GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold

•Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in terms of active cavitation threshold is studied.•Synergy between low-high frequency combination is revealed. The active cavitation threshold of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ultrasonics sonochemistry Ročník 67; s. 105067
Hlavní autoři: Hegedűs, Ferenc, Klapcsik, Kálmán, Lauterborn, Werner, Parlitz, Ulrich, Mettin, Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.10.2020
Témata:
ISSN:1350-4177, 1873-2828, 1873-2828
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in terms of active cavitation threshold is studied.•Synergy between low-high frequency combination is revealed. The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller–Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.
AbstractList The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (R -R )/R , where R is the equilibrium size of the bubble and R is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (R -R )/R =2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (R -R )/R =3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.
The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.
•Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in terms of active cavitation threshold is studied.•Synergy between low-high frequency combination is revealed. The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller–Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.
ArticleNumber 105067
Author Hegedűs, Ferenc
Mettin, Robert
Klapcsik, Kálmán
Lauterborn, Werner
Parlitz, Ulrich
Author_xml – sequence: 1
  givenname: Ferenc
  surname: Hegedűs
  fullname: Hegedűs, Ferenc
  email: fhegedus@hds.bme.hu
  organization: Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
– sequence: 2
  givenname: Kálmán
  surname: Klapcsik
  fullname: Klapcsik, Kálmán
  email: kklapcsik@hds.bme.hu
  organization: Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
– sequence: 3
  givenname: Werner
  surname: Lauterborn
  fullname: Lauterborn, Werner
  email: werner.lauterborn@phys.uni-goettingen.de
  organization: Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
– sequence: 4
  givenname: Ulrich
  surname: Parlitz
  fullname: Parlitz, Ulrich
  email: ulrich.parlitz@ds.mpg.de
  organization: Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization and Institut für Dynamik komplexer Systeme, Georg-August-Universität Göttingen, Göttingen, Germany
– sequence: 5
  givenname: Robert
  surname: Mettin
  fullname: Mettin, Robert
  email: robert.mettin@phys.uni-goettingen.de
  organization: Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32380373$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gL1Q-csnij8RJEAdQBS1SJTi0Z8sZT1ivHGexnZX22l-OV7vl0EtPMxo974zmfS_JWZgDEnLN2Yozrj5tVovPaQ6wXgkmDsOGqfYNueBdKyvRie6s9LJhVc3b9pxcprRhjMlesHfkXArZMdnKC_J0-_uRGgD0GE1GS1Ne7J7OIzXULsZXY8S_CwbYUxvdDgNNLvzxSIdlGEpxoYCqsm7CkNwcjKdbE82EGSNNWwP4mT6ssZzIRU3B7Fw2uYA0ryOm9ezte_J2ND7hh1O9Io8_vj_c3FX3v25_3ny7r0CqLld906l-BGtYo0aFo-wa3khrFQfBAFUjrBwEVxZZLwEsZ7UVtQSJje1rAHlFPh73buNcXkpZTy6Vx70JOC9Ji5qxpi5neEGvT-gyTGj1NrrJxL1-9q0A6ghAnFOKOP5HONOHgPRGPwekDwHpY0BF-OWFEE6G5Gicf13-9SjHYtTOYdQJXEkHrYsIWdvZvbbiHzMIsig
CitedBy_id crossref_primary_10_1016_j_ultsonch_2020_105346
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105287
crossref_primary_10_1016_j_ultsonch_2022_105925
crossref_primary_10_1016_j_ultsonch_2020_105342
crossref_primary_10_1016_j_ultsonch_2021_105684
crossref_primary_10_1063_5_0253578
crossref_primary_10_1016_j_cnsns_2022_106521
crossref_primary_10_1109_ACCESS_2020_3043003
crossref_primary_10_1007_s12206_023_0421_x
crossref_primary_10_1016_j_ultsonch_2021_105728
crossref_primary_10_1016_j_ultsonch_2020_105405
crossref_primary_10_1016_j_ultsonch_2023_106614
crossref_primary_10_1016_j_cnsns_2021_105732
crossref_primary_10_1016_j_ultsonch_2022_105985
crossref_primary_10_12693_APhysPolA_148_99
crossref_primary_10_1016_j_ultsonch_2025_107444
crossref_primary_10_1063_5_0131930
crossref_primary_10_1016_j_ultsonch_2022_106253
crossref_primary_10_1016_j_ultsonch_2022_106275
crossref_primary_10_1016_j_ultsonch_2022_106056
crossref_primary_10_1007_s11947_024_03663_y
crossref_primary_10_1088_1402_4896_acfeb1
crossref_primary_10_3390_app11020699
crossref_primary_10_1016_j_jwpe_2024_105470
crossref_primary_10_1016_j_ultsonch_2023_106586
crossref_primary_10_1016_j_ultsonch_2023_106301
crossref_primary_10_1088_1674_1056_ac70ba
crossref_primary_10_1016_j_ultsonch_2025_107435
crossref_primary_10_1016_j_ultsonch_2025_107414
crossref_primary_10_1016_j_ultsonch_2023_106546
crossref_primary_10_3390_polym14102054
crossref_primary_10_1016_j_ultras_2023_107110
crossref_primary_10_1016_j_ultsonch_2024_106760
crossref_primary_10_1515_zna_2021_0269
Cites_doi 10.1016/j.ultras.2003.12.005
10.1016/j.ultras.2004.04.001
10.7567/JJAP.53.07KF11
10.1016/j.ultsonch.2013.07.004
10.1121/1.4970764
10.1016/j.ultsonch.2017.03.030
10.1016/j.ultsonch.2014.07.011
10.1016/j.ultsonch.2014.08.015
10.1016/j.chemphys.2018.11.019
10.1121/1.397042
10.1103/PhysRevLett.75.954
10.1039/C2CS35282F
10.1121/1.5068280
10.1016/j.chaos.2017.08.022
10.1121/1.396614
10.1121/1.415385
10.1063/1.5063011
10.1016/S1350-4177(98)00025-X
10.1016/j.ultsonch.2019.104744
10.1016/j.ultsonch.2019.02.010
10.1088/0034-4885/73/10/106501
10.1016/j.ultsonch.2018.08.025
10.1109/58.542456
10.1103/PhysRevE.88.033026
10.1016/j.jhazmat.2009.08.115
10.1016/j.ultsonch.2004.01.037
10.1016/j.ultsonch.2020.104989
10.1121/1.2932746
10.1007/s11071-015-1914-7
10.1016/j.ultsonch.2017.09.010
10.1016/j.ultsonch.2007.03.003
10.1007/s11071-018-4358-z
10.1021/jp962137a
10.1016/S1385-8947(01)00179-6
10.1016/j.phpro.2015.08.075
10.1016/S1350-4177(02)00083-4
10.1016/j.ultsonch.2014.11.014
10.1016/j.chaos.2015.03.007
10.1017/S0022112003006220
10.1063/1.2716633
10.1016/0041-624X(84)90016-7
10.1007/s11071-016-2960-5
10.1016/j.ultsonch.2008.12.016
10.1016/j.ultsonch.2016.10.022
10.1016/j.ultsonch.2018.08.024
10.1016/j.ijhydene.2019.04.115
10.1016/j.ces.2009.08.037
10.1016/j.ultsonch.2006.12.016
10.1103/PhysRevLett.102.084302
10.1121/1.384624
10.1016/j.ultsonch.2006.12.013
10.1103/PhysRevE.86.016320
10.1016/j.physleta.2016.01.022
10.1103/PhysRevE.67.036610
10.1016/j.ultsonch.2016.12.012
10.1121/1.4987295
10.1016/S0041-624X(99)00204-8
10.1109/TUFFC.2011.1815
10.1016/j.ultsonch.2015.02.018
10.1016/S1350-4177(97)00034-5
10.1016/j.ultsonch.2018.05.003
10.1016/j.ultsonch.2017.03.028
10.1016/j.ultsonch.2017.11.045
10.1016/j.ultsonch.2017.10.004
10.1121/1.3626159
10.1016/j.ultsonch.2010.11.016
10.1088/1873-7005/aa5dad
10.1016/j.ultsonch.2016.02.013
10.1016/j.ultsonch.2017.03.058
10.1016/j.ijhydene.2015.01.150
10.1021/acs.accounts.8b00088
10.1016/j.ultsonch.2015.08.022
10.1016/S0009-2509(02)00271-3
10.1121/1.5036108
10.1121/1.4987297
10.1063/1.4865805
10.1016/j.ultsonch.2019.104683
10.1021/ja0566432
10.1016/j.ces.2004.09.033
10.1016/j.ces.2013.02.016
10.1007/s11164-013-1240-y
10.1016/j.ultsonch.2019.01.031
10.1016/j.ultsonch.2012.07.024
10.1016/S1350-4177(98)00035-2
10.1016/j.ultras.2006.07.009
10.1103/PhysRevE.77.066309
10.1016/j.ultsonch.2007.08.006
10.1016/j.cej.2006.09.023
10.1098/rspa.2000.0582
10.1121/1.399855
10.1121/1.424505
10.1016/0891-5849(92)90021-8
10.1088/0031-9155/50/9/017
10.1016/j.cep.2014.02.003
10.1039/b912725a
10.1063/1.2919119
10.1103/PhysRevLett.81.1961
10.1016/S1350-4177(99)00037-1
10.1063/1.2790420
10.1007/s10494-018-9993-4
10.1016/j.ultsonch.2014.07.021
10.1016/j.ultsonch.2019.104645
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ultsonch.2020.105067
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
ExternalDocumentID 32380373
10_1016_j_ultsonch_2020_105067
S1350417719318772
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c368t-95869fcda056f6ef385153dd61c20ce652d3b216de093ccd104d243c3e5d94cc3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541900400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-4177
1873-2828
IngestDate Sun Sep 28 06:44:53 EDT 2025
Mon Jul 21 05:47:46 EDT 2025
Sat Nov 29 07:03:14 EST 2025
Tue Nov 18 21:29:03 EST 2025
Fri Feb 23 02:48:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bubble dynamics
Dual-frequency driving
GPU programming
Cavitation threshold
Keller–Miksis equation
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-95869fcda056f6ef385153dd61c20ce652d3b216de093ccd104d243c3e5d94cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.ultsonch.2020.105067
PMID 32380373
PQID 2400549581
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2400549581
pubmed_primary_32380373
crossref_primary_10_1016_j_ultsonch_2020_105067
crossref_citationtrail_10_1016_j_ultsonch_2020_105067
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2020_105067
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Merouani, Hamdaoui, Rezgui, Guemini (b0160) 2015; 22
Tatake, Pandit (b0195) 2002; 57
Chen, Kinnick, Greenleaf, Fatemi (b0360) 2006; 44
Shen, Cheng, Yeh (b0355) 2011; 58
Lauterborn, Parlitz (b0445) 1988; 84
Hegedűs, Lauterborn, Parlitz, Mettin (b0495) 2018; 94
Yasui, Tuziuti, Lee, Kozuka, Towata, Iida (b0100) 2008; 128
Fuster (b0090) 2019; 102
Holzfuss, Rüggeberg, Mettin (b0370) 1998; 81
Reuter, Lesnik, Ayaz-Bustami, Brenner, Mettin (b0085) 2019; 55
Hegedűs (b0475) 2016; 380
Rosselló, Dellavale, Bonetto (b0235) 2016; 31
Mettin, Luther, Ohl, Lauterborn (b0045) 1999; 105
Sojahrood, Haghi, Karshafian, Kolios (b0465) 2016; 140
R. Mettin, Bubble structures in acoustic cavitation, in: Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, Research Signpost, Trivandrum, Kerala, India, 2005.
Merouani, Hamdaoui, Rezgui, Guemini (b0115) 2015; 41
.
Merouani, Hamdaoui, Rezgui, Guemini (b0125) 2015; 40
Parlitz, Englisch, Scheffczyk, Lauterborn (b0450) 1990; 88
Yasuda, Torii, Yasui, Iida, Tuziuti, Nakamura, Asakura (b0150) 2007; 14
Suo, Govind, Zhang, Jing (b0300) 2018; 41
Crum (b0565) 1984; 2
Ciuti, Dezhkunov, Francescutto, Kulak, Iernetti (b0255) 2000; 7
Riesz, Kondo (b0145) 1992; 13
Zhang, Li (b0275) 2015; 26
Lee, Ashokkumar, Kentish, Grieser (b0385) 2005; 127
Mason (b0010) 2015; 25
Sasaki, Yasuda, Takagi, Miyashita, Goto, Yoshizawa, Umemura (b0345) 2014; 53
Yasui, Tuziuti, Iida (b0525) 2004; 42
Waldo, Vecitis (b0240) 2018; 41
Yasui, Tuziuti, Kozuka, Towata, Iida (b0095) 2007; 127
Calvisi, Lindau, Blake, Szeri (b0540) 2007; 19
Wang, Zhou (b0305) 2018; 42
Haghi, Sojahrood, De Leon, Agata Exner, Kolios (b0505) 2018; 144
Sojahrood, Falou, Earl, Karshafian, Kolios (b0420) 2015; 80
Zhang, Zhang, Li (b0280) 2016; 29
Zhang, Billson, Li (b0325) 2015; 66
Behnia, Sojahrood, Soltanpoor, Jahanbakhsh (b0375) 2009; 16
Wood, Lee, Bussemaker (b0020) 2017; 38
Islam, Paul, Burheim, Pollet (b0175) 2019; 59
Doinikov (b0535) 2004; 501
Eisener, Lippert, Nowak, Cairós, Reuter, Mettin (b0075) 2015; 70
Flynn, Church (b0425) 1988; 84
Gong, Cabodi, Porter (b0520) 2014; 104
Ye, Zhu, Liu (b0295) 2019; 59
Holzfuss (b0545) 2008; 77
Prabhu, Gogate, Pandit (b0400) 2004; 59
Pradhan, Gogate (b0155) 2010; 173
Kerboua, Hamdaoui (b0130) 2019; 519
MacDonald, Sboros, Gomatam, Pye, Moran, McDicken (b0515) 2004; 43
Lauterborn, Kurz (b0070) 2010; 73
Ashokkumar (b0395) 2011; 18
Kanthale, Ashokkumar, Grieser (b0405) 2008; 15
Sojahrood, Wegierak, Haghi, Karshfian, Kolios (b0510) 2019; 54
Feng, Zhao, Zhu, Mason (b0250) 2002; 9
Kalmár, Klapcsik, Hegedűs (b0415) 2020; 64
Brotchie, Mettin, Grieser, Ashokkumar (b0220) 2009; 11
Barati, Mokhtari-Dizaji, Mozdarani, Bathaie, Hassan (b0260) 2007; 14
Rashwan, Dincer, Mohany, Pollet (b0135) 2019; 44
Rahimi, Safari, Faryadi, Moradi (b0265) 2014; 78
Brotchie, Grieser, Ashokkumar (b0390) 2009; 102
Xu, Zeiger, Suslick (b0170) 2013; 42
Zhang, Zhang (b0285) 2018; 40
Wood, Lee, Bussemaker (b0030) 2019; 58
Kanthale, Gogate, Pandit (b0205) 2007; 127
Sojahrood, Li, Haghi, Karshafian, Porter, Kolios (b0490) 2017; 141
Moholkar, Rekveld, Warmoeskerken (b0190) 2000; 38
Dellavale, Rechiman, Rosselló, Bonetto (b0225) 2012; 86
Reuter, Lauterborn, Mettin, Lauterborn (b0080) 2017; 37
Stricker, Lohse (b0110) 2014; 21
Kerboua, Hamdaoui (b0290) 2018; 49
Klapcsik, Hegedűs (b0480) 2017; 104
Klapcsik, Hegedűs (b0560) 2019; 54
Blake (b0435) 1949
Guédra, Inserra, Gilles (b0315) 2017; 38
Zhang, Zhang, Li (b0310) 2017; 35
Rosselló, Dellavale, Bonetto (b0270) 2013; 88
Koch, Kurz, Parlitz, Lauterborn (b0455) 2011; 130
Crum (b0570) 1980; 68
Sokka, Gauthier, Hynynen (b0200) 2005; 50
Suslick, Eddingsaas, Flannigan, Hopkins, Xu (b0025) 2018; 51
Burdin, Tsochatzidis, Guiraud, Wilhelm, Delmas (b0380) 1999; 6
Moholkar (b0215) 2009; 64
Zhang, Du, Xian, Wu (b0320) 2015; 23
Umemura, Kawabata, Sasaki (b0350) 1996; 43
Carpenedo, Ciuti, Francescutto, Iernetti, Johri (b0245) 1987; 10
Rosselló, Lauterborn, Koch, Wilken, Kurz, Mettin (b0555) 2018; 30
Phelps, Leighton (b0365) 1996; 99
Storey, Szeri (b0005) 2000; 456
Brennen (b0440) 1995
Wood, Lee, Bussemaker (b0035) 2019; 58
Kanthale, Brotchie, Ashokkumar, Grieser (b0210) 2008; 15
Varga, Paál (b0460) 2015; 76
Apfel (b0430) 1980
Haghi, Sojahrood, Karshafian, Kolios (b0485) 2017; 141
Rivas, Stricker, Zijlstra, Gardeniers, Lohse, Prosperetti (b0105) 2013; 20
Lauterborn, Ohl (b0050) 1999
Mettin (b0060) 2007
Iernetti, Ciuti, Dezhkunov, Reali, Francescutto, Johri (b0185) 1997; 4
Mettin, Luther, Ohl, Lauterborn (b0040) 1999; 6
Brenner, Lohse, Dupont (b0530) 1995; 75
F. Cavalieri, F. Chemat, K. Okitsu, A. Sambandam, K. Yasui, B. Zisu, Handbook of Ultrasonics and Sonochemistry, first ed., 2016.
Mettin, Cairós, Troia (b0120) 2015; 25
Islam, Burheim, Pollet (b0140) 2019; 51
Hegedűs (b0340) 2019
Varga, Hegedűs (b0470) 2016; 86
Sivakumar, Tatake, Pandit (b0410) 2002; 85
Haghi, Sojahrood, Kolios (b0500) 2018; 143
Khanna, Chakma, Moholkar (b0230) 2013; 100
Kawabata, Umemura (b0180) 1996; 100
Reuter, Mettin, Lauterborn (b0065) 2008; 123
Louisnard, Gomez (b0575) 2003; 67
Liu, Calvisi, Wang (b0550) 2017; 49
Gedanken (b0165) 2004; 11
Liu (10.1016/j.ultsonch.2020.105067_b0550) 2017; 49
Mettin (10.1016/j.ultsonch.2020.105067_b0045) 1999; 105
Fuster (10.1016/j.ultsonch.2020.105067_b0090) 2019; 102
Prabhu (10.1016/j.ultsonch.2020.105067_b0400) 2004; 59
Khanna (10.1016/j.ultsonch.2020.105067_b0230) 2013; 100
Umemura (10.1016/j.ultsonch.2020.105067_b0350) 1996; 43
Moholkar (10.1016/j.ultsonch.2020.105067_b0190) 2000; 38
Sojahrood (10.1016/j.ultsonch.2020.105067_b0490) 2017; 141
Kalmár (10.1016/j.ultsonch.2020.105067_b0415) 2020; 64
Crum (10.1016/j.ultsonch.2020.105067_b0570) 1980; 68
Merouani (10.1016/j.ultsonch.2020.105067_b0125) 2015; 40
Mason (10.1016/j.ultsonch.2020.105067_b0010) 2015; 25
Hegedűs (10.1016/j.ultsonch.2020.105067_b0495) 2018; 94
Zhang (10.1016/j.ultsonch.2020.105067_b0275) 2015; 26
Hegedűs (10.1016/j.ultsonch.2020.105067_b0340) 2019
Zhang (10.1016/j.ultsonch.2020.105067_b0325) 2015; 66
Yasui (10.1016/j.ultsonch.2020.105067_b0095) 2007; 127
Sokka (10.1016/j.ultsonch.2020.105067_b0200) 2005; 50
Iernetti (10.1016/j.ultsonch.2020.105067_b0185) 1997; 4
10.1016/j.ultsonch.2020.105067_b0015
Rashwan (10.1016/j.ultsonch.2020.105067_b0135) 2019; 44
Flynn (10.1016/j.ultsonch.2020.105067_b0425) 1988; 84
Haghi (10.1016/j.ultsonch.2020.105067_b0485) 2017; 141
Wood (10.1016/j.ultsonch.2020.105067_b0020) 2017; 38
Merouani (10.1016/j.ultsonch.2020.105067_b0160) 2015; 22
Rivas (10.1016/j.ultsonch.2020.105067_b0105) 2013; 20
Sasaki (10.1016/j.ultsonch.2020.105067_b0345) 2014; 53
Louisnard (10.1016/j.ultsonch.2020.105067_b0575) 2003; 67
Kerboua (10.1016/j.ultsonch.2020.105067_b0130) 2019; 519
Lauterborn (10.1016/j.ultsonch.2020.105067_b0050) 1999
Sivakumar (10.1016/j.ultsonch.2020.105067_b0410) 2002; 85
Suo (10.1016/j.ultsonch.2020.105067_b0300) 2018; 41
Guédra (10.1016/j.ultsonch.2020.105067_b0315) 2017; 38
Feng (10.1016/j.ultsonch.2020.105067_b0250) 2002; 9
Stricker (10.1016/j.ultsonch.2020.105067_b0110) 2014; 21
Pradhan (10.1016/j.ultsonch.2020.105067_b0155) 2010; 173
Haghi (10.1016/j.ultsonch.2020.105067_b0500) 2018; 143
Holzfuss (10.1016/j.ultsonch.2020.105067_b0370) 1998; 81
Rosselló (10.1016/j.ultsonch.2020.105067_b0555) 2018; 30
Rahimi (10.1016/j.ultsonch.2020.105067_b0265) 2014; 78
Barati (10.1016/j.ultsonch.2020.105067_b0260) 2007; 14
Kanthale (10.1016/j.ultsonch.2020.105067_b0205) 2007; 127
Waldo (10.1016/j.ultsonch.2020.105067_b0240) 2018; 41
Zhang (10.1016/j.ultsonch.2020.105067_b0280) 2016; 29
Shen (10.1016/j.ultsonch.2020.105067_b0355) 2011; 58
Suslick (10.1016/j.ultsonch.2020.105067_b0025) 2018; 51
Kawabata (10.1016/j.ultsonch.2020.105067_b0180) 1996; 100
Zhang (10.1016/j.ultsonch.2020.105067_b0320) 2015; 23
Crum (10.1016/j.ultsonch.2020.105067_b0565) 1984; 2
Islam (10.1016/j.ultsonch.2020.105067_b0140) 2019; 51
Sojahrood (10.1016/j.ultsonch.2020.105067_b0465) 2016; 140
Yasui (10.1016/j.ultsonch.2020.105067_b0100) 2008; 128
Ciuti (10.1016/j.ultsonch.2020.105067_b0255) 2000; 7
Calvisi (10.1016/j.ultsonch.2020.105067_b0540) 2007; 19
Kanthale (10.1016/j.ultsonch.2020.105067_b0405) 2008; 15
Lauterborn (10.1016/j.ultsonch.2020.105067_b0445) 1988; 84
MacDonald (10.1016/j.ultsonch.2020.105067_b0515) 2004; 43
Wood (10.1016/j.ultsonch.2020.105067_b0030) 2019; 58
Tatake (10.1016/j.ultsonch.2020.105067_b0195) 2002; 57
Varga (10.1016/j.ultsonch.2020.105067_b0460) 2015; 76
Yasui (10.1016/j.ultsonch.2020.105067_b0525) 2004; 42
Yasuda (10.1016/j.ultsonch.2020.105067_b0150) 2007; 14
Sojahrood (10.1016/j.ultsonch.2020.105067_b0420) 2015; 80
Merouani (10.1016/j.ultsonch.2020.105067_b0115) 2015; 41
Eisener (10.1016/j.ultsonch.2020.105067_b0075) 2015; 70
Doinikov (10.1016/j.ultsonch.2020.105067_b0535) 2004; 501
Reuter (10.1016/j.ultsonch.2020.105067_b0080) 2017; 37
Gong (10.1016/j.ultsonch.2020.105067_b0520) 2014; 104
Brenner (10.1016/j.ultsonch.2020.105067_b0530) 1995; 75
10.1016/j.ultsonch.2020.105067_b0335
Hegedűs (10.1016/j.ultsonch.2020.105067_b0475) 2016; 380
Behnia (10.1016/j.ultsonch.2020.105067_b0375) 2009; 16
Lee (10.1016/j.ultsonch.2020.105067_b0385) 2005; 127
Klapcsik (10.1016/j.ultsonch.2020.105067_b0480) 2017; 104
Zhang (10.1016/j.ultsonch.2020.105067_b0310) 2017; 35
Holzfuss (10.1016/j.ultsonch.2020.105067_b0545) 2008; 77
Moholkar (10.1016/j.ultsonch.2020.105067_b0215) 2009; 64
Brotchie (10.1016/j.ultsonch.2020.105067_b0220) 2009; 11
Dellavale (10.1016/j.ultsonch.2020.105067_b0225) 2012; 86
Ye (10.1016/j.ultsonch.2020.105067_b0295) 2019; 59
Rosselló (10.1016/j.ultsonch.2020.105067_b0270) 2013; 88
Chen (10.1016/j.ultsonch.2020.105067_b0360) 2006; 44
Apfel (10.1016/j.ultsonch.2020.105067_b0430) 1980
Zhang (10.1016/j.ultsonch.2020.105067_b0285) 2018; 40
Reuter (10.1016/j.ultsonch.2020.105067_b0065) 2008; 123
Haghi (10.1016/j.ultsonch.2020.105067_b0505) 2018; 144
10.1016/j.ultsonch.2020.105067_b0055
10.1016/j.ultsonch.2020.105067_b0330
Storey (10.1016/j.ultsonch.2020.105067_b0005) 2000; 456
Mettin (10.1016/j.ultsonch.2020.105067_b0120) 2015; 25
Gedanken (10.1016/j.ultsonch.2020.105067_b0165) 2004; 11
Wang (10.1016/j.ultsonch.2020.105067_b0305) 2018; 42
Xu (10.1016/j.ultsonch.2020.105067_b0170) 2013; 42
Parlitz (10.1016/j.ultsonch.2020.105067_b0450) 1990; 88
Wood (10.1016/j.ultsonch.2020.105067_b0035) 2019; 58
Carpenedo (10.1016/j.ultsonch.2020.105067_b0245) 1987; 10
Kanthale (10.1016/j.ultsonch.2020.105067_b0210) 2008; 15
Phelps (10.1016/j.ultsonch.2020.105067_b0365) 1996; 99
Ashokkumar (10.1016/j.ultsonch.2020.105067_b0395) 2011; 18
Riesz (10.1016/j.ultsonch.2020.105067_b0145) 1992; 13
Blake (10.1016/j.ultsonch.2020.105067_b0435) 1949
Brennen (10.1016/j.ultsonch.2020.105067_b0440) 1995
Mettin (10.1016/j.ultsonch.2020.105067_b0060) 2007
Lauterborn (10.1016/j.ultsonch.2020.105067_b0070) 2010; 73
Reuter (10.1016/j.ultsonch.2020.105067_b0085) 2019; 55
Rosselló (10.1016/j.ultsonch.2020.105067_b0235) 2016; 31
Varga (10.1016/j.ultsonch.2020.105067_b0470) 2016; 86
Burdin (10.1016/j.ultsonch.2020.105067_b0380) 1999; 6
Sojahrood (10.1016/j.ultsonch.2020.105067_b0510) 2019; 54
Mettin (10.1016/j.ultsonch.2020.105067_b0040) 1999; 6
Kerboua (10.1016/j.ultsonch.2020.105067_b0290) 2018; 49
Islam (10.1016/j.ultsonch.2020.105067_b0175) 2019; 59
Brotchie (10.1016/j.ultsonch.2020.105067_b0390) 2009; 102
Koch (10.1016/j.ultsonch.2020.105067_b0455) 2011; 130
Klapcsik (10.1016/j.ultsonch.2020.105067_b0560) 2019; 54
References_xml – volume: 18
  start-page: 864
  year: 2011
  end-page: 872
  ident: b0395
  article-title: The characterization of acoustic cavitation bubbles - an overview
  publication-title: Ultrason. Sonochem.
– volume: 144
  start-page: 1888
  year: 2018
  ident: b0505
  article-title: Experimental and numerical investigation of backscattered signal strength from different concentrations of nanobubble and microbubble clusters
  publication-title: J. Acoust. Soc. Am.
– volume: 57
  start-page: 4987
  year: 2002
  end-page: 4995
  ident: b0195
  article-title: Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources
  publication-title: Chem. Eng. Sci.
– volume: 20
  start-page: 510
  year: 2013
  end-page: 524
  ident: b0105
  article-title: Ultrasound artificially nucleated bubbles and their sonochemical radical production
  publication-title: Ultrason. Sonochem.
– volume: 21
  start-page: 336
  year: 2014
  end-page: 345
  ident: b0110
  article-title: Radical production inside an acoustically driven microbubble
  publication-title: Ultrason. Sonochem.
– volume: 22
  start-page: 41
  year: 2015
  end-page: 50
  ident: b0160
  article-title: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases
  publication-title: Ultrason. Sonochem.
– volume: 19
  year: 2007
  ident: b0540
  article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves
  publication-title: Phys. Fluids
– volume: 14
  start-page: 699
  year: 2007
  end-page: 704
  ident: b0150
  article-title: Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies
  publication-title: Ultrason. Sonochem.
– volume: 86
  start-page: 1239
  year: 2016
  end-page: 1248
  ident: b0470
  article-title: Classification of the bifurcation structure of a periodically driven gas bubble
  publication-title: Nonlinear Dynam.
– volume: 44
  start-page: e123
  year: 2006
  end-page: e126
  ident: b0360
  article-title: Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation
  publication-title: Ultrasonics
– volume: 88
  start-page: 1061
  year: 1990
  end-page: 1077
  ident: b0450
  article-title: Bifurcation structure of bubble oscillators
  publication-title: J. Acoust. Soc. Am.
– volume: 130
  start-page: 3370
  year: 2011
  end-page: 3378
  ident: b0455
  article-title: Bubble dynamics in a standing sound field: the bubble habitat
  publication-title: J. Acoust. Soc. Am.
– volume: 64
  start-page: 5255
  year: 2009
  end-page: 5267
  ident: b0215
  article-title: Mechanistic optimization of a dual frequency sonochemical reactor
  publication-title: Chem. Eng. Sci.
– volume: 42
  start-page: 579
  year: 2004
  end-page: 584
  ident: b0525
  article-title: Optimum bubble temperature for the sonochemical production of oxidants
  publication-title: Ultrasonics
– volume: 70
  start-page: 151
  year: 2015
  end-page: 154
  ident: b0075
  article-title: Characterization of acoustic streaming beyond 100 MHz
  publication-title: Phys. Proc.
– volume: 25
  start-page: 24
  year: 2015
  end-page: 30
  ident: b0120
  article-title: Sonochemistry and bubble dynamics
  publication-title: Ultrason. Sonochem.
– reference: R. Mettin, Bubble structures in acoustic cavitation, in: Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, Research Signpost, Trivandrum, Kerala, India, 2005.
– volume: 102
  year: 2009
  ident: b0390
  article-title: Effect of power and frequency on bubble-size distributions in acoustic cavitation
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 100
  year: 2018
  end-page: 108
  ident: b0240
  article-title: Combined effects of phase-shift and power distribution on efficiency of dual-high-frequency sonochemistry
  publication-title: Ultrason. Sonochem.
– volume: 84
  start-page: 985
  year: 1988
  end-page: 998
  ident: b0425
  article-title: Transient pulsations of small gas bubbles in water
  publication-title: J. Acoust. Soc. Am.
– volume: 54
  start-page: 256
  year: 2019
  end-page: 273
  ident: b0560
  article-title: Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid
  publication-title: Ultrason. Sonochem.
– volume: 30
  year: 2018
  ident: b0555
  article-title: Acoustically induced bubble jets
  publication-title: Phys. Fluids
– volume: 380
  start-page: 1012
  year: 2016
  end-page: 1022
  ident: b0475
  article-title: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees
  publication-title: Phys. Lett. A
– volume: 85
  start-page: 327
  year: 2002
  end-page: 338
  ident: b0410
  article-title: Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 783
  year: 2007
  end-page: 789
  ident: b0260
  article-title: Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound
  publication-title: Ultrason. Sonochem.
– volume: 38
  start-page: 351
  year: 2017
  end-page: 370
  ident: b0020
  article-title: A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions
  publication-title: Ultrason. Sonochem.
– volume: 49
  start-page: 325
  year: 2018
  end-page: 332
  ident: b0290
  article-title: Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics
  publication-title: Ultrason. Sonochem.
– volume: 75
  start-page: 954
  year: 1995
  end-page: 957
  ident: b0530
  article-title: Bubble shape oscillations and the onset of sonoluminescence
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 383
  year: 2019
  end-page: 394
  ident: b0085
  article-title: Bubble size measurements in different acoustic cavitation structures: filaments, clusters, and the acoustically cavitated jet
  publication-title: Ultrason. Sonochem.
– volume: 128
  year: 2008
  ident: b0100
  article-title: The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions
  publication-title: J. Chem. Phys.
– volume: 100
  start-page: 18784
  year: 1996
  end-page: 18789
  ident: b0180
  article-title: Use of second-harmonic superimposition to induce chemical effects of ultrasound
  publication-title: J. Phys. Chem.
– volume: 59
  start-page: 4991
  year: 2004
  end-page: 4998
  ident: b0400
  article-title: Optimization of multiple-frequency sonochemical reactors
  publication-title: Chem. Eng. Sci.
– volume: 54
  start-page: 99
  year: 2019
  end-page: 109
  ident: b0510
  article-title: A simple method to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator
  publication-title: Ultrason. Sonochem.
– volume: 51
  start-page: 2169
  year: 2018
  end-page: 2178
  ident: b0025
  article-title: The chemical history of a bubble
  publication-title: Acc. Chem. Res.
– volume: 31
  start-page: 610
  year: 2016
  end-page: 625
  ident: b0235
  article-title: Positional stability and radial dynamics of sonoluminescent bubbles under bi-harmonic driving: Effect of the high-frequency component and its relative phase
  publication-title: Ultrason. Sonochem.
– year: 1949
  ident: b0435
  article-title: The onset of cavitation in liquids, Tech. Rep. 12
  publication-title: Acoust. Res. Lab., Harvard Univ.
– volume: 53
  start-page: 07KF11
  year: 2014
  ident: b0345
  article-title: Highly efficient cavitation-enhanced heating with dual-frequency ultrasound exposure in high-intensity focused ultrasound treatment
  publication-title: Jpn. J. Appl. Phys.
– volume: 67
  year: 2003
  ident: b0575
  article-title: Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids
  publication-title: Phys. Rev. E
– volume: 10
  start-page: 178
  year: 1987
  end-page: 181
  ident: b0245
  article-title: Space-time interaction of two ultrasonic fields and sonoluminescence during transient cavitation in distilled water
  publication-title: Acoust. Lett.
– volume: 501
  start-page: 1
  year: 2004
  end-page: 24
  ident: b0535
  article-title: Translational motion of a bubble undergoing shape oscillations
  publication-title: J. Fluid Mech.
– volume: 37
  start-page: 542
  year: 2017
  end-page: 560
  ident: b0080
  article-title: Membrane cleaning with ultrasonically driven bubbles
  publication-title: Ultrason. Sonochem.
– volume: 99
  start-page: 1985
  year: 1996
  end-page: 1992
  ident: b0365
  article-title: High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique
  publication-title: J. Acoust. Soc. Am.
– volume: 2
  start-page: 215
  year: 1984
  end-page: 223
  ident: b0565
  article-title: Acoustic cavitation series: part five rectified diffusion
  publication-title: Ultrasonics
– volume: 58
  start-page: 379
  year: 2011
  end-page: 388
  ident: b0355
  article-title: Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 58
  year: 2019
  ident: b0030
  article-title: Combined effects of flow, surface stabilisation and salt concentration in aqueous solution to control and enhance sonoluminescence
  publication-title: Ultrason. Sonochem.
– volume: 123
  start-page: 3047
  year: 2008
  ident: b0065
  article-title: Pressure fields and their effects in membrane cleaning applications
  publication-title: J. Acoust. Soc. Am.
– volume: 141
  start-page: 3493
  year: 2017
  ident: b0485
  article-title: Numerical investigation of the subharmonic response of a cloud of interacting microbubbles
  publication-title: J. Acoust. Soc. Am.
– volume: 127
  year: 2007
  ident: b0095
  article-title: Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound
  publication-title: J. Chem. Phys.
– volume: 41
  start-page: 419
  year: 2018
  end-page: 426
  ident: b0300
  article-title: Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound
  publication-title: Ultrason. Sonochem.
– volume: 80
  start-page: 889
  year: 2015
  end-page: 904
  ident: b0420
  article-title: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation
  publication-title: Nonlinear Dyn.
– volume: 4
  start-page: 263
  year: 1997
  end-page: 268
  ident: b0185
  article-title: Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation
  publication-title: Ultrason. Sonochem.
– volume: 16
  start-page: 502
  year: 2009
  end-page: 511
  ident: b0375
  article-title: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation
  publication-title: Ultrason. Sonochem.
– year: 1995
  ident: b0440
  article-title: Cavitation and Bubble Dynamics
– volume: 456
  start-page: 1685
  year: 2000
  end-page: 1709
  ident: b0005
  article-title: Water vapour, sonoluminescence and sonochemistry
  publication-title: Proc. R. Soc. Lond. A
– volume: 11
  start-page: 10029
  year: 2009
  end-page: 10034
  ident: b0220
  article-title: Cavitation activation by dual-frequency ultrasound and shock waves
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 43
  year: 1999
  end-page: 51
  ident: b0380
  article-title: Characterisation of the acoustic cavitation cloud by two laser techniques
  publication-title: Ultrason. Sonochem.
– volume: 68
  start-page: 203
  year: 1980
  end-page: 211
  ident: b0570
  article-title: Measurements of the growth of air bubbles by rectified diffusion
  publication-title: J. Acoust. Soc. Am.
– volume: 42
  start-page: 327
  year: 2018
  end-page: 338
  ident: b0305
  article-title: Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue
  publication-title: Ultrason. Sonochem.
– volume: 66
  start-page: 16
  year: 2015
  end-page: 20
  ident: b0325
  article-title: Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles
  publication-title: Int. J. Heat Mass Transf.
– start-page: 97
  year: 1999
  end-page: 104
  ident: b0050
  article-title: Acoustic Cavitation and Multi Bubble Sonoluminescence
– volume: 11
  start-page: 47
  year: 2004
  end-page: 55
  ident: b0165
  article-title: Using sonochemistry for the fabrication of nanomaterials
  publication-title: Ultrason. Sonochem.
– volume: 29
  start-page: 129
  year: 2016
  end-page: 145
  ident: b0280
  article-title: The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
– volume: 59
  year: 2019
  ident: b0175
  article-title: Recent developments in the sonoelectrochemical synthesis of nanomaterials
  publication-title: Ultrason. Sonochem.
– volume: 25
  start-page: 89
  year: 2015
  end-page: 93
  ident: b0010
  article-title: Some neglected or rejected paths in sonochemistry – a very personal view
  publication-title: Ultrason. Sonochem.
– volume: 9
  start-page: 231
  year: 2002
  end-page: 236
  ident: b0250
  article-title: Enhancement of ultrasonic cavitation yield by multi-frequency sonication
  publication-title: Ultrason. Sonochem.
– volume: 40
  start-page: 151
  year: 2018
  end-page: 157
  ident: b0285
  article-title: Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
– volume: 58
  year: 2019
  ident: b0035
  article-title: Disparities between sonoluminescence, sonochemiluminescence and dosimetry with frequency variation under flow
  publication-title: Ultrason. Sonochem.
– start-page: 79
  year: 1980
  end-page: 83
  ident: b0430
  article-title: Some new results on cavitation threshold prediction and bubble dynamics
  publication-title: Cavitation and Inhomogeneities in Underwater Acoustics
– volume: 102
  start-page: 497
  year: 2019
  end-page: 536
  ident: b0090
  article-title: A review of models for bubble clusters in cavitating flows
  publication-title: Flow Turbul. Combust.
– volume: 15
  start-page: 143
  year: 2008
  end-page: 150
  ident: b0405
  article-title: Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects
  publication-title: Ultrason. Sonochem.
– volume: 41
  start-page: 881
  year: 2015
  end-page: 897
  ident: b0115
  article-title: Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions
  publication-title: Res. Chem. Intermediat.
– volume: 86
  year: 2012
  ident: b0225
  article-title: Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid
  publication-title: Phys. Rev. E
– volume: 59
  year: 2019
  ident: b0295
  article-title: Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution
  publication-title: Ultrason. Sonochem.
– volume: 6
  start-page: 25
  year: 1999
  end-page: 29
  ident: b0040
  article-title: Acoustic cavitation structures and simulations by a particle model
  publication-title: Ultrason. Sonochem.
– volume: 49
  start-page: 025518
  year: 2017
  ident: b0550
  article-title: Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound
  publication-title: Fluid Dyn. Res.
– volume: 127
  start-page: 71
  year: 2007
  end-page: 79
  ident: b0205
  article-title: Modeling aspects of dual frequency sonochemical reactors
  publication-title: Chem. Eng. J.
– volume: 81
  start-page: 1961
  year: 1998
  end-page: 1964
  ident: b0370
  article-title: Boosting sonoluminescence
  publication-title: Phys. Rev. Lett.
– reference: F. Cavalieri, F. Chemat, K. Okitsu, A. Sambandam, K. Yasui, B. Zisu, Handbook of Ultrasonics and Sonochemistry, first ed., 2016.
– volume: 50
  start-page: 2167
  year: 2005
  end-page: 2179
  ident: b0200
  article-title: Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation
  publication-title: Phys. Med. Biol.
– volume: 94
  start-page: 273
  year: 2018
  end-page: 293
  ident: b0495
  article-title: Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving
  publication-title: Nonlinear Dynam.
– volume: 26
  start-page: 437
  year: 2015
  end-page: 444
  ident: b0275
  article-title: Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
– volume: 15
  start-page: 629
  year: 2008
  end-page: 635
  ident: b0210
  article-title: Experimental and theoretical investigations on sonoluminescence under dual frequency conditions
  publication-title: Ultrason. Sonochem.
– volume: 42
  start-page: 2555
  year: 2013
  end-page: 2567
  ident: b0170
  article-title: Sonochemical synthesis of nanomaterials
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 533
  year: 2019
  end-page: 555
  ident: b0140
  article-title: Sonochemical and sonoelectrochemical production of hydrogen
  publication-title: Ultrason. Sonochem.
– volume: 35
  start-page: 431
  year: 2017
  end-page: 439
  ident: b0310
  article-title: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
– volume: 43
  start-page: 1054
  year: 1996
  end-page: 1062
  ident: b0350
  article-title: Enhancement of sonodynamic tissue damage production by second-harmonic superimposition: theoretical analysis of its mechanism
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 104
  year: 2014
  ident: b0520
  article-title: Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles
  publication-title: Appl. Phys. Lett.
– volume: 100
  start-page: 137
  year: 2013
  end-page: 144
  ident: b0230
  article-title: Phase diagrams for dual frequency sonic processors using organic liquid medium
  publication-title: Chem. Eng. Sci.
– volume: 7
  start-page: 213
  year: 2000
  end-page: 216
  ident: b0255
  article-title: Cavitation activity stimulation by low frequency field pulses
  publication-title: Ultrason. Sonochem.
– volume: 38
  start-page: 298
  year: 2017
  end-page: 305
  ident: b0315
  article-title: Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation
  publication-title: Ultrason. Sonochem.
– volume: 141
  start-page: 3493
  year: 2017
  ident: b0490
  article-title: Towards the accurate characterization of the shell parameters of microbubbles based on attenuation and sound speed measurements
  publication-title: J. Acoust. Soc. Am.
– volume: 127
  start-page: 16810
  year: 2005
  end-page: 16811
  ident: b0385
  article-title: Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field
  publication-title: J. Am. Chem. Soc.
– year: 2019
  ident: b0340
  article-title: MPGOS: GPU accelerated integrator for large number of independent ordinary differential equation systems
– volume: 88
  year: 2013
  ident: b0270
  article-title: Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures
  publication-title: Phys. Rev. E
– volume: 43
  start-page: 113
  year: 2004
  end-page: 122
  ident: b0515
  article-title: A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude
  publication-title: Ultrasonics
– volume: 38
  start-page: 666
  year: 2000
  end-page: 670
  ident: b0190
  article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor
  publication-title: Ultrasonics
– volume: 23
  start-page: 16
  year: 2015
  end-page: 20
  ident: b0320
  article-title: Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency
  publication-title: Ultrason. Sonochem.
– volume: 40
  start-page: 4056
  year: 2015
  end-page: 4064
  ident: b0125
  article-title: Mechanism of the sonochemical production of hydrogen
  publication-title: Int. J. Hydrog. Energy.
– volume: 105
  start-page: 1075
  year: 1999
  ident: b0045
  article-title: Bubble size distribution near a pressure antinode
  publication-title: J. Acoust. Soc. Am.
– year: 2007
  ident: b0060
  article-title: From a single bubble to bubble structures in acoustic cavitation
  publication-title: Oscillations, Waves and Interactions: Sixty Years Drittes Physikalisches Institut; a Festschrift
– volume: 76
  start-page: 56
  year: 2015
  end-page: 71
  ident: b0460
  article-title: Numerical investigation of the strength of collapse of a harmonically excited bubble
  publication-title: Chaos Solitons Fract.
– volume: 44
  start-page: 14500
  year: 2019
  end-page: 14526
  ident: b0135
  article-title: The sono-hydro-gen process (ultrasound induced hydrogen production): challenges and opportunities
  publication-title: Int. J. Hydrog. Energy
– volume: 64
  start-page: 104989
  year: 2020
  ident: b0415
  article-title: Relationship between the radial dynamics and the chemical production of a harmonically driven spherical bubble, Ultrason
  publication-title: Sonochem.
– volume: 140
  start-page: 3370
  year: 2016
  ident: b0465
  article-title: Numerical investigation of the nonlinear dynamics of interacting microbubbles
  publication-title: J. Acoust. Soc. Am.
– volume: 84
  start-page: 1975
  year: 1988
  end-page: 1993
  ident: b0445
  article-title: Methods of chaos physics and their application to acoustics
  publication-title: J. Acoust. Soc. Am.
– volume: 13
  start-page: 247
  year: 1992
  end-page: 270
  ident: b0145
  article-title: Free radical formation induced by ultrasound and its biological implications
  publication-title: Free Radical Bio. Med.
– reference: .
– volume: 143
  start-page: 1862
  year: 2018
  ident: b0500
  article-title: On amplification of radial oscillations of microbubbles due to bubble-bubble interaction in polydisperse microbubble clusters under ultrasound excitation
  publication-title: J. Acoust. Soc. Am.
– volume: 104
  start-page: 198
  year: 2017
  end-page: 208
  ident: b0480
  article-title: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble
  publication-title: Chaos Solitons Fract.
– volume: 77
  year: 2008
  ident: b0545
  article-title: Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence
  publication-title: Phys. Rev. E
– volume: 519
  start-page: 27
  year: 2019
  end-page: 37
  ident: b0130
  article-title: Sonochemical production of hydrogen: Enhancement by summed harmonics excitation
  publication-title: Chem. Phys.
– volume: 78
  start-page: 17
  year: 2014
  end-page: 26
  ident: b0265
  article-title: Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage
  publication-title: Chem. Eng. Process.
– volume: 173
  start-page: 517
  year: 2010
  end-page: 522
  ident: b0155
  article-title: Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry
  publication-title: J. Hazard. Mater.
– volume: 73
  year: 2010
  ident: b0070
  article-title: Physics of bubble oscillations
  publication-title: Rep. Prog. Phys.
– volume: 42
  start-page: 579
  issue: 1
  year: 2004
  ident: 10.1016/j.ultsonch.2020.105067_b0525
  article-title: Optimum bubble temperature for the sonochemical production of oxidants
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2003.12.005
– volume: 43
  start-page: 113
  issue: 2
  year: 2004
  ident: 10.1016/j.ultsonch.2020.105067_b0515
  article-title: A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.04.001
– volume: 59
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0175
  article-title: Recent developments in the sonoelectrochemical synthesis of nanomaterials
  publication-title: Ultrason. Sonochem.
– volume: 53
  start-page: 07KF11
  issue: 7S
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105067_b0345
  article-title: Highly efficient cavitation-enhanced heating with dual-frequency ultrasound exposure in high-intensity focused ultrasound treatment
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.07KF11
– volume: 21
  start-page: 336
  issue: 1
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105067_b0110
  article-title: Radical production inside an acoustically driven microbubble
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.07.004
– volume: 140
  start-page: 3370
  issue: 4
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105067_b0465
  article-title: Numerical investigation of the nonlinear dynamics of interacting microbubbles
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4970764
– volume: 38
  start-page: 351
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0020
  article-title: A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.03.030
– volume: 22
  start-page: 41
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0160
  article-title: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.07.011
– volume: 25
  start-page: 24
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0120
  article-title: Sonochemistry and bubble dynamics
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.08.015
– volume: 519
  start-page: 27
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0130
  article-title: Sonochemical production of hydrogen: Enhancement by summed harmonics excitation
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.11.019
– volume: 84
  start-page: 1975
  issue: 6
  year: 1988
  ident: 10.1016/j.ultsonch.2020.105067_b0445
  article-title: Methods of chaos physics and their application to acoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.397042
– volume: 75
  start-page: 954
  issue: 5
  year: 1995
  ident: 10.1016/j.ultsonch.2020.105067_b0530
  article-title: Bubble shape oscillations and the onset of sonoluminescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.954
– volume: 42
  start-page: 2555
  issue: 7
  year: 2013
  ident: 10.1016/j.ultsonch.2020.105067_b0170
  article-title: Sonochemical synthesis of nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35282F
– volume: 144
  start-page: 1888
  issue: 3
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0505
  article-title: Experimental and numerical investigation of backscattered signal strength from different concentrations of nanobubble and microbubble clusters
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5068280
– volume: 104
  start-page: 198
  issue: 17
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0480
  article-title: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2017.08.022
– volume: 84
  start-page: 985
  issue: 3
  year: 1988
  ident: 10.1016/j.ultsonch.2020.105067_b0425
  article-title: Transient pulsations of small gas bubbles in water
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.396614
– volume: 99
  start-page: 1985
  issue: 4
  year: 1996
  ident: 10.1016/j.ultsonch.2020.105067_b0365
  article-title: High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.415385
– volume: 30
  issue: 12
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0555
  article-title: Acoustically induced bubble jets
  publication-title: Phys. Fluids
  doi: 10.1063/1.5063011
– volume: 6
  start-page: 25
  issue: 1
  year: 1999
  ident: 10.1016/j.ultsonch.2020.105067_b0040
  article-title: Acoustic cavitation structures and simulations by a particle model
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(98)00025-X
– volume: 59
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0295
  article-title: Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104744
– volume: 54
  start-page: 99
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0510
  article-title: A simple method to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.02.010
– volume: 73
  issue: 10
  year: 2010
  ident: 10.1016/j.ultsonch.2020.105067_b0070
  article-title: Physics of bubble oscillations
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/10/106501
– volume: 49
  start-page: 325
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0290
  article-title: Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.08.025
– volume: 43
  start-page: 1054
  issue: 6
  year: 1996
  ident: 10.1016/j.ultsonch.2020.105067_b0350
  article-title: Enhancement of sonodynamic tissue damage production by second-harmonic superimposition: theoretical analysis of its mechanism
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.542456
– volume: 88
  issue: 3
  year: 2013
  ident: 10.1016/j.ultsonch.2020.105067_b0270
  article-title: Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.033026
– volume: 173
  start-page: 517
  issue: 1
  year: 2010
  ident: 10.1016/j.ultsonch.2020.105067_b0155
  article-title: Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.08.115
– volume: 66
  start-page: 16
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0325
  article-title: Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles
  publication-title: Int. J. Heat Mass Transf.
– volume: 11
  start-page: 47
  issue: 2
  year: 2004
  ident: 10.1016/j.ultsonch.2020.105067_b0165
  article-title: Using sonochemistry for the fabrication of nanomaterials
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.01.037
– volume: 64
  start-page: 104989
  year: 2020
  ident: 10.1016/j.ultsonch.2020.105067_b0415
  article-title: Relationship between the radial dynamics and the chemical production of a harmonically driven spherical bubble, Ultrason
  publication-title: Sonochem.
  doi: 10.1016/j.ultsonch.2020.104989
– volume: 123
  start-page: 3047
  issue: 5
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105067_b0065
  article-title: Pressure fields and their effects in membrane cleaning applications
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2932746
– volume: 80
  start-page: 889
  issue: 1–2
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0420
  article-title: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-1914-7
– volume: 41
  start-page: 100
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0240
  article-title: Combined effects of phase-shift and power distribution on efficiency of dual-high-frequency sonochemistry
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.09.010
– volume: 15
  start-page: 143
  issue: 2
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105067_b0405
  article-title: Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2007.03.003
– volume: 94
  start-page: 273
  issue: 1
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0495
  article-title: Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-018-4358-z
– volume: 100
  start-page: 18784
  issue: 48
  year: 1996
  ident: 10.1016/j.ultsonch.2020.105067_b0180
  article-title: Use of second-harmonic superimposition to induce chemical effects of ultrasound
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp962137a
– volume: 85
  start-page: 327
  issue: 2
  year: 2002
  ident: 10.1016/j.ultsonch.2020.105067_b0410
  article-title: Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(01)00179-6
– volume: 70
  start-page: 151
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0075
  article-title: Characterization of acoustic streaming beyond 100 MHz
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2015.08.075
– volume: 9
  start-page: 231
  issue: 5
  year: 2002
  ident: 10.1016/j.ultsonch.2020.105067_b0250
  article-title: Enhancement of ultrasonic cavitation yield by multi-frequency sonication
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(02)00083-4
– volume: 25
  start-page: 89
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0010
  article-title: Some neglected or rejected paths in sonochemistry – a very personal view
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.11.014
– volume: 76
  start-page: 56
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0460
  article-title: Numerical investigation of the strength of collapse of a harmonically excited bubble
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2015.03.007
– volume: 501
  start-page: 1
  year: 2004
  ident: 10.1016/j.ultsonch.2020.105067_b0535
  article-title: Translational motion of a bubble undergoing shape oscillations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003006220
– volume: 19
  issue: 4
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105067_b0540
  article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves
  publication-title: Phys. Fluids
  doi: 10.1063/1.2716633
– year: 1995
  ident: 10.1016/j.ultsonch.2020.105067_b0440
– volume: 2
  start-page: 215
  issue: 5
  year: 1984
  ident: 10.1016/j.ultsonch.2020.105067_b0565
  article-title: Acoustic cavitation series: part five rectified diffusion
  publication-title: Ultrasonics
  doi: 10.1016/0041-624X(84)90016-7
– volume: 86
  start-page: 1239
  issue: 2
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105067_b0470
  article-title: Classification of the bifurcation structure of a periodically driven gas bubble
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-016-2960-5
– volume: 16
  start-page: 502
  issue: 4
  year: 2009
  ident: 10.1016/j.ultsonch.2020.105067_b0375
  article-title: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2008.12.016
– volume: 35
  start-page: 431
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0310
  article-title: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.10.022
– volume: 51
  start-page: 533
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0140
  article-title: Sonochemical and sonoelectrochemical production of hydrogen
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.08.024
– volume: 44
  start-page: 14500
  issue: 29
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0135
  article-title: The sono-hydro-gen process (ultrasound induced hydrogen production): challenges and opportunities
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.04.115
– volume: 64
  start-page: 5255
  issue: 24
  year: 2009
  ident: 10.1016/j.ultsonch.2020.105067_b0215
  article-title: Mechanistic optimization of a dual frequency sonochemical reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.08.037
– volume: 14
  start-page: 783
  issue: 6
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105067_b0260
  article-title: Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.12.016
– ident: 10.1016/j.ultsonch.2020.105067_b0335
– volume: 102
  issue: 8
  year: 2009
  ident: 10.1016/j.ultsonch.2020.105067_b0390
  article-title: Effect of power and frequency on bubble-size distributions in acoustic cavitation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.084302
– volume: 68
  start-page: 203
  issue: 1
  year: 1980
  ident: 10.1016/j.ultsonch.2020.105067_b0570
  article-title: Measurements of the growth of air bubbles by rectified diffusion
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.384624
– volume: 14
  start-page: 699
  issue: 6
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105067_b0150
  article-title: Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.12.013
– ident: 10.1016/j.ultsonch.2020.105067_b0055
– ident: 10.1016/j.ultsonch.2020.105067_b0330
– volume: 86
  year: 2012
  ident: 10.1016/j.ultsonch.2020.105067_b0225
  article-title: Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.016320
– volume: 380
  start-page: 1012
  issue: 9–10
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105067_b0475
  article-title: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.01.022
– volume: 67
  issue: 3
  year: 2003
  ident: 10.1016/j.ultsonch.2020.105067_b0575
  article-title: Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.036610
– volume: 37
  start-page: 542
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0080
  article-title: Membrane cleaning with ultrasonically driven bubbles
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.12.012
– volume: 141
  start-page: 3493
  issue: 5
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0485
  article-title: Numerical investigation of the subharmonic response of a cloud of interacting microbubbles
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4987295
– volume: 38
  start-page: 666
  issue: 1
  year: 2000
  ident: 10.1016/j.ultsonch.2020.105067_b0190
  article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(99)00204-8
– volume: 58
  start-page: 379
  issue: 2
  year: 2011
  ident: 10.1016/j.ultsonch.2020.105067_b0355
  article-title: Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.1815
– volume: 26
  start-page: 437
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0275
  article-title: Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.02.018
– year: 2007
  ident: 10.1016/j.ultsonch.2020.105067_b0060
  article-title: From a single bubble to bubble structures in acoustic cavitation
– volume: 4
  start-page: 263
  issue: 3
  year: 1997
  ident: 10.1016/j.ultsonch.2020.105067_b0185
  article-title: Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(97)00034-5
– start-page: 79
  year: 1980
  ident: 10.1016/j.ultsonch.2020.105067_b0430
  article-title: Some new results on cavitation threshold prediction and bubble dynamics
– volume: 55
  start-page: 383
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0085
  article-title: Bubble size measurements in different acoustic cavitation structures: filaments, clusters, and the acoustically cavitated jet
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.05.003
– volume: 38
  start-page: 298
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0315
  article-title: Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.03.028
– volume: 42
  start-page: 327
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0305
  article-title: Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.11.045
– volume: 41
  start-page: 419
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0300
  article-title: Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.10.004
– year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0340
– volume: 130
  start-page: 3370
  issue: 5
  year: 2011
  ident: 10.1016/j.ultsonch.2020.105067_b0455
  article-title: Bubble dynamics in a standing sound field: the bubble habitat
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3626159
– volume: 18
  start-page: 864
  issue: 4
  year: 2011
  ident: 10.1016/j.ultsonch.2020.105067_b0395
  article-title: The characterization of acoustic cavitation bubbles - an overview
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2010.11.016
– volume: 49
  start-page: 025518
  issue: 2
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0550
  article-title: Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/1873-7005/aa5dad
– volume: 31
  start-page: 610
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105067_b0235
  article-title: Positional stability and radial dynamics of sonoluminescent bubbles under bi-harmonic driving: Effect of the high-frequency component and its relative phase
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.02.013
– volume: 40
  start-page: 151
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0285
  article-title: Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.03.058
– volume: 40
  start-page: 4056
  issue: 11
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0125
  article-title: Mechanism of the sonochemical production of hydrogen
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2015.01.150
– volume: 51
  start-page: 2169
  issue: 9
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0025
  article-title: The chemical history of a bubble
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00088
– volume: 29
  start-page: 129
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105067_b0280
  article-title: The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.08.022
– volume: 57
  start-page: 4987
  issue: 22
  year: 2002
  ident: 10.1016/j.ultsonch.2020.105067_b0195
  article-title: Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(02)00271-3
– year: 1949
  ident: 10.1016/j.ultsonch.2020.105067_b0435
  article-title: The onset of cavitation in liquids, Tech. Rep. 12
  publication-title: Acoust. Res. Lab., Harvard Univ.
– volume: 143
  start-page: 1862
  issue: 3
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105067_b0500
  article-title: On amplification of radial oscillations of microbubbles due to bubble-bubble interaction in polydisperse microbubble clusters under ultrasound excitation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5036108
– volume: 141
  start-page: 3493
  issue: 5
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105067_b0490
  article-title: Towards the accurate characterization of the shell parameters of microbubbles based on attenuation and sound speed measurements
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4987297
– volume: 104
  issue: 7
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105067_b0520
  article-title: Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4865805
– volume: 58
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0030
  article-title: Combined effects of flow, surface stabilisation and salt concentration in aqueous solution to control and enhance sonoluminescence
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104683
– volume: 127
  start-page: 16810
  issue: 48
  year: 2005
  ident: 10.1016/j.ultsonch.2020.105067_b0385
  article-title: Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0566432
– volume: 59
  start-page: 4991
  issue: 22
  year: 2004
  ident: 10.1016/j.ultsonch.2020.105067_b0400
  article-title: Optimization of multiple-frequency sonochemical reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.09.033
– volume: 100
  start-page: 137
  year: 2013
  ident: 10.1016/j.ultsonch.2020.105067_b0230
  article-title: Phase diagrams for dual frequency sonic processors using organic liquid medium
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.02.016
– volume: 41
  start-page: 881
  issue: 2
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0115
  article-title: Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions
  publication-title: Res. Chem. Intermediat.
  doi: 10.1007/s11164-013-1240-y
– volume: 54
  start-page: 256
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0560
  article-title: Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.01.031
– ident: 10.1016/j.ultsonch.2020.105067_b0015
– volume: 20
  start-page: 510
  issue: 1
  year: 2013
  ident: 10.1016/j.ultsonch.2020.105067_b0105
  article-title: Ultrasound artificially nucleated bubbles and their sonochemical radical production
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.07.024
– volume: 6
  start-page: 43
  issue: 1
  year: 1999
  ident: 10.1016/j.ultsonch.2020.105067_b0380
  article-title: Characterisation of the acoustic cavitation cloud by two laser techniques
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(98)00035-2
– volume: 44
  start-page: e123
  year: 2006
  ident: 10.1016/j.ultsonch.2020.105067_b0360
  article-title: Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2006.07.009
– volume: 77
  issue: 6
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105067_b0545
  article-title: Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.066309
– volume: 10
  start-page: 178
  year: 1987
  ident: 10.1016/j.ultsonch.2020.105067_b0245
  article-title: Space-time interaction of two ultrasonic fields and sonoluminescence during transient cavitation in distilled water
  publication-title: Acoust. Lett.
– volume: 15
  start-page: 629
  issue: 4
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105067_b0210
  article-title: Experimental and theoretical investigations on sonoluminescence under dual frequency conditions
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2007.08.006
– start-page: 97
  year: 1999
  ident: 10.1016/j.ultsonch.2020.105067_b0050
– volume: 127
  start-page: 71
  issue: 1–3
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105067_b0205
  article-title: Modeling aspects of dual frequency sonochemical reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.09.023
– volume: 456
  start-page: 1685
  issue: 1999
  year: 2000
  ident: 10.1016/j.ultsonch.2020.105067_b0005
  article-title: Water vapour, sonoluminescence and sonochemistry
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.2000.0582
– volume: 88
  start-page: 1061
  issue: 2
  year: 1990
  ident: 10.1016/j.ultsonch.2020.105067_b0450
  article-title: Bifurcation structure of bubble oscillators
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.399855
– volume: 105
  start-page: 1075
  issue: 2
  year: 1999
  ident: 10.1016/j.ultsonch.2020.105067_b0045
  article-title: Bubble size distribution near a pressure antinode
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.424505
– volume: 13
  start-page: 247
  issue: 3
  year: 1992
  ident: 10.1016/j.ultsonch.2020.105067_b0145
  article-title: Free radical formation induced by ultrasound and its biological implications
  publication-title: Free Radical Bio. Med.
  doi: 10.1016/0891-5849(92)90021-8
– volume: 50
  start-page: 2167
  issue: 9
  year: 2005
  ident: 10.1016/j.ultsonch.2020.105067_b0200
  article-title: Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/9/017
– volume: 78
  start-page: 17
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105067_b0265
  article-title: Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2014.02.003
– volume: 11
  start-page: 10029
  year: 2009
  ident: 10.1016/j.ultsonch.2020.105067_b0220
  article-title: Cavitation activation by dual-frequency ultrasound and shock waves
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b912725a
– volume: 128
  issue: 18
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105067_b0100
  article-title: The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2919119
– volume: 81
  start-page: 1961
  issue: 9
  year: 1998
  ident: 10.1016/j.ultsonch.2020.105067_b0370
  article-title: Boosting sonoluminescence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1961
– volume: 7
  start-page: 213
  issue: 4
  year: 2000
  ident: 10.1016/j.ultsonch.2020.105067_b0255
  article-title: Cavitation activity stimulation by low frequency field pulses
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(99)00037-1
– volume: 127
  issue: 15
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105067_b0095
  article-title: Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2790420
– volume: 102
  start-page: 497
  issue: 3
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0090
  article-title: A review of models for bubble clusters in cavitating flows
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-018-9993-4
– volume: 23
  start-page: 16
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105067_b0320
  article-title: Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.07.021
– volume: 58
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105067_b0035
  article-title: Disparities between sonoluminescence, sonochemiluminescence and dosimetry with frequency variation under flow
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.104645
SSID ssj0003920
Score 2.4763463
Snippet •Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in...
The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105067
SubjectTerms Bubble dynamics
Cavitation threshold
Dual-frequency driving
GPU programming
Keller–Miksis equation
Title GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold
URI https://dx.doi.org/10.1016/j.ultsonch.2020.105067
https://www.ncbi.nlm.nih.gov/pubmed/32380373
https://www.proquest.com/docview/2400549581
Volume 67
WOSCitedRecordID wos000541900400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: AIEXJ
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdJe-TFt3yy6VJ61PiA4wGNhbF7W7SVUeGi1vyLHNloqQCJKoe91_2v_bsY1J2i3q9rAXQAYD4Xw5_o59Lgi9pl7CaRKM3RDIqBvCIejBgIGVkkTeOGc8yE2xifjsLBmN0kGn89PGwqyKuCyTy8t0_l9FDW0gbBU6-w_ibm8KDXAMQoctiB22fyX494OhwziH4URlgRAmgawJg1RxV25eGe_p746olKpz1GxBIZ3xcqyiqCYlXEhdobL-m4wdjkoPPlVuMw6oHy6towbTqtLhbNXk-VZFf2St1rM2Ke-wWFSsVhl4awd2qkKXKTG3nob9KsVhPzp852tQneoIxHYkKNic1xOttD_rZX2_mJr92puIqcIUgGatQr_Iqlz7HA9YBZaGniYfFqD0v23Oc4BRaz3mYJgyujmJiassxE3lbWp5NNoXuKJnGn4bGMwcxcXRsljAT9XLUIEucnytA3zC-VQjgwCZ8Yips3ItJbc9tYN2gzhKky7aPf54MvrUUgAgnd5GOPqfH7uH7tgbbSNF24weTX7O76N7jdWCjw3aHqCOLPfR3b6V5D66rT2Jef0Q_QD84Q38YY0_PMsxw1fxhw3-sMEfNvjDkxIuvII_3OIPa_y9xYA-bNCH1-jDLfoeoeHpyXn_g9sU-nA5ocnCTaOEpjkXDNh4TmVOwAyIiBDU54HHJY0CQcaBT4X0UsK58L1QBCHhREYiDTknj1G3nJXyKcI55cCpaZxGTOWdAvoNJFU5Hacxhw68hyL7pTPevJ8qxlJk1t3xIrPCypSwMiOsHnrT9pubPDA39kitILOGzRqWmgEmb-z7yko-A0GqNTxWytmyzpTLdxTCB_N76ImBRPs-Fk3Ptp55jvbWf60XqLuolvIlusVXi0ldHaCdeJQcNFj-BfBk0g8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU+accelerated+study+of+a+dual-frequency+driven+single+bubble+in+a+6-dimensional+parameter+space%3A+The+active+cavitation+threshold&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Heged%C5%B1s%2C+Ferenc&rft.au=Klapcsik%2C+K%C3%A1lm%C3%A1n&rft.au=Lauterborn%2C+Werner&rft.au=Parlitz%2C+Ulrich&rft.date=2020-10-01&rft.eissn=1873-2828&rft.volume=67&rft.spage=105067&rft_id=info:doi/10.1016%2Fj.ultsonch.2020.105067&rft_id=info%3Apmid%2F32380373&rft.externalDocID=32380373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon