Solution smoothness of ill-posed equations in Hilbert spaces: four concepts and their cross connections

Numerical solution of ill-posed operator equations requires regularization techniques. The convergence of regularized solutions to the exact solution can be usually guaranteed, but to also obtain estimates for the speed of convergence one has to exploit some kind of smoothness of the exact solution....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable analysis Ročník 91; číslo 5; s. 1029 - 1044
Hlavní autor: Flemming, Jens
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis Group 01.05.2012
Taylor & Francis Ltd
Témata:
ISSN:0003-6811, 1563-504X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Numerical solution of ill-posed operator equations requires regularization techniques. The convergence of regularized solutions to the exact solution can be usually guaranteed, but to also obtain estimates for the speed of convergence one has to exploit some kind of smoothness of the exact solution. We consider four such smoothness concepts in a Hilbert space setting: source conditions, approximate source conditions, variational inequalities, and approximate variational inequalities. Besides some new auxiliary results on variational inequalities the equivalence of the last three concepts is shown. In addition, it turns out that the classical concept of source conditions and the modern concept of variational inequalities are connected via Fenchel duality.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0003-6811
1563-504X
DOI:10.1080/00036811.2011.563736