 31
  start-page: 100896
  year: 2020
  ident: 10.1016/j.jmatprotec.2020.117021_bib0065
  article-title: Development of a cooperative system for wire and arc additive manufacturing and machining
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 2159
  issue: 13
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0070
  article-title: Analysis of the machining process of Inconel 718 parts manufactured by laser metal deposition
  publication-title: Materials
  doi: 10.3390/ma12132159
– volume: 8
  start-page: 61
  issue: 2
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.117021_bib0015
  article-title: Analysis of the influence of the use of cutting fluid in hybrid processes of machining and laser metal deposition (LMD)
  publication-title: Coatings
  doi: 10.3390/coatings8020061
– volume: 106
  start-page: 87
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.117021_bib0100
  article-title: Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.04.007
– start-page: 237
  year: 2009
  ident: 10.1016/j.jmatprotec.2020.117021_bib0030
– volume: 26
  start-page: 190
  issue: 2
  year: 2010
  ident: 10.1016/j.jmatprotec.2020.117021_bib0095
  article-title: A repair and overhaul methodology for aeroengine components
  publication-title: Rob. Cim-Int. Manuf.
  doi: 10.1016/j.rcim.2009.07.001
– volume: 46
  start-page: 2478
  year: 2005
  ident: 10.1016/j.jmatprotec.2020.117021_bib0045
  article-title: Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.46.2478
– volume: 22
  start-page: 361
  issue: 2
  year: 2006
  ident: 10.1016/j.jmatprotec.2020.117021_bib0080
  article-title: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties
  publication-title: J. Propul. Power
  doi: 10.2514/1.18239
– volume: 141
  start-page: 011006
  issue: 1
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.117021_bib0085
  article-title: An adaptive geometry transformation and repair method for hybrid manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4041570
– ident: 10.1016/j.jmatprotec.2020.117021_bib0090
– volume: 12
  start-page: 44
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0075
  article-title: Hybrid process chain from die casting and additive manufacturing
  publication-title: Lightweight des. worldw.
  doi: 10.1007/s41777-019-0021-8
– volume: 30
  start-page: 100877
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.117021_bib0055
  article-title: A review of mechanical properties of additively manufactured Inconel 718
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 127
  year: 2000
  ident: 10.1016/j.jmatprotec.2020.117021_bib0005
  article-title: Machinability of nickel-based high temperature alloys
  publication-title: Mach. Sci. Technol.
  doi: 10.1080/10940340008945703
SSID ssj0017088
Score 2.4923701
Snippet Inconel 718 is the most commonly used nickel-based superalloy, mainly because it exhibits good weldability and can be processed by various types of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117021
SubjectTerms Direct metal deposition
Hybrid manufacturing
Inconel
Process chain
Tensile properties
Title Interface strength and mechanical properties of Inconel 718 processed sequentially by casting, milling, and direct metal deposition
URI https://dx.doi.org/10.1016/j.jmatprotec.2020.117021
Volume 291
WOSCitedRecordID wos000616025100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0924-0136
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017088
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8ID7F-JIfeOtSNU6a2OJpgk4DpAmJIfoWOY49tcqyqi3T9rx_a38cd7bjFDa0gcRLFFnyOfH9Ep_Pd78j5G2elXHFcoNVA1iUlrGMZFplkQTzudRIACZLW2wiPzjg06n40utdtrkwp3XeNPzsTCz-q6qhDZSNqbN_oe4gFBrgHpQOV1A7XG-leOvjM9JSxy51c-Rz14415vhalSzQAb9EJlWXSAJbYl0PYPkYLFzaABihLsQaPv-6PkcTVcnV2pc_wUJF_hYFu0URS1HjeY9uo8D-YPWCgewmoR3Lpmtd8e9_PTHGxQ_sDYPRP1vpBgMQrCfoQ2jfh3Vez2xpqsEktH7XR9on83webvo2WNxFErZOSoYxMo4ipf1fM1fey_9xsXKOy7G-shg4v8R8OIdXc6wXQxjEnlP7Lr_yb_-2LoZoxTYQbl50kgqUVDhJd8gWy8eC98nW7sfJ9FM4xcpHtu5peAsfSebiC69_quvNow2T5_AheeC1Rncdxh6Rnm4ek_sbDJZPyEVAG23RRgEUtEMb7dBGTwz1aKOANhrQRjfRRstz6tG2Qz3WdqxQhzRqkUY7pD0l3_Ymh-_3I1_XI1JJxteRqKo4MSPkPVJJqlmihEm1UByWA5OAwTiukJZRpkzmOfIPZoybBPbB8FvhYymSZ6TfwLM-J1QoGSvY0jB0bJSl4UKPqkxprnk5TqTZJnk7nYXypPdYe6UublLqNolDz4UjfrlFn3etxgpvwLqZKQCSN_Z-8Q8jviT3uu_mFemvlz_0a3JXna5nq-Ubj8efCPbGww
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+strength+and+mechanical+properties+of+Inconel+718+processed+sequentially+by+casting%2C+milling%2C+and+direct+metal+deposition&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Soffel%2C+F.&rft.au=Eisenbarth%2C+D.&rft.au=Hosseini%2C+E.&rft.au=Wegener%2C+K.&rft.date=2021-05-01&rft.issn=0924-0136&rft.volume=291&rft.spage=117021&rft_id=info:doi/10.1016%2Fj.jmatprotec.2020.117021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmatprotec_2020_117021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon