GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold
•Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in terms of active cavitation threshold is studied.•Synergy between low-high frequency combination is revealed. The active cavitation threshold of...
Uloženo v:
| Vydáno v: | Ultrasonics sonochemistry Ročník 67; s. 105067 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.10.2020
|
| Témata: | |
| ISSN: | 1350-4177, 1873-2828, 1873-2828 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in terms of active cavitation threshold is studied.•Synergy between low-high frequency combination is revealed.
The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller–Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold. |
|---|---|
| AbstractList | The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (R
-R
)/R
, where R
is the equilibrium size of the bubble and R
is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (R
-R
)/R
=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (R
-R
)/R
=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold. The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold.The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller-Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold. •Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in terms of active cavitation threshold is studied.•Synergy between low-high frequency combination is revealed. The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum intensity required to generate a given relative expansion (Rmax-RE)/RE, where RE is the equilibrium size of the bubble and Rmax is the maximum bubble radius during its oscillation. The model employed is the Keller–Miksis equation that is a second order ordinary differential equation. The parameter space investigated is composed by the pressure amplitudes, excitation frequencies, phase shift between the two harmonic components and by the equilibrium bubble radius (bubble size). Due to the large 6-dimensional parameter space, the number of the parameter combinations investigated is approximately two billion. Therefore, the high performance of graphics processing units is exploited; our in-house code is written in C++ and CUDA C software environments. The results show that for (Rmax-RE)/RE=2, the best choice of the frequency pairs depends on the bubble size. For small bubbles, below 3μm, the best option is to use just a single frequency of a low value in the giant response region. For medium sized bubbles, between 3μm and 6μm, the optimal choice is the mixture of low frequency (giant response) and main resonance frequency. For large bubbles, above 6μm, the main resonance dominates the active cavitation threshold. Increasing the prescribed relative expansion value to (Rmax-RE)/RE=3, the optimal choice is always single frequency driving with the lowest value (20kHz here). Thus, in this case, the giant response always dominates the active cavitation threshold. The phase shift between the harmonic components of the dual-frequency driving (different frequency values) has no effect on the threshold. |
| ArticleNumber | 105067 |
| Author | Hegedűs, Ferenc Mettin, Robert Klapcsik, Kálmán Lauterborn, Werner Parlitz, Ulrich |
| Author_xml | – sequence: 1 givenname: Ferenc surname: Hegedűs fullname: Hegedűs, Ferenc email: fhegedus@hds.bme.hu organization: Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary – sequence: 2 givenname: Kálmán surname: Klapcsik fullname: Klapcsik, Kálmán email: kklapcsik@hds.bme.hu organization: Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary – sequence: 3 givenname: Werner surname: Lauterborn fullname: Lauterborn, Werner email: werner.lauterborn@phys.uni-goettingen.de organization: Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany – sequence: 4 givenname: Ulrich surname: Parlitz fullname: Parlitz, Ulrich email: ulrich.parlitz@ds.mpg.de organization: Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization and Institut für Dynamik komplexer Systeme, Georg-August-Universität Göttingen, Göttingen, Germany – sequence: 5 givenname: Robert surname: Mettin fullname: Mettin, Robert email: robert.mettin@phys.uni-goettingen.de organization: Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32380373$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URD_gL1Q-csnij8RJEAdQBS1SJTi0Z8sZT1ivHGexnZX22l-OV7vl0EtPMxo974zmfS_JWZgDEnLN2Yozrj5tVovPaQ6wXgkmDsOGqfYNueBdKyvRie6s9LJhVc3b9pxcprRhjMlesHfkXArZMdnKC_J0-_uRGgD0GE1GS1Ne7J7OIzXULsZXY8S_CwbYUxvdDgNNLvzxSIdlGEpxoYCqsm7CkNwcjKdbE82EGSNNWwP4mT6ssZzIRU3B7Fw2uYA0ryOm9ezte_J2ND7hh1O9Io8_vj_c3FX3v25_3ny7r0CqLld906l-BGtYo0aFo-wa3khrFQfBAFUjrBwEVxZZLwEsZ7UVtQSJje1rAHlFPh73buNcXkpZTy6Vx70JOC9Ji5qxpi5neEGvT-gyTGj1NrrJxL1-9q0A6ghAnFOKOP5HONOHgPRGPwekDwHpY0BF-OWFEE6G5Gicf13-9SjHYtTOYdQJXEkHrYsIWdvZvbbiHzMIsig |
| CitedBy_id | crossref_primary_10_1016_j_ultsonch_2020_105346 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105287 crossref_primary_10_1016_j_ultsonch_2022_105925 crossref_primary_10_1016_j_ultsonch_2020_105342 crossref_primary_10_1016_j_ultsonch_2021_105684 crossref_primary_10_1063_5_0253578 crossref_primary_10_1016_j_cnsns_2022_106521 crossref_primary_10_1109_ACCESS_2020_3043003 crossref_primary_10_1007_s12206_023_0421_x crossref_primary_10_1016_j_ultsonch_2021_105728 crossref_primary_10_1016_j_ultsonch_2020_105405 crossref_primary_10_1016_j_ultsonch_2023_106614 crossref_primary_10_1016_j_cnsns_2021_105732 crossref_primary_10_1016_j_ultsonch_2022_105985 crossref_primary_10_12693_APhysPolA_148_99 crossref_primary_10_1016_j_ultsonch_2025_107444 crossref_primary_10_1063_5_0131930 crossref_primary_10_1016_j_ultsonch_2022_106253 crossref_primary_10_1016_j_ultsonch_2022_106275 crossref_primary_10_1016_j_ultsonch_2022_106056 crossref_primary_10_1007_s11947_024_03663_y crossref_primary_10_1088_1402_4896_acfeb1 crossref_primary_10_3390_app11020699 crossref_primary_10_1016_j_jwpe_2024_105470 crossref_primary_10_1016_j_ultsonch_2023_106586 crossref_primary_10_1016_j_ultsonch_2023_106301 crossref_primary_10_1088_1674_1056_ac70ba crossref_primary_10_1016_j_ultsonch_2025_107435 crossref_primary_10_1016_j_ultsonch_2025_107414 crossref_primary_10_1016_j_ultsonch_2023_106546 crossref_primary_10_3390_polym14102054 crossref_primary_10_1016_j_ultras_2023_107110 crossref_primary_10_1016_j_ultsonch_2024_106760 crossref_primary_10_1515_zna_2021_0269 |
| Cites_doi | 10.1016/j.ultras.2003.12.005 10.1016/j.ultras.2004.04.001 10.7567/JJAP.53.07KF11 10.1016/j.ultsonch.2013.07.004 10.1121/1.4970764 10.1016/j.ultsonch.2017.03.030 10.1016/j.ultsonch.2014.07.011 10.1016/j.ultsonch.2014.08.015 10.1016/j.chemphys.2018.11.019 10.1121/1.397042 10.1103/PhysRevLett.75.954 10.1039/C2CS35282F 10.1121/1.5068280 10.1016/j.chaos.2017.08.022 10.1121/1.396614 10.1121/1.415385 10.1063/1.5063011 10.1016/S1350-4177(98)00025-X 10.1016/j.ultsonch.2019.104744 10.1016/j.ultsonch.2019.02.010 10.1088/0034-4885/73/10/106501 10.1016/j.ultsonch.2018.08.025 10.1109/58.542456 10.1103/PhysRevE.88.033026 10.1016/j.jhazmat.2009.08.115 10.1016/j.ultsonch.2004.01.037 10.1016/j.ultsonch.2020.104989 10.1121/1.2932746 10.1007/s11071-015-1914-7 10.1016/j.ultsonch.2017.09.010 10.1016/j.ultsonch.2007.03.003 10.1007/s11071-018-4358-z 10.1021/jp962137a 10.1016/S1385-8947(01)00179-6 10.1016/j.phpro.2015.08.075 10.1016/S1350-4177(02)00083-4 10.1016/j.ultsonch.2014.11.014 10.1016/j.chaos.2015.03.007 10.1017/S0022112003006220 10.1063/1.2716633 10.1016/0041-624X(84)90016-7 10.1007/s11071-016-2960-5 10.1016/j.ultsonch.2008.12.016 10.1016/j.ultsonch.2016.10.022 10.1016/j.ultsonch.2018.08.024 10.1016/j.ijhydene.2019.04.115 10.1016/j.ces.2009.08.037 10.1016/j.ultsonch.2006.12.016 10.1103/PhysRevLett.102.084302 10.1121/1.384624 10.1016/j.ultsonch.2006.12.013 10.1103/PhysRevE.86.016320 10.1016/j.physleta.2016.01.022 10.1103/PhysRevE.67.036610 10.1016/j.ultsonch.2016.12.012 10.1121/1.4987295 10.1016/S0041-624X(99)00204-8 10.1109/TUFFC.2011.1815 10.1016/j.ultsonch.2015.02.018 10.1016/S1350-4177(97)00034-5 10.1016/j.ultsonch.2018.05.003 10.1016/j.ultsonch.2017.03.028 10.1016/j.ultsonch.2017.11.045 10.1016/j.ultsonch.2017.10.004 10.1121/1.3626159 10.1016/j.ultsonch.2010.11.016 10.1088/1873-7005/aa5dad 10.1016/j.ultsonch.2016.02.013 10.1016/j.ultsonch.2017.03.058 10.1016/j.ijhydene.2015.01.150 10.1021/acs.accounts.8b00088 10.1016/j.ultsonch.2015.08.022 10.1016/S0009-2509(02)00271-3 10.1121/1.5036108 10.1121/1.4987297 10.1063/1.4865805 10.1016/j.ultsonch.2019.104683 10.1021/ja0566432 10.1016/j.ces.2004.09.033 10.1016/j.ces.2013.02.016 10.1007/s11164-013-1240-y 10.1016/j.ultsonch.2019.01.031 10.1016/j.ultsonch.2012.07.024 10.1016/S1350-4177(98)00035-2 10.1016/j.ultras.2006.07.009 10.1103/PhysRevE.77.066309 10.1016/j.ultsonch.2007.08.006 10.1016/j.cej.2006.09.023 10.1098/rspa.2000.0582 10.1121/1.399855 10.1121/1.424505 10.1016/0891-5849(92)90021-8 10.1088/0031-9155/50/9/017 10.1016/j.cep.2014.02.003 10.1039/b912725a 10.1063/1.2919119 10.1103/PhysRevLett.81.1961 10.1016/S1350-4177(99)00037-1 10.1063/1.2790420 10.1007/s10494-018-9993-4 10.1016/j.ultsonch.2014.07.021 10.1016/j.ultsonch.2019.104645 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.ultsonch.2020.105067 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-2828 |
| ExternalDocumentID | 32380373 10_1016_j_ultsonch_2020_105067 S1350417719318772 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c368t-95869fcda056f6ef385153dd61c20ce652d3b216de093ccd104d243c3e5d94cc3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541900400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-4177 1873-2828 |
| IngestDate | Sun Sep 28 06:44:53 EDT 2025 Mon Jul 21 05:47:46 EDT 2025 Sat Nov 29 07:03:14 EST 2025 Tue Nov 18 21:29:03 EST 2025 Fri Feb 23 02:48:02 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bubble dynamics Dual-frequency driving GPU programming Cavitation threshold Keller–Miksis equation |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-95869fcda056f6ef385153dd61c20ce652d3b216de093ccd104d243c3e5d94cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ultsonch.2020.105067 |
| PMID | 32380373 |
| PQID | 2400549581 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2400549581 pubmed_primary_32380373 crossref_primary_10_1016_j_ultsonch_2020_105067 crossref_citationtrail_10_1016_j_ultsonch_2020_105067 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2020_105067 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics sonochemistry |
| PublicationTitleAlternate | Ultrason Sonochem |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Merouani, Hamdaoui, Rezgui, Guemini (b0160) 2015; 22 Tatake, Pandit (b0195) 2002; 57 Chen, Kinnick, Greenleaf, Fatemi (b0360) 2006; 44 Shen, Cheng, Yeh (b0355) 2011; 58 Lauterborn, Parlitz (b0445) 1988; 84 Hegedűs, Lauterborn, Parlitz, Mettin (b0495) 2018; 94 Yasui, Tuziuti, Lee, Kozuka, Towata, Iida (b0100) 2008; 128 Fuster (b0090) 2019; 102 Holzfuss, Rüggeberg, Mettin (b0370) 1998; 81 Reuter, Lesnik, Ayaz-Bustami, Brenner, Mettin (b0085) 2019; 55 Hegedűs (b0475) 2016; 380 Rosselló, Dellavale, Bonetto (b0235) 2016; 31 Mettin, Luther, Ohl, Lauterborn (b0045) 1999; 105 Sojahrood, Haghi, Karshafian, Kolios (b0465) 2016; 140 R. Mettin, Bubble structures in acoustic cavitation, in: Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, Research Signpost, Trivandrum, Kerala, India, 2005. Merouani, Hamdaoui, Rezgui, Guemini (b0115) 2015; 41 . Merouani, Hamdaoui, Rezgui, Guemini (b0125) 2015; 40 Parlitz, Englisch, Scheffczyk, Lauterborn (b0450) 1990; 88 Yasuda, Torii, Yasui, Iida, Tuziuti, Nakamura, Asakura (b0150) 2007; 14 Suo, Govind, Zhang, Jing (b0300) 2018; 41 Crum (b0565) 1984; 2 Ciuti, Dezhkunov, Francescutto, Kulak, Iernetti (b0255) 2000; 7 Riesz, Kondo (b0145) 1992; 13 Zhang, Li (b0275) 2015; 26 Lee, Ashokkumar, Kentish, Grieser (b0385) 2005; 127 Mason (b0010) 2015; 25 Sasaki, Yasuda, Takagi, Miyashita, Goto, Yoshizawa, Umemura (b0345) 2014; 53 Yasui, Tuziuti, Iida (b0525) 2004; 42 Waldo, Vecitis (b0240) 2018; 41 Yasui, Tuziuti, Kozuka, Towata, Iida (b0095) 2007; 127 Calvisi, Lindau, Blake, Szeri (b0540) 2007; 19 Wang, Zhou (b0305) 2018; 42 Haghi, Sojahrood, De Leon, Agata Exner, Kolios (b0505) 2018; 144 Sojahrood, Falou, Earl, Karshafian, Kolios (b0420) 2015; 80 Zhang, Zhang, Li (b0280) 2016; 29 Zhang, Billson, Li (b0325) 2015; 66 Behnia, Sojahrood, Soltanpoor, Jahanbakhsh (b0375) 2009; 16 Wood, Lee, Bussemaker (b0020) 2017; 38 Islam, Paul, Burheim, Pollet (b0175) 2019; 59 Doinikov (b0535) 2004; 501 Eisener, Lippert, Nowak, Cairós, Reuter, Mettin (b0075) 2015; 70 Flynn, Church (b0425) 1988; 84 Gong, Cabodi, Porter (b0520) 2014; 104 Ye, Zhu, Liu (b0295) 2019; 59 Holzfuss (b0545) 2008; 77 Prabhu, Gogate, Pandit (b0400) 2004; 59 Pradhan, Gogate (b0155) 2010; 173 Kerboua, Hamdaoui (b0130) 2019; 519 MacDonald, Sboros, Gomatam, Pye, Moran, McDicken (b0515) 2004; 43 Lauterborn, Kurz (b0070) 2010; 73 Ashokkumar (b0395) 2011; 18 Kanthale, Ashokkumar, Grieser (b0405) 2008; 15 Sojahrood, Wegierak, Haghi, Karshfian, Kolios (b0510) 2019; 54 Feng, Zhao, Zhu, Mason (b0250) 2002; 9 Kalmár, Klapcsik, Hegedűs (b0415) 2020; 64 Brotchie, Mettin, Grieser, Ashokkumar (b0220) 2009; 11 Barati, Mokhtari-Dizaji, Mozdarani, Bathaie, Hassan (b0260) 2007; 14 Rashwan, Dincer, Mohany, Pollet (b0135) 2019; 44 Rahimi, Safari, Faryadi, Moradi (b0265) 2014; 78 Brotchie, Grieser, Ashokkumar (b0390) 2009; 102 Xu, Zeiger, Suslick (b0170) 2013; 42 Zhang, Zhang (b0285) 2018; 40 Wood, Lee, Bussemaker (b0030) 2019; 58 Kanthale, Gogate, Pandit (b0205) 2007; 127 Sojahrood, Li, Haghi, Karshafian, Porter, Kolios (b0490) 2017; 141 Moholkar, Rekveld, Warmoeskerken (b0190) 2000; 38 Dellavale, Rechiman, Rosselló, Bonetto (b0225) 2012; 86 Reuter, Lauterborn, Mettin, Lauterborn (b0080) 2017; 37 Stricker, Lohse (b0110) 2014; 21 Kerboua, Hamdaoui (b0290) 2018; 49 Klapcsik, Hegedűs (b0480) 2017; 104 Klapcsik, Hegedűs (b0560) 2019; 54 Blake (b0435) 1949 Guédra, Inserra, Gilles (b0315) 2017; 38 Zhang, Zhang, Li (b0310) 2017; 35 Rosselló, Dellavale, Bonetto (b0270) 2013; 88 Koch, Kurz, Parlitz, Lauterborn (b0455) 2011; 130 Crum (b0570) 1980; 68 Sokka, Gauthier, Hynynen (b0200) 2005; 50 Suslick, Eddingsaas, Flannigan, Hopkins, Xu (b0025) 2018; 51 Burdin, Tsochatzidis, Guiraud, Wilhelm, Delmas (b0380) 1999; 6 Moholkar (b0215) 2009; 64 Zhang, Du, Xian, Wu (b0320) 2015; 23 Umemura, Kawabata, Sasaki (b0350) 1996; 43 Carpenedo, Ciuti, Francescutto, Iernetti, Johri (b0245) 1987; 10 Rosselló, Lauterborn, Koch, Wilken, Kurz, Mettin (b0555) 2018; 30 Phelps, Leighton (b0365) 1996; 99 Storey, Szeri (b0005) 2000; 456 Brennen (b0440) 1995 Wood, Lee, Bussemaker (b0035) 2019; 58 Kanthale, Brotchie, Ashokkumar, Grieser (b0210) 2008; 15 Varga, Paál (b0460) 2015; 76 Apfel (b0430) 1980 Haghi, Sojahrood, Karshafian, Kolios (b0485) 2017; 141 Rivas, Stricker, Zijlstra, Gardeniers, Lohse, Prosperetti (b0105) 2013; 20 Lauterborn, Ohl (b0050) 1999 Mettin (b0060) 2007 Iernetti, Ciuti, Dezhkunov, Reali, Francescutto, Johri (b0185) 1997; 4 Mettin, Luther, Ohl, Lauterborn (b0040) 1999; 6 Brenner, Lohse, Dupont (b0530) 1995; 75 F. Cavalieri, F. Chemat, K. Okitsu, A. Sambandam, K. Yasui, B. Zisu, Handbook of Ultrasonics and Sonochemistry, first ed., 2016. Mettin, Cairós, Troia (b0120) 2015; 25 Islam, Burheim, Pollet (b0140) 2019; 51 Hegedűs (b0340) 2019 Varga, Hegedűs (b0470) 2016; 86 Sivakumar, Tatake, Pandit (b0410) 2002; 85 Haghi, Sojahrood, Kolios (b0500) 2018; 143 Khanna, Chakma, Moholkar (b0230) 2013; 100 Kawabata, Umemura (b0180) 1996; 100 Reuter, Mettin, Lauterborn (b0065) 2008; 123 Louisnard, Gomez (b0575) 2003; 67 Liu, Calvisi, Wang (b0550) 2017; 49 Gedanken (b0165) 2004; 11 Liu (10.1016/j.ultsonch.2020.105067_b0550) 2017; 49 Mettin (10.1016/j.ultsonch.2020.105067_b0045) 1999; 105 Fuster (10.1016/j.ultsonch.2020.105067_b0090) 2019; 102 Prabhu (10.1016/j.ultsonch.2020.105067_b0400) 2004; 59 Khanna (10.1016/j.ultsonch.2020.105067_b0230) 2013; 100 Umemura (10.1016/j.ultsonch.2020.105067_b0350) 1996; 43 Moholkar (10.1016/j.ultsonch.2020.105067_b0190) 2000; 38 Sojahrood (10.1016/j.ultsonch.2020.105067_b0490) 2017; 141 Kalmár (10.1016/j.ultsonch.2020.105067_b0415) 2020; 64 Crum (10.1016/j.ultsonch.2020.105067_b0570) 1980; 68 Merouani (10.1016/j.ultsonch.2020.105067_b0125) 2015; 40 Mason (10.1016/j.ultsonch.2020.105067_b0010) 2015; 25 Hegedűs (10.1016/j.ultsonch.2020.105067_b0495) 2018; 94 Zhang (10.1016/j.ultsonch.2020.105067_b0275) 2015; 26 Hegedűs (10.1016/j.ultsonch.2020.105067_b0340) 2019 Zhang (10.1016/j.ultsonch.2020.105067_b0325) 2015; 66 Yasui (10.1016/j.ultsonch.2020.105067_b0095) 2007; 127 Sokka (10.1016/j.ultsonch.2020.105067_b0200) 2005; 50 Iernetti (10.1016/j.ultsonch.2020.105067_b0185) 1997; 4 10.1016/j.ultsonch.2020.105067_b0015 Rashwan (10.1016/j.ultsonch.2020.105067_b0135) 2019; 44 Flynn (10.1016/j.ultsonch.2020.105067_b0425) 1988; 84 Haghi (10.1016/j.ultsonch.2020.105067_b0485) 2017; 141 Wood (10.1016/j.ultsonch.2020.105067_b0020) 2017; 38 Merouani (10.1016/j.ultsonch.2020.105067_b0160) 2015; 22 Rivas (10.1016/j.ultsonch.2020.105067_b0105) 2013; 20 Sasaki (10.1016/j.ultsonch.2020.105067_b0345) 2014; 53 Louisnard (10.1016/j.ultsonch.2020.105067_b0575) 2003; 67 Kerboua (10.1016/j.ultsonch.2020.105067_b0130) 2019; 519 Lauterborn (10.1016/j.ultsonch.2020.105067_b0050) 1999 Sivakumar (10.1016/j.ultsonch.2020.105067_b0410) 2002; 85 Suo (10.1016/j.ultsonch.2020.105067_b0300) 2018; 41 Guédra (10.1016/j.ultsonch.2020.105067_b0315) 2017; 38 Feng (10.1016/j.ultsonch.2020.105067_b0250) 2002; 9 Stricker (10.1016/j.ultsonch.2020.105067_b0110) 2014; 21 Pradhan (10.1016/j.ultsonch.2020.105067_b0155) 2010; 173 Haghi (10.1016/j.ultsonch.2020.105067_b0500) 2018; 143 Holzfuss (10.1016/j.ultsonch.2020.105067_b0370) 1998; 81 Rosselló (10.1016/j.ultsonch.2020.105067_b0555) 2018; 30 Rahimi (10.1016/j.ultsonch.2020.105067_b0265) 2014; 78 Barati (10.1016/j.ultsonch.2020.105067_b0260) 2007; 14 Kanthale (10.1016/j.ultsonch.2020.105067_b0205) 2007; 127 Waldo (10.1016/j.ultsonch.2020.105067_b0240) 2018; 41 Zhang (10.1016/j.ultsonch.2020.105067_b0280) 2016; 29 Shen (10.1016/j.ultsonch.2020.105067_b0355) 2011; 58 Suslick (10.1016/j.ultsonch.2020.105067_b0025) 2018; 51 Kawabata (10.1016/j.ultsonch.2020.105067_b0180) 1996; 100 Zhang (10.1016/j.ultsonch.2020.105067_b0320) 2015; 23 Crum (10.1016/j.ultsonch.2020.105067_b0565) 1984; 2 Islam (10.1016/j.ultsonch.2020.105067_b0140) 2019; 51 Sojahrood (10.1016/j.ultsonch.2020.105067_b0465) 2016; 140 Yasui (10.1016/j.ultsonch.2020.105067_b0100) 2008; 128 Ciuti (10.1016/j.ultsonch.2020.105067_b0255) 2000; 7 Calvisi (10.1016/j.ultsonch.2020.105067_b0540) 2007; 19 Kanthale (10.1016/j.ultsonch.2020.105067_b0405) 2008; 15 Lauterborn (10.1016/j.ultsonch.2020.105067_b0445) 1988; 84 MacDonald (10.1016/j.ultsonch.2020.105067_b0515) 2004; 43 Wood (10.1016/j.ultsonch.2020.105067_b0030) 2019; 58 Tatake (10.1016/j.ultsonch.2020.105067_b0195) 2002; 57 Varga (10.1016/j.ultsonch.2020.105067_b0460) 2015; 76 Yasui (10.1016/j.ultsonch.2020.105067_b0525) 2004; 42 Yasuda (10.1016/j.ultsonch.2020.105067_b0150) 2007; 14 Sojahrood (10.1016/j.ultsonch.2020.105067_b0420) 2015; 80 Merouani (10.1016/j.ultsonch.2020.105067_b0115) 2015; 41 Eisener (10.1016/j.ultsonch.2020.105067_b0075) 2015; 70 Doinikov (10.1016/j.ultsonch.2020.105067_b0535) 2004; 501 Reuter (10.1016/j.ultsonch.2020.105067_b0080) 2017; 37 Gong (10.1016/j.ultsonch.2020.105067_b0520) 2014; 104 Brenner (10.1016/j.ultsonch.2020.105067_b0530) 1995; 75 10.1016/j.ultsonch.2020.105067_b0335 Hegedűs (10.1016/j.ultsonch.2020.105067_b0475) 2016; 380 Behnia (10.1016/j.ultsonch.2020.105067_b0375) 2009; 16 Lee (10.1016/j.ultsonch.2020.105067_b0385) 2005; 127 Klapcsik (10.1016/j.ultsonch.2020.105067_b0480) 2017; 104 Zhang (10.1016/j.ultsonch.2020.105067_b0310) 2017; 35 Holzfuss (10.1016/j.ultsonch.2020.105067_b0545) 2008; 77 Moholkar (10.1016/j.ultsonch.2020.105067_b0215) 2009; 64 Brotchie (10.1016/j.ultsonch.2020.105067_b0220) 2009; 11 Dellavale (10.1016/j.ultsonch.2020.105067_b0225) 2012; 86 Ye (10.1016/j.ultsonch.2020.105067_b0295) 2019; 59 Rosselló (10.1016/j.ultsonch.2020.105067_b0270) 2013; 88 Chen (10.1016/j.ultsonch.2020.105067_b0360) 2006; 44 Apfel (10.1016/j.ultsonch.2020.105067_b0430) 1980 Zhang (10.1016/j.ultsonch.2020.105067_b0285) 2018; 40 Reuter (10.1016/j.ultsonch.2020.105067_b0065) 2008; 123 Haghi (10.1016/j.ultsonch.2020.105067_b0505) 2018; 144 10.1016/j.ultsonch.2020.105067_b0055 10.1016/j.ultsonch.2020.105067_b0330 Storey (10.1016/j.ultsonch.2020.105067_b0005) 2000; 456 Mettin (10.1016/j.ultsonch.2020.105067_b0120) 2015; 25 Gedanken (10.1016/j.ultsonch.2020.105067_b0165) 2004; 11 Wang (10.1016/j.ultsonch.2020.105067_b0305) 2018; 42 Xu (10.1016/j.ultsonch.2020.105067_b0170) 2013; 42 Parlitz (10.1016/j.ultsonch.2020.105067_b0450) 1990; 88 Wood (10.1016/j.ultsonch.2020.105067_b0035) 2019; 58 Carpenedo (10.1016/j.ultsonch.2020.105067_b0245) 1987; 10 Kanthale (10.1016/j.ultsonch.2020.105067_b0210) 2008; 15 Phelps (10.1016/j.ultsonch.2020.105067_b0365) 1996; 99 Ashokkumar (10.1016/j.ultsonch.2020.105067_b0395) 2011; 18 Riesz (10.1016/j.ultsonch.2020.105067_b0145) 1992; 13 Blake (10.1016/j.ultsonch.2020.105067_b0435) 1949 Brennen (10.1016/j.ultsonch.2020.105067_b0440) 1995 Mettin (10.1016/j.ultsonch.2020.105067_b0060) 2007 Lauterborn (10.1016/j.ultsonch.2020.105067_b0070) 2010; 73 Reuter (10.1016/j.ultsonch.2020.105067_b0085) 2019; 55 Rosselló (10.1016/j.ultsonch.2020.105067_b0235) 2016; 31 Varga (10.1016/j.ultsonch.2020.105067_b0470) 2016; 86 Burdin (10.1016/j.ultsonch.2020.105067_b0380) 1999; 6 Sojahrood (10.1016/j.ultsonch.2020.105067_b0510) 2019; 54 Mettin (10.1016/j.ultsonch.2020.105067_b0040) 1999; 6 Kerboua (10.1016/j.ultsonch.2020.105067_b0290) 2018; 49 Islam (10.1016/j.ultsonch.2020.105067_b0175) 2019; 59 Brotchie (10.1016/j.ultsonch.2020.105067_b0390) 2009; 102 Koch (10.1016/j.ultsonch.2020.105067_b0455) 2011; 130 Klapcsik (10.1016/j.ultsonch.2020.105067_b0560) 2019; 54 |
| References_xml | – volume: 18 start-page: 864 year: 2011 end-page: 872 ident: b0395 article-title: The characterization of acoustic cavitation bubbles - an overview publication-title: Ultrason. Sonochem. – volume: 144 start-page: 1888 year: 2018 ident: b0505 article-title: Experimental and numerical investigation of backscattered signal strength from different concentrations of nanobubble and microbubble clusters publication-title: J. Acoust. Soc. Am. – volume: 57 start-page: 4987 year: 2002 end-page: 4995 ident: b0195 article-title: Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources publication-title: Chem. Eng. Sci. – volume: 20 start-page: 510 year: 2013 end-page: 524 ident: b0105 article-title: Ultrasound artificially nucleated bubbles and their sonochemical radical production publication-title: Ultrason. Sonochem. – volume: 21 start-page: 336 year: 2014 end-page: 345 ident: b0110 article-title: Radical production inside an acoustically driven microbubble publication-title: Ultrason. Sonochem. – volume: 22 start-page: 41 year: 2015 end-page: 50 ident: b0160 article-title: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases publication-title: Ultrason. Sonochem. – volume: 19 year: 2007 ident: b0540 article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves publication-title: Phys. Fluids – volume: 14 start-page: 699 year: 2007 end-page: 704 ident: b0150 article-title: Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies publication-title: Ultrason. Sonochem. – volume: 86 start-page: 1239 year: 2016 end-page: 1248 ident: b0470 article-title: Classification of the bifurcation structure of a periodically driven gas bubble publication-title: Nonlinear Dynam. – volume: 44 start-page: e123 year: 2006 end-page: e126 ident: b0360 article-title: Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation publication-title: Ultrasonics – volume: 88 start-page: 1061 year: 1990 end-page: 1077 ident: b0450 article-title: Bifurcation structure of bubble oscillators publication-title: J. Acoust. Soc. Am. – volume: 130 start-page: 3370 year: 2011 end-page: 3378 ident: b0455 article-title: Bubble dynamics in a standing sound field: the bubble habitat publication-title: J. Acoust. Soc. Am. – volume: 64 start-page: 5255 year: 2009 end-page: 5267 ident: b0215 article-title: Mechanistic optimization of a dual frequency sonochemical reactor publication-title: Chem. Eng. Sci. – volume: 42 start-page: 579 year: 2004 end-page: 584 ident: b0525 article-title: Optimum bubble temperature for the sonochemical production of oxidants publication-title: Ultrasonics – volume: 70 start-page: 151 year: 2015 end-page: 154 ident: b0075 article-title: Characterization of acoustic streaming beyond 100 MHz publication-title: Phys. Proc. – volume: 25 start-page: 24 year: 2015 end-page: 30 ident: b0120 article-title: Sonochemistry and bubble dynamics publication-title: Ultrason. Sonochem. – reference: R. Mettin, Bubble structures in acoustic cavitation, in: Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications, Research Signpost, Trivandrum, Kerala, India, 2005. – volume: 102 year: 2009 ident: b0390 article-title: Effect of power and frequency on bubble-size distributions in acoustic cavitation publication-title: Phys. Rev. Lett. – volume: 41 start-page: 100 year: 2018 end-page: 108 ident: b0240 article-title: Combined effects of phase-shift and power distribution on efficiency of dual-high-frequency sonochemistry publication-title: Ultrason. Sonochem. – volume: 84 start-page: 985 year: 1988 end-page: 998 ident: b0425 article-title: Transient pulsations of small gas bubbles in water publication-title: J. Acoust. Soc. Am. – volume: 54 start-page: 256 year: 2019 end-page: 273 ident: b0560 article-title: Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid publication-title: Ultrason. Sonochem. – volume: 30 year: 2018 ident: b0555 article-title: Acoustically induced bubble jets publication-title: Phys. Fluids – volume: 380 start-page: 1012 year: 2016 end-page: 1022 ident: b0475 article-title: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees publication-title: Phys. Lett. A – volume: 85 start-page: 327 year: 2002 end-page: 338 ident: b0410 article-title: Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system publication-title: Chem. Eng. J. – volume: 14 start-page: 783 year: 2007 end-page: 789 ident: b0260 article-title: Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound publication-title: Ultrason. Sonochem. – volume: 38 start-page: 351 year: 2017 end-page: 370 ident: b0020 article-title: A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions publication-title: Ultrason. Sonochem. – volume: 49 start-page: 325 year: 2018 end-page: 332 ident: b0290 article-title: Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics publication-title: Ultrason. Sonochem. – volume: 75 start-page: 954 year: 1995 end-page: 957 ident: b0530 article-title: Bubble shape oscillations and the onset of sonoluminescence publication-title: Phys. Rev. Lett. – volume: 55 start-page: 383 year: 2019 end-page: 394 ident: b0085 article-title: Bubble size measurements in different acoustic cavitation structures: filaments, clusters, and the acoustically cavitated jet publication-title: Ultrason. Sonochem. – volume: 128 year: 2008 ident: b0100 article-title: The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions publication-title: J. Chem. Phys. – volume: 100 start-page: 18784 year: 1996 end-page: 18789 ident: b0180 article-title: Use of second-harmonic superimposition to induce chemical effects of ultrasound publication-title: J. Phys. Chem. – volume: 59 start-page: 4991 year: 2004 end-page: 4998 ident: b0400 article-title: Optimization of multiple-frequency sonochemical reactors publication-title: Chem. Eng. Sci. – volume: 54 start-page: 99 year: 2019 end-page: 109 ident: b0510 article-title: A simple method to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator publication-title: Ultrason. Sonochem. – volume: 51 start-page: 2169 year: 2018 end-page: 2178 ident: b0025 article-title: The chemical history of a bubble publication-title: Acc. Chem. Res. – volume: 31 start-page: 610 year: 2016 end-page: 625 ident: b0235 article-title: Positional stability and radial dynamics of sonoluminescent bubbles under bi-harmonic driving: Effect of the high-frequency component and its relative phase publication-title: Ultrason. Sonochem. – year: 1949 ident: b0435 article-title: The onset of cavitation in liquids, Tech. Rep. 12 publication-title: Acoust. Res. Lab., Harvard Univ. – volume: 53 start-page: 07KF11 year: 2014 ident: b0345 article-title: Highly efficient cavitation-enhanced heating with dual-frequency ultrasound exposure in high-intensity focused ultrasound treatment publication-title: Jpn. J. Appl. Phys. – volume: 67 year: 2003 ident: b0575 article-title: Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids publication-title: Phys. Rev. E – volume: 10 start-page: 178 year: 1987 end-page: 181 ident: b0245 article-title: Space-time interaction of two ultrasonic fields and sonoluminescence during transient cavitation in distilled water publication-title: Acoust. Lett. – volume: 501 start-page: 1 year: 2004 end-page: 24 ident: b0535 article-title: Translational motion of a bubble undergoing shape oscillations publication-title: J. Fluid Mech. – volume: 37 start-page: 542 year: 2017 end-page: 560 ident: b0080 article-title: Membrane cleaning with ultrasonically driven bubbles publication-title: Ultrason. Sonochem. – volume: 99 start-page: 1985 year: 1996 end-page: 1992 ident: b0365 article-title: High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique publication-title: J. Acoust. Soc. Am. – volume: 2 start-page: 215 year: 1984 end-page: 223 ident: b0565 article-title: Acoustic cavitation series: part five rectified diffusion publication-title: Ultrasonics – volume: 58 start-page: 379 year: 2011 end-page: 388 ident: b0355 article-title: Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 58 year: 2019 ident: b0030 article-title: Combined effects of flow, surface stabilisation and salt concentration in aqueous solution to control and enhance sonoluminescence publication-title: Ultrason. Sonochem. – volume: 123 start-page: 3047 year: 2008 ident: b0065 article-title: Pressure fields and their effects in membrane cleaning applications publication-title: J. Acoust. Soc. Am. – volume: 141 start-page: 3493 year: 2017 ident: b0485 article-title: Numerical investigation of the subharmonic response of a cloud of interacting microbubbles publication-title: J. Acoust. Soc. Am. – volume: 127 year: 2007 ident: b0095 article-title: Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound publication-title: J. Chem. Phys. – volume: 41 start-page: 419 year: 2018 end-page: 426 ident: b0300 article-title: Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound publication-title: Ultrason. Sonochem. – volume: 80 start-page: 889 year: 2015 end-page: 904 ident: b0420 article-title: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation publication-title: Nonlinear Dyn. – volume: 4 start-page: 263 year: 1997 end-page: 268 ident: b0185 article-title: Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation publication-title: Ultrason. Sonochem. – volume: 16 start-page: 502 year: 2009 end-page: 511 ident: b0375 article-title: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation publication-title: Ultrason. Sonochem. – year: 1995 ident: b0440 article-title: Cavitation and Bubble Dynamics – volume: 456 start-page: 1685 year: 2000 end-page: 1709 ident: b0005 article-title: Water vapour, sonoluminescence and sonochemistry publication-title: Proc. R. Soc. Lond. A – volume: 11 start-page: 10029 year: 2009 end-page: 10034 ident: b0220 article-title: Cavitation activation by dual-frequency ultrasound and shock waves publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 43 year: 1999 end-page: 51 ident: b0380 article-title: Characterisation of the acoustic cavitation cloud by two laser techniques publication-title: Ultrason. Sonochem. – volume: 68 start-page: 203 year: 1980 end-page: 211 ident: b0570 article-title: Measurements of the growth of air bubbles by rectified diffusion publication-title: J. Acoust. Soc. Am. – volume: 42 start-page: 327 year: 2018 end-page: 338 ident: b0305 article-title: Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue publication-title: Ultrason. Sonochem. – volume: 66 start-page: 16 year: 2015 end-page: 20 ident: b0325 article-title: Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles publication-title: Int. J. Heat Mass Transf. – start-page: 97 year: 1999 end-page: 104 ident: b0050 article-title: Acoustic Cavitation and Multi Bubble Sonoluminescence – volume: 11 start-page: 47 year: 2004 end-page: 55 ident: b0165 article-title: Using sonochemistry for the fabrication of nanomaterials publication-title: Ultrason. Sonochem. – volume: 29 start-page: 129 year: 2016 end-page: 145 ident: b0280 article-title: The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. – volume: 59 year: 2019 ident: b0175 article-title: Recent developments in the sonoelectrochemical synthesis of nanomaterials publication-title: Ultrason. Sonochem. – volume: 25 start-page: 89 year: 2015 end-page: 93 ident: b0010 article-title: Some neglected or rejected paths in sonochemistry – a very personal view publication-title: Ultrason. Sonochem. – volume: 9 start-page: 231 year: 2002 end-page: 236 ident: b0250 article-title: Enhancement of ultrasonic cavitation yield by multi-frequency sonication publication-title: Ultrason. Sonochem. – volume: 40 start-page: 151 year: 2018 end-page: 157 ident: b0285 article-title: Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. – volume: 58 year: 2019 ident: b0035 article-title: Disparities between sonoluminescence, sonochemiluminescence and dosimetry with frequency variation under flow publication-title: Ultrason. Sonochem. – start-page: 79 year: 1980 end-page: 83 ident: b0430 article-title: Some new results on cavitation threshold prediction and bubble dynamics publication-title: Cavitation and Inhomogeneities in Underwater Acoustics – volume: 102 start-page: 497 year: 2019 end-page: 536 ident: b0090 article-title: A review of models for bubble clusters in cavitating flows publication-title: Flow Turbul. Combust. – volume: 15 start-page: 143 year: 2008 end-page: 150 ident: b0405 article-title: Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects publication-title: Ultrason. Sonochem. – volume: 41 start-page: 881 year: 2015 end-page: 897 ident: b0115 article-title: Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions publication-title: Res. Chem. Intermediat. – volume: 86 year: 2012 ident: b0225 article-title: Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid publication-title: Phys. Rev. E – volume: 59 year: 2019 ident: b0295 article-title: Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution publication-title: Ultrason. Sonochem. – volume: 6 start-page: 25 year: 1999 end-page: 29 ident: b0040 article-title: Acoustic cavitation structures and simulations by a particle model publication-title: Ultrason. Sonochem. – volume: 49 start-page: 025518 year: 2017 ident: b0550 article-title: Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound publication-title: Fluid Dyn. Res. – volume: 127 start-page: 71 year: 2007 end-page: 79 ident: b0205 article-title: Modeling aspects of dual frequency sonochemical reactors publication-title: Chem. Eng. J. – volume: 81 start-page: 1961 year: 1998 end-page: 1964 ident: b0370 article-title: Boosting sonoluminescence publication-title: Phys. Rev. Lett. – reference: F. Cavalieri, F. Chemat, K. Okitsu, A. Sambandam, K. Yasui, B. Zisu, Handbook of Ultrasonics and Sonochemistry, first ed., 2016. – volume: 50 start-page: 2167 year: 2005 end-page: 2179 ident: b0200 article-title: Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation publication-title: Phys. Med. Biol. – volume: 94 start-page: 273 year: 2018 end-page: 293 ident: b0495 article-title: Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving publication-title: Nonlinear Dynam. – volume: 26 start-page: 437 year: 2015 end-page: 444 ident: b0275 article-title: Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. – volume: 15 start-page: 629 year: 2008 end-page: 635 ident: b0210 article-title: Experimental and theoretical investigations on sonoluminescence under dual frequency conditions publication-title: Ultrason. Sonochem. – volume: 42 start-page: 2555 year: 2013 end-page: 2567 ident: b0170 article-title: Sonochemical synthesis of nanomaterials publication-title: Chem. Soc. Rev. – volume: 51 start-page: 533 year: 2019 end-page: 555 ident: b0140 article-title: Sonochemical and sonoelectrochemical production of hydrogen publication-title: Ultrason. Sonochem. – volume: 35 start-page: 431 year: 2017 end-page: 439 ident: b0310 article-title: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. – volume: 43 start-page: 1054 year: 1996 end-page: 1062 ident: b0350 article-title: Enhancement of sonodynamic tissue damage production by second-harmonic superimposition: theoretical analysis of its mechanism publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 104 year: 2014 ident: b0520 article-title: Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles publication-title: Appl. Phys. Lett. – volume: 100 start-page: 137 year: 2013 end-page: 144 ident: b0230 article-title: Phase diagrams for dual frequency sonic processors using organic liquid medium publication-title: Chem. Eng. Sci. – volume: 7 start-page: 213 year: 2000 end-page: 216 ident: b0255 article-title: Cavitation activity stimulation by low frequency field pulses publication-title: Ultrason. Sonochem. – volume: 38 start-page: 298 year: 2017 end-page: 305 ident: b0315 article-title: Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation publication-title: Ultrason. Sonochem. – volume: 141 start-page: 3493 year: 2017 ident: b0490 article-title: Towards the accurate characterization of the shell parameters of microbubbles based on attenuation and sound speed measurements publication-title: J. Acoust. Soc. Am. – volume: 127 start-page: 16810 year: 2005 end-page: 16811 ident: b0385 article-title: Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field publication-title: J. Am. Chem. Soc. – year: 2019 ident: b0340 article-title: MPGOS: GPU accelerated integrator for large number of independent ordinary differential equation systems – volume: 88 year: 2013 ident: b0270 article-title: Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures publication-title: Phys. Rev. E – volume: 43 start-page: 113 year: 2004 end-page: 122 ident: b0515 article-title: A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude publication-title: Ultrasonics – volume: 38 start-page: 666 year: 2000 end-page: 670 ident: b0190 article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor publication-title: Ultrasonics – volume: 23 start-page: 16 year: 2015 end-page: 20 ident: b0320 article-title: Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency publication-title: Ultrason. Sonochem. – volume: 40 start-page: 4056 year: 2015 end-page: 4064 ident: b0125 article-title: Mechanism of the sonochemical production of hydrogen publication-title: Int. J. Hydrog. Energy. – volume: 105 start-page: 1075 year: 1999 ident: b0045 article-title: Bubble size distribution near a pressure antinode publication-title: J. Acoust. Soc. Am. – year: 2007 ident: b0060 article-title: From a single bubble to bubble structures in acoustic cavitation publication-title: Oscillations, Waves and Interactions: Sixty Years Drittes Physikalisches Institut; a Festschrift – volume: 76 start-page: 56 year: 2015 end-page: 71 ident: b0460 article-title: Numerical investigation of the strength of collapse of a harmonically excited bubble publication-title: Chaos Solitons Fract. – volume: 44 start-page: 14500 year: 2019 end-page: 14526 ident: b0135 article-title: The sono-hydro-gen process (ultrasound induced hydrogen production): challenges and opportunities publication-title: Int. J. Hydrog. Energy – volume: 64 start-page: 104989 year: 2020 ident: b0415 article-title: Relationship between the radial dynamics and the chemical production of a harmonically driven spherical bubble, Ultrason publication-title: Sonochem. – volume: 140 start-page: 3370 year: 2016 ident: b0465 article-title: Numerical investigation of the nonlinear dynamics of interacting microbubbles publication-title: J. Acoust. Soc. Am. – volume: 84 start-page: 1975 year: 1988 end-page: 1993 ident: b0445 article-title: Methods of chaos physics and their application to acoustics publication-title: J. Acoust. Soc. Am. – volume: 13 start-page: 247 year: 1992 end-page: 270 ident: b0145 article-title: Free radical formation induced by ultrasound and its biological implications publication-title: Free Radical Bio. Med. – reference: . – volume: 143 start-page: 1862 year: 2018 ident: b0500 article-title: On amplification of radial oscillations of microbubbles due to bubble-bubble interaction in polydisperse microbubble clusters under ultrasound excitation publication-title: J. Acoust. Soc. Am. – volume: 104 start-page: 198 year: 2017 end-page: 208 ident: b0480 article-title: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble publication-title: Chaos Solitons Fract. – volume: 77 year: 2008 ident: b0545 article-title: Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence publication-title: Phys. Rev. E – volume: 519 start-page: 27 year: 2019 end-page: 37 ident: b0130 article-title: Sonochemical production of hydrogen: Enhancement by summed harmonics excitation publication-title: Chem. Phys. – volume: 78 start-page: 17 year: 2014 end-page: 26 ident: b0265 article-title: Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage publication-title: Chem. Eng. Process. – volume: 173 start-page: 517 year: 2010 end-page: 522 ident: b0155 article-title: Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry publication-title: J. Hazard. Mater. – volume: 73 year: 2010 ident: b0070 article-title: Physics of bubble oscillations publication-title: Rep. Prog. Phys. – volume: 42 start-page: 579 issue: 1 year: 2004 ident: 10.1016/j.ultsonch.2020.105067_b0525 article-title: Optimum bubble temperature for the sonochemical production of oxidants publication-title: Ultrasonics doi: 10.1016/j.ultras.2003.12.005 – volume: 43 start-page: 113 issue: 2 year: 2004 ident: 10.1016/j.ultsonch.2020.105067_b0515 article-title: A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude publication-title: Ultrasonics doi: 10.1016/j.ultras.2004.04.001 – volume: 59 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0175 article-title: Recent developments in the sonoelectrochemical synthesis of nanomaterials publication-title: Ultrason. Sonochem. – volume: 53 start-page: 07KF11 issue: 7S year: 2014 ident: 10.1016/j.ultsonch.2020.105067_b0345 article-title: Highly efficient cavitation-enhanced heating with dual-frequency ultrasound exposure in high-intensity focused ultrasound treatment publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.07KF11 – volume: 21 start-page: 336 issue: 1 year: 2014 ident: 10.1016/j.ultsonch.2020.105067_b0110 article-title: Radical production inside an acoustically driven microbubble publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.07.004 – volume: 140 start-page: 3370 issue: 4 year: 2016 ident: 10.1016/j.ultsonch.2020.105067_b0465 article-title: Numerical investigation of the nonlinear dynamics of interacting microbubbles publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4970764 – volume: 38 start-page: 351 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0020 article-title: A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.03.030 – volume: 22 start-page: 41 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0160 article-title: Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.07.011 – volume: 25 start-page: 24 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0120 article-title: Sonochemistry and bubble dynamics publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.08.015 – volume: 519 start-page: 27 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0130 article-title: Sonochemical production of hydrogen: Enhancement by summed harmonics excitation publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.11.019 – volume: 84 start-page: 1975 issue: 6 year: 1988 ident: 10.1016/j.ultsonch.2020.105067_b0445 article-title: Methods of chaos physics and their application to acoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.397042 – volume: 75 start-page: 954 issue: 5 year: 1995 ident: 10.1016/j.ultsonch.2020.105067_b0530 article-title: Bubble shape oscillations and the onset of sonoluminescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.954 – volume: 42 start-page: 2555 issue: 7 year: 2013 ident: 10.1016/j.ultsonch.2020.105067_b0170 article-title: Sonochemical synthesis of nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35282F – volume: 144 start-page: 1888 issue: 3 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0505 article-title: Experimental and numerical investigation of backscattered signal strength from different concentrations of nanobubble and microbubble clusters publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5068280 – volume: 104 start-page: 198 issue: 17 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0480 article-title: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2017.08.022 – volume: 84 start-page: 985 issue: 3 year: 1988 ident: 10.1016/j.ultsonch.2020.105067_b0425 article-title: Transient pulsations of small gas bubbles in water publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.396614 – volume: 99 start-page: 1985 issue: 4 year: 1996 ident: 10.1016/j.ultsonch.2020.105067_b0365 article-title: High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.415385 – volume: 30 issue: 12 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0555 article-title: Acoustically induced bubble jets publication-title: Phys. Fluids doi: 10.1063/1.5063011 – volume: 6 start-page: 25 issue: 1 year: 1999 ident: 10.1016/j.ultsonch.2020.105067_b0040 article-title: Acoustic cavitation structures and simulations by a particle model publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(98)00025-X – volume: 59 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0295 article-title: Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104744 – volume: 54 start-page: 99 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0510 article-title: A simple method to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.02.010 – volume: 73 issue: 10 year: 2010 ident: 10.1016/j.ultsonch.2020.105067_b0070 article-title: Physics of bubble oscillations publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/10/106501 – volume: 49 start-page: 325 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0290 article-title: Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.08.025 – volume: 43 start-page: 1054 issue: 6 year: 1996 ident: 10.1016/j.ultsonch.2020.105067_b0350 article-title: Enhancement of sonodynamic tissue damage production by second-harmonic superimposition: theoretical analysis of its mechanism publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.542456 – volume: 88 issue: 3 year: 2013 ident: 10.1016/j.ultsonch.2020.105067_b0270 article-title: Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.033026 – volume: 173 start-page: 517 issue: 1 year: 2010 ident: 10.1016/j.ultsonch.2020.105067_b0155 article-title: Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.08.115 – volume: 66 start-page: 16 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0325 article-title: Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles publication-title: Int. J. Heat Mass Transf. – volume: 11 start-page: 47 issue: 2 year: 2004 ident: 10.1016/j.ultsonch.2020.105067_b0165 article-title: Using sonochemistry for the fabrication of nanomaterials publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2004.01.037 – volume: 64 start-page: 104989 year: 2020 ident: 10.1016/j.ultsonch.2020.105067_b0415 article-title: Relationship between the radial dynamics and the chemical production of a harmonically driven spherical bubble, Ultrason publication-title: Sonochem. doi: 10.1016/j.ultsonch.2020.104989 – volume: 123 start-page: 3047 issue: 5 year: 2008 ident: 10.1016/j.ultsonch.2020.105067_b0065 article-title: Pressure fields and their effects in membrane cleaning applications publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2932746 – volume: 80 start-page: 889 issue: 1–2 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0420 article-title: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-1914-7 – volume: 41 start-page: 100 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0240 article-title: Combined effects of phase-shift and power distribution on efficiency of dual-high-frequency sonochemistry publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.09.010 – volume: 15 start-page: 143 issue: 2 year: 2008 ident: 10.1016/j.ultsonch.2020.105067_b0405 article-title: Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2007.03.003 – volume: 94 start-page: 273 issue: 1 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0495 article-title: Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving publication-title: Nonlinear Dynam. doi: 10.1007/s11071-018-4358-z – volume: 100 start-page: 18784 issue: 48 year: 1996 ident: 10.1016/j.ultsonch.2020.105067_b0180 article-title: Use of second-harmonic superimposition to induce chemical effects of ultrasound publication-title: J. Phys. Chem. doi: 10.1021/jp962137a – volume: 85 start-page: 327 issue: 2 year: 2002 ident: 10.1016/j.ultsonch.2020.105067_b0410 article-title: Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(01)00179-6 – volume: 70 start-page: 151 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0075 article-title: Characterization of acoustic streaming beyond 100 MHz publication-title: Phys. Proc. doi: 10.1016/j.phpro.2015.08.075 – volume: 9 start-page: 231 issue: 5 year: 2002 ident: 10.1016/j.ultsonch.2020.105067_b0250 article-title: Enhancement of ultrasonic cavitation yield by multi-frequency sonication publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(02)00083-4 – volume: 25 start-page: 89 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0010 article-title: Some neglected or rejected paths in sonochemistry – a very personal view publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.11.014 – volume: 76 start-page: 56 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0460 article-title: Numerical investigation of the strength of collapse of a harmonically excited bubble publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2015.03.007 – volume: 501 start-page: 1 year: 2004 ident: 10.1016/j.ultsonch.2020.105067_b0535 article-title: Translational motion of a bubble undergoing shape oscillations publication-title: J. Fluid Mech. doi: 10.1017/S0022112003006220 – volume: 19 issue: 4 year: 2007 ident: 10.1016/j.ultsonch.2020.105067_b0540 article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves publication-title: Phys. Fluids doi: 10.1063/1.2716633 – year: 1995 ident: 10.1016/j.ultsonch.2020.105067_b0440 – volume: 2 start-page: 215 issue: 5 year: 1984 ident: 10.1016/j.ultsonch.2020.105067_b0565 article-title: Acoustic cavitation series: part five rectified diffusion publication-title: Ultrasonics doi: 10.1016/0041-624X(84)90016-7 – volume: 86 start-page: 1239 issue: 2 year: 2016 ident: 10.1016/j.ultsonch.2020.105067_b0470 article-title: Classification of the bifurcation structure of a periodically driven gas bubble publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-2960-5 – volume: 16 start-page: 502 issue: 4 year: 2009 ident: 10.1016/j.ultsonch.2020.105067_b0375 article-title: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2008.12.016 – volume: 35 start-page: 431 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0310 article-title: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.10.022 – volume: 51 start-page: 533 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0140 article-title: Sonochemical and sonoelectrochemical production of hydrogen publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.08.024 – volume: 44 start-page: 14500 issue: 29 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0135 article-title: The sono-hydro-gen process (ultrasound induced hydrogen production): challenges and opportunities publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.04.115 – volume: 64 start-page: 5255 issue: 24 year: 2009 ident: 10.1016/j.ultsonch.2020.105067_b0215 article-title: Mechanistic optimization of a dual frequency sonochemical reactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.08.037 – volume: 14 start-page: 783 issue: 6 year: 2007 ident: 10.1016/j.ultsonch.2020.105067_b0260 article-title: Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.12.016 – ident: 10.1016/j.ultsonch.2020.105067_b0335 – volume: 102 issue: 8 year: 2009 ident: 10.1016/j.ultsonch.2020.105067_b0390 article-title: Effect of power and frequency on bubble-size distributions in acoustic cavitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.084302 – volume: 68 start-page: 203 issue: 1 year: 1980 ident: 10.1016/j.ultsonch.2020.105067_b0570 article-title: Measurements of the growth of air bubbles by rectified diffusion publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.384624 – volume: 14 start-page: 699 issue: 6 year: 2007 ident: 10.1016/j.ultsonch.2020.105067_b0150 article-title: Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.12.013 – ident: 10.1016/j.ultsonch.2020.105067_b0055 – ident: 10.1016/j.ultsonch.2020.105067_b0330 – volume: 86 year: 2012 ident: 10.1016/j.ultsonch.2020.105067_b0225 article-title: Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.016320 – volume: 380 start-page: 1012 issue: 9–10 year: 2016 ident: 10.1016/j.ultsonch.2020.105067_b0475 article-title: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.01.022 – volume: 67 issue: 3 year: 2003 ident: 10.1016/j.ultsonch.2020.105067_b0575 article-title: Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.036610 – volume: 37 start-page: 542 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0080 article-title: Membrane cleaning with ultrasonically driven bubbles publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.12.012 – volume: 141 start-page: 3493 issue: 5 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0485 article-title: Numerical investigation of the subharmonic response of a cloud of interacting microbubbles publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4987295 – volume: 38 start-page: 666 issue: 1 year: 2000 ident: 10.1016/j.ultsonch.2020.105067_b0190 article-title: Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor publication-title: Ultrasonics doi: 10.1016/S0041-624X(99)00204-8 – volume: 58 start-page: 379 issue: 2 year: 2011 ident: 10.1016/j.ultsonch.2020.105067_b0355 article-title: Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2011.1815 – volume: 26 start-page: 437 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0275 article-title: Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.02.018 – year: 2007 ident: 10.1016/j.ultsonch.2020.105067_b0060 article-title: From a single bubble to bubble structures in acoustic cavitation – volume: 4 start-page: 263 issue: 3 year: 1997 ident: 10.1016/j.ultsonch.2020.105067_b0185 article-title: Enhancement of high-frequency acoustic cavitation effects by a low-frequency stimulation publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(97)00034-5 – start-page: 79 year: 1980 ident: 10.1016/j.ultsonch.2020.105067_b0430 article-title: Some new results on cavitation threshold prediction and bubble dynamics – volume: 55 start-page: 383 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0085 article-title: Bubble size measurements in different acoustic cavitation structures: filaments, clusters, and the acoustically cavitated jet publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.05.003 – volume: 38 start-page: 298 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0315 article-title: Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.03.028 – volume: 42 start-page: 327 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0305 article-title: Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.11.045 – volume: 41 start-page: 419 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0300 article-title: Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.10.004 – year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0340 – volume: 130 start-page: 3370 issue: 5 year: 2011 ident: 10.1016/j.ultsonch.2020.105067_b0455 article-title: Bubble dynamics in a standing sound field: the bubble habitat publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3626159 – volume: 18 start-page: 864 issue: 4 year: 2011 ident: 10.1016/j.ultsonch.2020.105067_b0395 article-title: The characterization of acoustic cavitation bubbles - an overview publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2010.11.016 – volume: 49 start-page: 025518 issue: 2 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0550 article-title: Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound publication-title: Fluid Dyn. Res. doi: 10.1088/1873-7005/aa5dad – volume: 31 start-page: 610 year: 2016 ident: 10.1016/j.ultsonch.2020.105067_b0235 article-title: Positional stability and radial dynamics of sonoluminescent bubbles under bi-harmonic driving: Effect of the high-frequency component and its relative phase publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.02.013 – volume: 40 start-page: 151 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0285 article-title: Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.03.058 – volume: 40 start-page: 4056 issue: 11 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0125 article-title: Mechanism of the sonochemical production of hydrogen publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2015.01.150 – volume: 51 start-page: 2169 issue: 9 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0025 article-title: The chemical history of a bubble publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00088 – volume: 29 start-page: 129 year: 2016 ident: 10.1016/j.ultsonch.2020.105067_b0280 article-title: The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.08.022 – volume: 57 start-page: 4987 issue: 22 year: 2002 ident: 10.1016/j.ultsonch.2020.105067_b0195 article-title: Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00271-3 – year: 1949 ident: 10.1016/j.ultsonch.2020.105067_b0435 article-title: The onset of cavitation in liquids, Tech. Rep. 12 publication-title: Acoust. Res. Lab., Harvard Univ. – volume: 143 start-page: 1862 issue: 3 year: 2018 ident: 10.1016/j.ultsonch.2020.105067_b0500 article-title: On amplification of radial oscillations of microbubbles due to bubble-bubble interaction in polydisperse microbubble clusters under ultrasound excitation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5036108 – volume: 141 start-page: 3493 issue: 5 year: 2017 ident: 10.1016/j.ultsonch.2020.105067_b0490 article-title: Towards the accurate characterization of the shell parameters of microbubbles based on attenuation and sound speed measurements publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4987297 – volume: 104 issue: 7 year: 2014 ident: 10.1016/j.ultsonch.2020.105067_b0520 article-title: Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles publication-title: Appl. Phys. Lett. doi: 10.1063/1.4865805 – volume: 58 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0030 article-title: Combined effects of flow, surface stabilisation and salt concentration in aqueous solution to control and enhance sonoluminescence publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104683 – volume: 127 start-page: 16810 issue: 48 year: 2005 ident: 10.1016/j.ultsonch.2020.105067_b0385 article-title: Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0566432 – volume: 59 start-page: 4991 issue: 22 year: 2004 ident: 10.1016/j.ultsonch.2020.105067_b0400 article-title: Optimization of multiple-frequency sonochemical reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.09.033 – volume: 100 start-page: 137 year: 2013 ident: 10.1016/j.ultsonch.2020.105067_b0230 article-title: Phase diagrams for dual frequency sonic processors using organic liquid medium publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.02.016 – volume: 41 start-page: 881 issue: 2 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0115 article-title: Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions publication-title: Res. Chem. Intermediat. doi: 10.1007/s11164-013-1240-y – volume: 54 start-page: 256 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0560 article-title: Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.01.031 – ident: 10.1016/j.ultsonch.2020.105067_b0015 – volume: 20 start-page: 510 issue: 1 year: 2013 ident: 10.1016/j.ultsonch.2020.105067_b0105 article-title: Ultrasound artificially nucleated bubbles and their sonochemical radical production publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.07.024 – volume: 6 start-page: 43 issue: 1 year: 1999 ident: 10.1016/j.ultsonch.2020.105067_b0380 article-title: Characterisation of the acoustic cavitation cloud by two laser techniques publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(98)00035-2 – volume: 44 start-page: e123 year: 2006 ident: 10.1016/j.ultsonch.2020.105067_b0360 article-title: Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.07.009 – volume: 77 issue: 6 year: 2008 ident: 10.1016/j.ultsonch.2020.105067_b0545 article-title: Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.066309 – volume: 10 start-page: 178 year: 1987 ident: 10.1016/j.ultsonch.2020.105067_b0245 article-title: Space-time interaction of two ultrasonic fields and sonoluminescence during transient cavitation in distilled water publication-title: Acoust. Lett. – volume: 15 start-page: 629 issue: 4 year: 2008 ident: 10.1016/j.ultsonch.2020.105067_b0210 article-title: Experimental and theoretical investigations on sonoluminescence under dual frequency conditions publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2007.08.006 – start-page: 97 year: 1999 ident: 10.1016/j.ultsonch.2020.105067_b0050 – volume: 127 start-page: 71 issue: 1–3 year: 2007 ident: 10.1016/j.ultsonch.2020.105067_b0205 article-title: Modeling aspects of dual frequency sonochemical reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.09.023 – volume: 456 start-page: 1685 issue: 1999 year: 2000 ident: 10.1016/j.ultsonch.2020.105067_b0005 article-title: Water vapour, sonoluminescence and sonochemistry publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.2000.0582 – volume: 88 start-page: 1061 issue: 2 year: 1990 ident: 10.1016/j.ultsonch.2020.105067_b0450 article-title: Bifurcation structure of bubble oscillators publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.399855 – volume: 105 start-page: 1075 issue: 2 year: 1999 ident: 10.1016/j.ultsonch.2020.105067_b0045 article-title: Bubble size distribution near a pressure antinode publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.424505 – volume: 13 start-page: 247 issue: 3 year: 1992 ident: 10.1016/j.ultsonch.2020.105067_b0145 article-title: Free radical formation induced by ultrasound and its biological implications publication-title: Free Radical Bio. Med. doi: 10.1016/0891-5849(92)90021-8 – volume: 50 start-page: 2167 issue: 9 year: 2005 ident: 10.1016/j.ultsonch.2020.105067_b0200 article-title: Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/50/9/017 – volume: 78 start-page: 17 year: 2014 ident: 10.1016/j.ultsonch.2020.105067_b0265 article-title: Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2014.02.003 – volume: 11 start-page: 10029 year: 2009 ident: 10.1016/j.ultsonch.2020.105067_b0220 article-title: Cavitation activation by dual-frequency ultrasound and shock waves publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b912725a – volume: 128 issue: 18 year: 2008 ident: 10.1016/j.ultsonch.2020.105067_b0100 article-title: The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions publication-title: J. Chem. Phys. doi: 10.1063/1.2919119 – volume: 81 start-page: 1961 issue: 9 year: 1998 ident: 10.1016/j.ultsonch.2020.105067_b0370 article-title: Boosting sonoluminescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.1961 – volume: 7 start-page: 213 issue: 4 year: 2000 ident: 10.1016/j.ultsonch.2020.105067_b0255 article-title: Cavitation activity stimulation by low frequency field pulses publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(99)00037-1 – volume: 127 issue: 15 year: 2007 ident: 10.1016/j.ultsonch.2020.105067_b0095 article-title: Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound publication-title: J. Chem. Phys. doi: 10.1063/1.2790420 – volume: 102 start-page: 497 issue: 3 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0090 article-title: A review of models for bubble clusters in cavitating flows publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-018-9993-4 – volume: 23 start-page: 16 year: 2015 ident: 10.1016/j.ultsonch.2020.105067_b0320 article-title: Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.07.021 – volume: 58 year: 2019 ident: 10.1016/j.ultsonch.2020.105067_b0035 article-title: Disparities between sonoluminescence, sonochemiluminescence and dosimetry with frequency variation under flow publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.104645 |
| SSID | ssj0003920 |
| Score | 2.4763463 |
| Snippet | •Dual-frequency driven single bubble dynamics is investigated.•GPU accelerated simulations of nearly 2 billion parameter combinations.•Synergetic effect in... The active cavitation threshold of a dual-frequency driven single spherical gas bubble is studied numerically. This threshold is defined as the minimum... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105067 |
| SubjectTerms | Bubble dynamics Cavitation threshold Dual-frequency driving GPU programming Keller–Miksis equation |
| Title | GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold |
| URI | https://dx.doi.org/10.1016/j.ultsonch.2020.105067 https://www.ncbi.nlm.nih.gov/pubmed/32380373 https://www.proquest.com/docview/2400549581 |
| Volume | 67 |
| WOSCitedRecordID | wos000541900400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2828 dateEnd: 20201231 omitProxy: false ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: AIEXJ dateStart: 20201001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbSdJe-TFt3yy6VJ61PiA4wGNhbF7W7SVUeGi1vyLHNloqQCJKoe91_2v_bsY1J2i3q9rAXQAYD4Xw5_o59Lgi9pl7CaRKM3RDIqBvCIejBgIGVkkTeOGc8yE2xifjsLBmN0kGn89PGwqyKuCyTy8t0_l9FDW0gbBU6-w_ibm8KDXAMQoctiB22fyX494OhwziH4URlgRAmgawJg1RxV25eGe_p746olKpz1GxBIZ3xcqyiqCYlXEhdobL-m4wdjkoPPlVuMw6oHy6towbTqtLhbNXk-VZFf2St1rM2Ke-wWFSsVhl4awd2qkKXKTG3nob9KsVhPzp852tQneoIxHYkKNic1xOttD_rZX2_mJr92puIqcIUgGatQr_Iqlz7HA9YBZaGniYfFqD0v23Oc4BRaz3mYJgyujmJiassxE3lbWp5NNoXuKJnGn4bGMwcxcXRsljAT9XLUIEucnytA3zC-VQjgwCZ8Yips3ItJbc9tYN2gzhKky7aPf54MvrUUgAgnd5GOPqfH7uH7tgbbSNF24weTX7O76N7jdWCjw3aHqCOLPfR3b6V5D66rT2Jef0Q_QD84Q38YY0_PMsxw1fxhw3-sMEfNvjDkxIuvII_3OIPa_y9xYA-bNCH1-jDLfoeoeHpyXn_g9sU-nA5ocnCTaOEpjkXDNh4TmVOwAyIiBDU54HHJY0CQcaBT4X0UsK58L1QBCHhREYiDTknj1G3nJXyKcI55cCpaZxGTOWdAvoNJFU5Hacxhw68hyL7pTPevJ8qxlJk1t3xIrPCypSwMiOsHnrT9pubPDA39kitILOGzRqWmgEmb-z7yko-A0GqNTxWytmyzpTLdxTCB_N76ImBRPs-Fk3Ptp55jvbWf60XqLuolvIlusVXi0ldHaCdeJQcNFj-BfBk0g8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU+accelerated+study+of+a+dual-frequency+driven+single+bubble+in+a+6-dimensional+parameter+space%3A+The+active+cavitation+threshold&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Heged%C5%B1s%2C+Ferenc&rft.au=Klapcsik%2C+K%C3%A1lm%C3%A1n&rft.au=Lauterborn%2C+Werner&rft.au=Parlitz%2C+Ulrich&rft.date=2020-10-01&rft.eissn=1873-2828&rft.volume=67&rft.spage=105067&rft_id=info:doi/10.1016%2Fj.ultsonch.2020.105067&rft_id=info%3Apmid%2F32380373&rft.externalDocID=32380373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |