Constrained clustering by constraint programming

Constrained Clustering allows to make the clustering task more accurate by integrating user constraints, which can be instance-level or cluster-level constraints. Few works consider the integration of different kinds of constraints, they are usually based on declarative frameworks and they are often...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Artificial intelligence Ročník 244; číslo 244; s. 70 - 94
Hlavní autori: Dao, Thi-Bich-Hanh, Duong, Khanh-Chuong, Vrain, Christel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.03.2017
Elsevier Science Ltd
Elsevier
Predmet:
ISSN:0004-3702, 1872-7921
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Constrained Clustering allows to make the clustering task more accurate by integrating user constraints, which can be instance-level or cluster-level constraints. Few works consider the integration of different kinds of constraints, they are usually based on declarative frameworks and they are often exact methods, which either enumerate all the solutions satisfying the user constraints, or find a global optimum when an optimization criterion is specified. In a previous work, we have proposed a model for Constrained Clustering based on a Constraint Programming framework. It is declarative, allowing a user to integrate user constraints and to choose an optimization criterion among several ones. In this article we present a new and substantially improved model for Constrained Clustering, still based on a Constraint Programming framework. It differs from our earlier model in the way partitions are represented by means of variables and constraints. It is also more flexible since the number of clusters does not need to be set beforehand; only a lower and an upper bound on the number of clusters have to be provided. In order to make the model-based approach more efficient, we propose new global optimization constraints with dedicated filtering algorithms. We show that such a framework can easily be embedded in a more general process and we illustrate this on the problem of finding the optimal Pareto front of a bi-criterion constrained clustering task. We compare our approach with existing exact approaches, based either on a branch-and-bound approach or on graph coloring on twelve datasets. Experiments show that the model outperforms exact approaches in most cases.
AbstractList Constrained Clustering allows to make the clustering task more accurate by integrating user constraints, which can be instance-level or cluster-level constraints. Few works consider the integration of different kinds of constraints, they are usually based on declarative frameworks and they are often exact methods, which either enumerate all the solutions satisfying the user constraints, or find a global optimum when an optimization criterion is specified. In a previous work, we have proposed a model for Constrained Clustering based on a Constraint Programming framework. It is declarative, allowing a user to integrate user constraints and to choose an optimization criterion among several ones. In this article we present a new and substantially improved model for Constrained Clustering, still based on a Constraint Programming framework. It differs from our earlier model in the way partitions are represented by means of variables and constraints. It is also more flexible since the number of clusters does not need to be set beforehand; only a lower and an upper bound on the number of clusters have to be provided. In order to make the model-based approach more efficient, we propose new global optimization constraints with dedicated filtering algorithms. We show that such a framework can easily be embedded in a more general process and we illustrate this on the problem of finding the optimal Pareto front of a bi-criterion constrained clustering task. We compare our approach with existing exact approaches, based either on a branch-and-bound approach or on graph coloring on twelve datasets. Experiments show that the model outperforms exact approaches in most cases.
Author Vrain, Christel
Dao, Thi-Bich-Hanh
Duong, Khanh-Chuong
Author_xml – sequence: 1
  givenname: Thi-Bich-Hanh
  surname: Dao
  fullname: Dao, Thi-Bich-Hanh
  email: thi-bich-hanh.dao@univ-orleans.fr
– sequence: 2
  givenname: Khanh-Chuong
  surname: Duong
  fullname: Duong, Khanh-Chuong
  email: khanh-chuong.duong@univ-orleans.fr
– sequence: 3
  givenname: Christel
  surname: Vrain
  fullname: Vrain, Christel
  email: christel.vrain@univ-orleans.fr
BackLink https://hal.science/hal-01162640$$DView record in HAL
BookMark eNqFkMFLwzAUxoNMcJv-Bx4Knjy0vrRps3gQxlAnDLzsHrL0daZs6Uyywf57U6oXDxoehJf3-x5fvgkZ2c4iIbcUMgq0emgz5YKxIcuBlhnEguqCjOmM5ykXOR2RMQCwtOCQX5GJ921sCyHomMCisz44ZSzWid4dfUBn7DbZnBP9MwnJwXVbp_b7OLkml43aebz5vqdk_fK8XizT1fvr22K-SnVRzUIqqoJxFA3nZQUzqpEDyxEFsrxoGJasEU0NWiPlehM5zWDDEUDReFhdTMn9sPZD7eTBmb1yZ9kpI5fzlezfgNIqrxicaGTvBjba_DyiD7Ltjs5Gd5IKGo0UpSgi9ThQ2nXeO2ykNkEF09n-kztJQfZhylYOYco-TAmxoIpi9kv84-kf2dMgw5jUyaCTXhu0GmvjUAdZd-bvBV8ezZGq
CitedBy_id crossref_primary_10_1007_s00224_024_10211_w
crossref_primary_10_1109_ACCESS_2019_2962191
crossref_primary_10_1016_j_compchemeng_2020_107169
crossref_primary_10_1088_1742_6596_1801_1_012041
crossref_primary_10_1007_s00521_025_11161_1
crossref_primary_10_1016_j_ijar_2024_109135
crossref_primary_10_1111_tgis_12878
crossref_primary_10_1007_s10618_018_0573_y
crossref_primary_10_1016_j_ins_2022_11_107
crossref_primary_10_1016_j_engappai_2024_108334
crossref_primary_10_1016_j_cie_2024_110714
crossref_primary_10_1016_j_engappai_2023_107182
crossref_primary_10_1007_s12065_020_00422_8
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_1007_s10107_023_02021_8
crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_1080_0305215X_2024_2346935
crossref_primary_10_1109_TSE_2024_3523487
crossref_primary_10_4018_IJDWM_328776
crossref_primary_10_1016_j_cor_2022_105958
crossref_primary_10_1007_s10618_020_00734_4
crossref_primary_10_1109_JSTARS_2019_2950406
crossref_primary_10_1287_ijoc_2022_1166
crossref_primary_10_1007_s10898_021_01047_6
crossref_primary_10_1177_13691481251343628
crossref_primary_10_1007_s10898_018_0634_1
crossref_primary_10_1016_j_knosys_2024_112436
crossref_primary_10_1007_s10462_024_11103_8
Cites_doi 10.1109/TKDE.2011.204
10.2307/2344237
10.1007/s11222-007-9033-z
10.1002/1520-6750(199106)38:3<447::AID-NAV3220380312>3.0.CO;2-0
10.1007/BF01246100
10.1287/ijoc.8.4.344
10.1007/BF02289588
10.1080/01621459.1978.10481589
10.1007/s10618-006-0053-7
10.1007/s10107-010-0349-7
10.1016/j.artint.2011.05.002
10.1007/s10618-012-0291-9
10.1109/TPAMI.1980.4767027
10.1016/0304-3975(85)90224-5
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 2017
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 2017
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.artint.2015.05.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7921
EndPage 94
ExternalDocumentID oai:HAL:hal-01162640v1
10_1016_j_artint_2015_05_006
S0004370215000806
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c368t-96347e9f7756081ce7042ee9e423f4e54f9fd0cce17cbe9fc40b7e00a11114d3
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394630400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-3702
IngestDate Tue Nov 25 06:21:01 EST 2025
Wed Aug 13 10:51:53 EDT 2025
Sat Nov 29 07:34:19 EST 2025
Tue Nov 18 22:42:20 EST 2025
Fri Feb 23 02:31:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 244
Keywords Filtering algorithm
Global optimization constraint
Bi-criterion clustering
Modeling
Constrained clustering
Constraint programming
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-96347e9f7756081ce7042ee9e423f4e54f9fd0cce17cbe9fc40b7e00a11114d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2740-6954
PQID 1916343593
PQPubID 2038285
PageCount 25
ParticipantIDs hal_primary_oai_HAL_hal_01162640v1
proquest_journals_1916343593
crossref_citationtrail_10_1016_j_artint_2015_05_006
crossref_primary_10_1016_j_artint_2015_05_006
elsevier_sciencedirect_doi_10_1016_j_artint_2015_05_006
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Artificial intelligence
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
– name: Elsevier
References Mueller, Kramer (br0020) 2010
Law, Lee (br0470) 2004
Focacci, Lodi, Milano (br0160) 1999
Berg, Jarvisalo (br0390) 2013
Gilpin, Davidson (br0380) 2011
Davidson, Ravi (br0250) 2005
Cormack (br0100) 1971; 134
Davidson, Ravi (br0200) 2007; 14
Brusco, Stahl (br0040) 2005
Guns, Nijssen, De Raedt (br0280) 2013; 25
Rojas, Boizumault, Loudni, Crémilleux, Lepailleur (br0450) 2014
Cambazard, Hadzic, O'Sullivan (br0420) 2010
De Raedt, Guns, Nijssen (br0400) 2008
Lu, Carreira-Perpinan (br0260) 2008
K. Bache, M. Lichman, UCI machine learning repository
(br0180) 2006
Kotthoff, O'Sullivan (br0320) 2013
Wang, Yan, Sriskandarajah (br0120) 1996; 13
Luxburg (br0330) 2007; 17
Davidson, Ravi, Shamis (br0010) 2010
Beldiceanu, Carlsson, Rampon (br0140)
Dao, Duong, Vrain (br0030) 2013
Gilpin, Nijssen, Davidson (br0370) 2013
.
Delattre, Hansen (br0050) 1980; 4
Aloise, Hansen, Liberti (br0310) 2012; 131
Bessiere, Hebrard, O'Sullivan (br0460) 2009
Régin (br0150) 1994
Régin (br0170) 1999
T'kindt, Billaut (br0500) 2006
Hansen, Delattre (br0210) 1978; 73
Jabbour, Sais, Salhi (br0440) 2013
Klein, Aronson (br0490) 1991; 38
Davidson, Ravi (br0080) 2005
Basu, Davidson, Wagstaff (br0220) 2008
Guns, Nijssen, De Raedt (br0430) 2011; 175
br0190
De Raedt, Guns, Nijssen (br0410) 2010
Wagstaff, Cardie, Rogers, Schrödl (br0230) 2001
Bilenko, Basu, Mooney (br0240) 2004
Dao, Duong, Vrain (br0480) 2013
Wang, Chen (br0130) 2012
Johnson (br0110) 1967; 32
Schaus, Hartert (br0520) 2013
Mehrotra, Trick (br0540) 1995; 8
Wagstaff, Cardie (br0070) 2000
Métivier, Boizumault, Crémilleux, Khiari, Loudni (br0290) 2012
Davidson, Qian, Wang, Ye (br0360) 2013
Wang, Davidson (br0270) 2010
Gavanelli (br0510) 2002
Babaki, Guns, Nijssen (br0300) 2014
Zhi, Wang, Qian, Butler, Ramakrishnan, Davidson (br0350) 2013
Wang, Qian, Davidson (br0340) 2014; 28
Gonzalez (br0060) 1985; 38
Ester, Kriegel, Sander, Xu (br0090) 1996
Delattre (10.1016/j.artint.2015.05.006_br0050) 1980; 4
Lu (10.1016/j.artint.2015.05.006_br0260) 2008
Wang (10.1016/j.artint.2015.05.006_br0340) 2014; 28
Aloise (10.1016/j.artint.2015.05.006_br0310) 2012; 131
Brusco (10.1016/j.artint.2015.05.006_br0040) 2005
Johnson (10.1016/j.artint.2015.05.006_br0110) 1967; 32
Law (10.1016/j.artint.2015.05.006_br0470) 2004
Mehrotra (10.1016/j.artint.2015.05.006_br0540) 1995; 8
Wagstaff (10.1016/j.artint.2015.05.006_br0070) 2000
Wang (10.1016/j.artint.2015.05.006_br0120) 1996; 13
Wang (10.1016/j.artint.2015.05.006_br0130) 2012
Guns (10.1016/j.artint.2015.05.006_br0280) 2013; 25
Davidson (10.1016/j.artint.2015.05.006_br0360) 2013
Wang (10.1016/j.artint.2015.05.006_br0270) 2010
Guns (10.1016/j.artint.2015.05.006_br0430) 2011; 175
Mueller (10.1016/j.artint.2015.05.006_br0020) 2010
Focacci (10.1016/j.artint.2015.05.006_br0160) 1999
Davidson (10.1016/j.artint.2015.05.006_br0200) 2007; 14
(10.1016/j.artint.2015.05.006_br0180) 2006
Rojas (10.1016/j.artint.2015.05.006_br0450) 2014
Basu (10.1016/j.artint.2015.05.006_br0220) 2008
Jabbour (10.1016/j.artint.2015.05.006_br0440) 2013
Wagstaff (10.1016/j.artint.2015.05.006_br0230) 2001
Gilpin (10.1016/j.artint.2015.05.006_br0380) 2011
Cambazard (10.1016/j.artint.2015.05.006_br0420) 2010
Klein (10.1016/j.artint.2015.05.006_br0490) 1991; 38
Davidson (10.1016/j.artint.2015.05.006_br0080) 2005
T'kindt (10.1016/j.artint.2015.05.006_br0500) 2006
Régin (10.1016/j.artint.2015.05.006_br0170) 1999
Régin (10.1016/j.artint.2015.05.006_br0150) 1994
Bilenko (10.1016/j.artint.2015.05.006_br0240) 2004
Beldiceanu (10.1016/j.artint.2015.05.006_br0140)
Ester (10.1016/j.artint.2015.05.006_br0090) 1996
Dao (10.1016/j.artint.2015.05.006_br0480) 2013
Davidson (10.1016/j.artint.2015.05.006_br0010) 2010
Kotthoff (10.1016/j.artint.2015.05.006_br0320) 2013
Luxburg (10.1016/j.artint.2015.05.006_br0330) 2007; 17
Hansen (10.1016/j.artint.2015.05.006_br0210) 1978; 73
Babaki (10.1016/j.artint.2015.05.006_br0300) 2014
Schaus (10.1016/j.artint.2015.05.006_br0520) 2013
De Raedt (10.1016/j.artint.2015.05.006_br0410) 2010
Cormack (10.1016/j.artint.2015.05.006_br0100) 1971; 134
Zhi (10.1016/j.artint.2015.05.006_br0350) 2013
Métivier (10.1016/j.artint.2015.05.006_br0290) 2012
10.1016/j.artint.2015.05.006_br0530
Dao (10.1016/j.artint.2015.05.006_br0030) 2013
Berg (10.1016/j.artint.2015.05.006_br0390) 2013
Bessiere (10.1016/j.artint.2015.05.006_br0460) 2009
De Raedt (10.1016/j.artint.2015.05.006_br0400) 2008
Gonzalez (10.1016/j.artint.2015.05.006_br0060) 1985; 38
Gilpin (10.1016/j.artint.2015.05.006_br0370) 2013
Davidson (10.1016/j.artint.2015.05.006_br0250) 2005
Gavanelli (10.1016/j.artint.2015.05.006_br0510) 2002
References_xml – year: 2006
  ident: br0500
  article-title: Multicriteria Scheduling, Theory, Models and Algorithms
– start-page: 173
  year: 2009
  end-page: 187
  ident: br0460
  article-title: Minimising decision tree size as combinatorial optimisation
  publication-title: Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming
– start-page: 59
  year: 2005
  end-page: 70
  ident: br0250
  article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results
  publication-title: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases
– start-page: 138
  year: 2005
  end-page: 149
  ident: br0080
  article-title: Clustering with constraints: feasibility issues and the k-means algorithm
  publication-title: Proceedings of the 5th SIAM International Conference on Data Mining
– start-page: 390
  year: 1999
  end-page: 404
  ident: br0170
  article-title: Arc consistency for global cardinality constraints with costs
  publication-title: Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming
– start-page: 362
  year: 2004
  end-page: 376
  ident: br0470
  article-title: Global constraints for integer and set value precedence
  publication-title: Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming
– start-page: 611
  year: 2013
  end-page: 627
  ident: br0520
  article-title: Multi-objective large neighborhood search
  publication-title: Proceedings of the 19th International Conference on Principles and Practice of Constraint Programming
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  ident: br0110
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– start-page: 11
  year: 2004
  end-page: 18
  ident: br0240
  article-title: Integrating constraints and metric learning in semi-supervised clustering
  publication-title: Proceedings of the 21st International Conference on Machine Learning
– volume: 4
  start-page: 277
  year: 1980
  end-page: 291
  ident: br0050
  article-title: Bicriterion cluster analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 204
  year: 2008
  end-page: 212
  ident: br0400
  article-title: Constraint programming for itemset mining
  publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 372
  year: 2013
  end-page: 378
  ident: br0370
  article-title: Formalizing hierarchical clustering as integer linear programming
  publication-title: Proceedings of the 27th AAAI Conference on Artificial Intelligence
– start-page: 750
  year: 2013
  end-page: 757
  ident: br0390
  article-title: Optimal correlation clustering via MaxSAT
  publication-title: Proceedings of the 13th IEEE International Conference on Data Mining Workshops
– start-page: 563
  year: 2010
  end-page: 572
  ident: br0270
  article-title: Flexible constrained spectral clustering
  publication-title: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 73
  start-page: 397
  year: 1978
  end-page: 403
  ident: br0210
  article-title: Complete-link cluster analysis by graph coloring
  publication-title: J. Am. Stat. Assoc.
– start-page: 159
  year: 2010
  end-page: 173
  ident: br0020
  article-title: Integer linear programming models for constrained clustering
  publication-title: Proceedings of the 13th International Conference on Discovery Science
– start-page: 577
  year: 2001
  end-page: 584
  ident: br0230
  article-title: Constrained k-means clustering with background knowledge
  publication-title: Proceedings of the 18th International Conference on Machine Learning
– start-page: 419
  year: 2013
  end-page: 434
  ident: br0030
  article-title: A declarative framework for constrained clustering
  publication-title: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
– start-page: 136
  year: 2002
  end-page: 140
  ident: br0510
  article-title: An algorithm for multi-criteria optimization in CSPs
  publication-title: Proceedings of the 15th European Conference on Artificial Intelligence
– start-page: 207
  year: 2012
  end-page: 218
  ident: br0290
  article-title: Constrained clustering using SAT
  publication-title: Proceedings of the 11th International Symposium on Advances in Intelligent Data Analysis
– year: 2010
  ident: br0410
  article-title: Constraint programming for data mining and machine learning
  publication-title: Proc. of the 24th AAAI Conference on Artificial Intelligence
– year: 2006
  ident: br0180
  publication-title: Handbook of Constraint Programming, Foundations of Artificial Intelligence
– ident: br0190
– volume: 14
  start-page: 25
  year: 2007
  end-page: 61
  ident: br0200
  article-title: The complexity of non-hierarchical clustering with instance and cluster level constraints
  publication-title: Data Min. Knowl. Discov.
– volume: 131
  start-page: 195
  year: 2012
  end-page: 220
  ident: br0310
  article-title: An improved column generation algorithm for minimum sum-of-squares clustering
  publication-title: Math. Program.
– volume: 28
  start-page: 1
  year: 2014
  end-page: 30
  ident: br0340
  article-title: On constrained spectral clustering and its applications
  publication-title: Data Min. Knowl. Discov.
– year: 2008
  ident: br0220
  article-title: Constrained Clustering: Advances in Algorithms, Theory, and Applications
– year: 2005
  ident: br0040
  article-title: Branch-and-Bound Applications in Combinatorial Data Analysis (Statistics and Computing)
– volume: 134
  start-page: 321
  year: 1971
  end-page: 367
  ident: br0100
  article-title: A review of classification
  publication-title: J. R. Stat. Soc. A
– ident: br0140
  article-title: Global constraint catalog
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: br0330
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– volume: 8
  start-page: 344
  year: 1995
  end-page: 354
  ident: br0540
  article-title: A column generation approach for graph coloring
  publication-title: INFORMS J. Comput.
– year: 2012
  ident: br0130
  article-title: Clustering to maximize the ratio of split to diameter
  publication-title: Proceedings of the 29th International Conference on Machine Learning
– reference: K. Bache, M. Lichman, UCI machine learning repository,
– volume: 13
  start-page: 231
  year: 1996
  end-page: 248
  ident: br0120
  article-title: The weighted sum of split and diameter clustering
  publication-title: J. Classif.
– start-page: 94
  year: 2010
  end-page: 105
  ident: br0010
  article-title: A SAT-based framework for efficient constrained clustering
  publication-title: Proceedings of the 10th SIAM International Conference on Data Mining
– start-page: 1136
  year: 2011
  end-page: 1144
  ident: br0380
  article-title: Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible approach
  publication-title: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2013
  ident: br0350
  article-title: Clustering with complex constraints – algorithms and applications
  publication-title: Proceedings of the 27th AAAI Conference on Artificial Intelligence
– start-page: 1103
  year: 2000
  end-page: 1110
  ident: br0070
  article-title: Clustering with instance-level constraints
  publication-title: Proceedings of the 17th International Conference on Machine Learning
– volume: 38
  start-page: 447
  year: 1991
  end-page: 461
  ident: br0490
  article-title: Optimal clustering: a model and method
  publication-title: Nav. Res. Logist.
– start-page: 403
  year: 2013
  end-page: 418
  ident: br0440
  article-title: The top-k frequent closed itemset mining using top-k SAT problem
  publication-title: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases
– start-page: 226
  year: 1996
  end-page: 231
  ident: br0090
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining
– volume: 25
  start-page: 402
  year: 2013
  end-page: 418
  ident: br0280
  article-title: k-Pattern set mining under constraints
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 234
  year: 2013
  end-page: 242
  ident: br0360
  article-title: Multi-objective multi-view spectral clustering via Pareto optimization
  publication-title: Proceedings of the 13th SIAM International Conference on Data Mining
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: br0060
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– start-page: 438
  year: 2014
  end-page: 454
  ident: br0300
  article-title: Constrained clustering using column generation
  publication-title: Proceedings of the 11th International Conference on Integration of AI and oR Techniques in Constraint Programming for Combinatorial Optimization Problems
– year: 2013
  ident: br0320
  article-title: Constraint-based clustering
  publication-title: Proceedings of the 10th International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming
– start-page: 362
  year: 1994
  end-page: 367
  ident: br0150
  article-title: A filtering algorithm for constraints of difference in CSPs
  publication-title: Proceedings of the 12th National Conference on Artificial Intelligence, Vol. 1
– start-page: 1060
  year: 2013
  end-page: 1067
  ident: br0480
  article-title: A filtering algorithm for constrained clustering with within-cluster sum of dissimilarities criterion
  publication-title: Proceedings of the 25th International Conference on Tools with Artificial Intelligence
– start-page: 1109
  year: 2010
  end-page: 1110
  ident: br0420
  article-title: Knowledge compilation for itemset mining
  publication-title: Proceedings of the 19th European Conference on Artificial Intelligence
– reference: .
– start-page: 189
  year: 1999
  end-page: 203
  ident: br0160
  article-title: Cost-based domain filtering
  publication-title: Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming
– start-page: 71
  year: 2014
  end-page: 87
  ident: br0450
  article-title: Mining (soft-) skypatterns using dynamic CSP
  publication-title: Proceedings of the 11th International Conference on Integration of AI and OR Techniques in Constraint Programming
– start-page: 1
  year: 2008
  end-page: 8
  ident: br0260
  article-title: Constrained spectral clustering through affinity propagation
  publication-title: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 175
  start-page: 1951
  year: 2011
  end-page: 1983
  ident: br0430
  article-title: Itemset mining: a constraint programming perspective
  publication-title: Artif. Intell.
– start-page: 138
  year: 2005
  ident: 10.1016/j.artint.2015.05.006_br0080
  article-title: Clustering with constraints: feasibility issues and the k-means algorithm
– start-page: 94
  year: 2010
  ident: 10.1016/j.artint.2015.05.006_br0010
  article-title: A SAT-based framework for efficient constrained clustering
– volume: 25
  start-page: 402
  issue: 2
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0280
  article-title: k-Pattern set mining under constraints
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.204
– start-page: 750
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0390
  article-title: Optimal correlation clustering via MaxSAT
– start-page: 419
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0030
  article-title: A declarative framework for constrained clustering
– start-page: 207
  year: 2012
  ident: 10.1016/j.artint.2015.05.006_br0290
  article-title: Constrained clustering using SAT
– start-page: 204
  year: 2008
  ident: 10.1016/j.artint.2015.05.006_br0400
  article-title: Constraint programming for itemset mining
– year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0350
  article-title: Clustering with complex constraints – algorithms and applications
– start-page: 372
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0370
  article-title: Formalizing hierarchical clustering as integer linear programming
– start-page: 1
  year: 2008
  ident: 10.1016/j.artint.2015.05.006_br0260
  article-title: Constrained spectral clustering through affinity propagation
– start-page: 362
  year: 1994
  ident: 10.1016/j.artint.2015.05.006_br0150
  article-title: A filtering algorithm for constraints of difference in CSPs
– start-page: 71
  year: 2014
  ident: 10.1016/j.artint.2015.05.006_br0450
  article-title: Mining (soft-) skypatterns using dynamic CSP
– start-page: 1136
  year: 2011
  ident: 10.1016/j.artint.2015.05.006_br0380
  article-title: Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible approach
– volume: 134
  start-page: 321
  issue: 3
  year: 1971
  ident: 10.1016/j.artint.2015.05.006_br0100
  article-title: A review of classification
  publication-title: J. R. Stat. Soc. A
  doi: 10.2307/2344237
– year: 2008
  ident: 10.1016/j.artint.2015.05.006_br0220
– year: 2012
  ident: 10.1016/j.artint.2015.05.006_br0130
  article-title: Clustering to maximize the ratio of split to diameter
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.artint.2015.05.006_br0330
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– start-page: 563
  year: 2010
  ident: 10.1016/j.artint.2015.05.006_br0270
  article-title: Flexible constrained spectral clustering
– volume: 38
  start-page: 447
  issue: 3
  year: 1991
  ident: 10.1016/j.artint.2015.05.006_br0490
  article-title: Optimal clustering: a model and method
  publication-title: Nav. Res. Logist.
  doi: 10.1002/1520-6750(199106)38:3<447::AID-NAV3220380312>3.0.CO;2-0
– start-page: 226
  year: 1996
  ident: 10.1016/j.artint.2015.05.006_br0090
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– start-page: 438
  year: 2014
  ident: 10.1016/j.artint.2015.05.006_br0300
  article-title: Constrained clustering using column generation
– volume: 13
  start-page: 231
  issue: 2
  year: 1996
  ident: 10.1016/j.artint.2015.05.006_br0120
  article-title: The weighted sum of split and diameter clustering
  publication-title: J. Classif.
  doi: 10.1007/BF01246100
– start-page: 577
  year: 2001
  ident: 10.1016/j.artint.2015.05.006_br0230
  article-title: Constrained k-means clustering with background knowledge
– volume: 8
  start-page: 344
  year: 1995
  ident: 10.1016/j.artint.2015.05.006_br0540
  article-title: A column generation approach for graph coloring
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.8.4.344
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 10.1016/j.artint.2015.05.006_br0110
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– ident: 10.1016/j.artint.2015.05.006_br0140
– start-page: 11
  year: 2004
  ident: 10.1016/j.artint.2015.05.006_br0240
  article-title: Integrating constraints and metric learning in semi-supervised clustering
– year: 2010
  ident: 10.1016/j.artint.2015.05.006_br0410
  article-title: Constraint programming for data mining and machine learning
– start-page: 136
  year: 2002
  ident: 10.1016/j.artint.2015.05.006_br0510
  article-title: An algorithm for multi-criteria optimization in CSPs
– start-page: 173
  year: 2009
  ident: 10.1016/j.artint.2015.05.006_br0460
  article-title: Minimising decision tree size as combinatorial optimisation
– start-page: 390
  year: 1999
  ident: 10.1016/j.artint.2015.05.006_br0170
  article-title: Arc consistency for global cardinality constraints with costs
– volume: 73
  start-page: 397
  issue: 362
  year: 1978
  ident: 10.1016/j.artint.2015.05.006_br0210
  article-title: Complete-link cluster analysis by graph coloring
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1978.10481589
– start-page: 1109
  year: 2010
  ident: 10.1016/j.artint.2015.05.006_br0420
  article-title: Knowledge compilation for itemset mining
– start-page: 159
  year: 2010
  ident: 10.1016/j.artint.2015.05.006_br0020
  article-title: Integer linear programming models for constrained clustering
– year: 2005
  ident: 10.1016/j.artint.2015.05.006_br0040
– year: 2006
  ident: 10.1016/j.artint.2015.05.006_br0500
– start-page: 234
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0360
  article-title: Multi-objective multi-view spectral clustering via Pareto optimization
– year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0320
  article-title: Constraint-based clustering
– volume: 14
  start-page: 25
  issue: 1
  year: 2007
  ident: 10.1016/j.artint.2015.05.006_br0200
  article-title: The complexity of non-hierarchical clustering with instance and cluster level constraints
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-006-0053-7
– start-page: 611
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0520
  article-title: Multi-objective large neighborhood search
– volume: 131
  start-page: 195
  issue: 1–2
  year: 2012
  ident: 10.1016/j.artint.2015.05.006_br0310
  article-title: An improved column generation algorithm for minimum sum-of-squares clustering
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0349-7
– ident: 10.1016/j.artint.2015.05.006_br0530
– start-page: 1103
  year: 2000
  ident: 10.1016/j.artint.2015.05.006_br0070
  article-title: Clustering with instance-level constraints
– volume: 175
  start-page: 1951
  year: 2011
  ident: 10.1016/j.artint.2015.05.006_br0430
  article-title: Itemset mining: a constraint programming perspective
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2011.05.002
– start-page: 403
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0440
  article-title: The top-k frequent closed itemset mining using top-k SAT problem
– start-page: 1060
  year: 2013
  ident: 10.1016/j.artint.2015.05.006_br0480
  article-title: A filtering algorithm for constrained clustering with within-cluster sum of dissimilarities criterion
– year: 2006
  ident: 10.1016/j.artint.2015.05.006_br0180
– start-page: 189
  year: 1999
  ident: 10.1016/j.artint.2015.05.006_br0160
  article-title: Cost-based domain filtering
– volume: 28
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.artint.2015.05.006_br0340
  article-title: On constrained spectral clustering and its applications
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-012-0291-9
– volume: 4
  start-page: 277
  year: 1980
  ident: 10.1016/j.artint.2015.05.006_br0050
  article-title: Bicriterion cluster analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1980.4767027
– start-page: 362
  year: 2004
  ident: 10.1016/j.artint.2015.05.006_br0470
  article-title: Global constraints for integer and set value precedence
– volume: 38
  start-page: 293
  year: 1985
  ident: 10.1016/j.artint.2015.05.006_br0060
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– start-page: 59
  year: 2005
  ident: 10.1016/j.artint.2015.05.006_br0250
  article-title: Agglomerative hierarchical clustering with constraints: theoretical and empirical results
SSID ssj0003991
Score 2.4864466
Snippet Constrained Clustering allows to make the clustering task more accurate by integrating user constraints, which can be instance-level or cluster-level...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms Artificial Intelligence
Bi-criterion clustering
Clustering
Clusters
Coloring
Computer Science
Constrained clustering
Constraint programming
Constraints
Criteria
Filtering algorithm
Filtration
Global optimization
Global optimization constraint
Graph coloring
Modeling
Partitions
Programming
Theory of constraints
Title Constrained clustering by constraint programming
URI https://dx.doi.org/10.1016/j.artint.2015.05.006
https://www.proquest.com/docview/1916343593
https://hal.science/hal-01162640
Volume 244
WOSCitedRecordID wos000394630400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdY2cNe2NiHVgZThPbqyamdOnnsGKgDhHioUN8sx3HUIhZQPxD895w_U2Ab4wGpihoncZ3c-e58vfx-CH2TOu2Dkctw3at6mGmYipKWKeYlJRWRsKKwzHNnx_zkJB-Pi1NPdzS3dAK8afKbm-LqRUUNbSBs8-rsM8QdO4UG-A5Chy2IHbb_JXhDwWmJHyCUVBdLA4Rg0gEQZqpwZBHKsn4HxxVxaG3pkCXyWMHqbNPZl66oaIp_TNUED2UTs8k_l76492gCrXhvYvbDwbOZnDYtloEv0_fJBnBgsdoqGlAGNoncM6A9xlZMoOMB8c7UERg_MtMuY3D-3SIlmIrWNLP4qeQPqNgPvFWsIQzlaefC9SJML4LAxyCwr_d4VuQdtD74tT8-jL4ZwjHPoehuI7xMaSv-Ho_mb8HKq4mpmn3gvG1EMnqHNvxSIhk4FdhEa7p5j94Gmo7EW-0PiKxoRNJqRFLeJq1GJCsa8RGNDvZHe0PsiTKwov18gcGIMq6LmnOIX_NUaQ6mWOtCQ6xcM52xuqgropROuSrhPMVIyTUh0vhLVtFPqNNcNvozSspM9yuZQZiaFaxPKpmnUuayplzTOpdZF9HwQITyIPJmmBfiX-LoIhyvunIgKk-cz8OzFj4QdAGeAAV64spdEE38EYOdPhwcC9Nm_nGE6J9cp120HSQn_MSdixTWSdTcNt165mi_oDftVNlGncVsqXfQa3W9mM5nX70G3gEGD5be
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+clustering+by+constraint+programming&rft.jtitle=Artificial+intelligence&rft.au=Dao%2C+Thi-Bich-Hanh&rft.au=Duong%2C+Khanh-Chuong&rft.au=Vrain%2C+Christel&rft.date=2017-03-01&rft.issn=0004-3702&rft.volume=244&rft.spage=70&rft.epage=94&rft_id=info:doi/10.1016%2Fj.artint.2015.05.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artint_2015_05_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon