A binary integer programming (BIP) model for optimal financial turning points detection
Purpose This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results...
Saved in:
| Published in: | Journal of modelling in management Vol. 18; no. 5; pp. 1313 - 1332 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bradford
Emerald Publishing Limited
07.09.2023
Emerald Group Publishing Limited |
| Subjects: | |
| ISSN: | 1746-5664, 1746-5664, 1746-5672 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results in earning profit by offering the opportunity to buy at low and selling at high. TPs detected from the history of time series will be used as the prediction model’s input. According to the literature, the predicted TPs’ profitability depends on the detected TPs’ profitability. Therefore, research for improving the profitability of detection methods has been never given up. Nevertheless, to the best of our knowledge, none of the existing methods can detect the optimal TPs.
Design/methodology/approach
The objective function of our model maximizes the profit of adopting all the trading strategies. The decision variables represent whether or not to detect the breakpoints as TPs. The assumptions of the model are as follows. Short-selling is possible. The time value for the money is not considered. Detection of consecutive buying (selling) TPs is not possible.
Findings
Empirical results with 20 data sets from Shanghai Stock Exchange indicate that the model detects the optimal TPs.
Originality/value
The proposed model, in contrast to the other methods, can detect the optimal TPs. Additionally, the proposed model, in contrast to the other methods, requires transaction cost as its only input parameter. This advantage reduces the process’ calculations. |
|---|---|
| AbstractList | PurposeThis paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results in earning profit by offering the opportunity to buy at low and selling at high. TPs detected from the history of time series will be used as the prediction model’s input. According to the literature, the predicted TPs’ profitability depends on the detected TPs’ profitability. Therefore, research for improving the profitability of detection methods has been never given up. Nevertheless, to the best of our knowledge, none of the existing methods can detect the optimal TPs.Design/methodology/approachThe objective function of our model maximizes the profit of adopting all the trading strategies. The decision variables represent whether or not to detect the breakpoints as TPs. The assumptions of the model are as follows. Short-selling is possible. The time value for the money is not considered. Detection of consecutive buying (selling) TPs is not possible.FindingsEmpirical results with 20 data sets from Shanghai Stock Exchange indicate that the model detects the optimal TPs.Originality/valueThe proposed model, in contrast to the other methods, can detect the optimal TPs. Additionally, the proposed model, in contrast to the other methods, requires transaction cost as its only input parameter. This advantage reduces the process’ calculations. Purpose This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results in earning profit by offering the opportunity to buy at low and selling at high. TPs detected from the history of time series will be used as the prediction model’s input. According to the literature, the predicted TPs’ profitability depends on the detected TPs’ profitability. Therefore, research for improving the profitability of detection methods has been never given up. Nevertheless, to the best of our knowledge, none of the existing methods can detect the optimal TPs. Design/methodology/approach The objective function of our model maximizes the profit of adopting all the trading strategies. The decision variables represent whether or not to detect the breakpoints as TPs. The assumptions of the model are as follows. Short-selling is possible. The time value for the money is not considered. Detection of consecutive buying (selling) TPs is not possible. Findings Empirical results with 20 data sets from Shanghai Stock Exchange indicate that the model detects the optimal TPs. Originality/value The proposed model, in contrast to the other methods, can detect the optimal TPs. Additionally, the proposed model, in contrast to the other methods, requires transaction cost as its only input parameter. This advantage reduces the process’ calculations. |
| Author | Yazdani, Fatemeh Hejazi, Seyed Reza Khashei, Mehdi |
| Author_xml | – sequence: 1 givenname: Fatemeh surname: Yazdani fullname: Yazdani, Fatemeh email: yazdanifateme@in.iut.ac.ir – sequence: 2 givenname: Mehdi surname: Khashei fullname: Khashei, Mehdi email: khashei@cc.iut.ac.ir – sequence: 3 givenname: Seyed Reza surname: Hejazi fullname: Hejazi, Seyed Reza email: rhejazi@cc.iut.ac.ir |
| BookMark | eNp9kTtPwzAUhS1UJNrCzmiJBYZQPxLHGUvFo6gIhkqMlutcV6mSODju0H-PozIAQkz3DOe79_h4gkatawGhS0puKSVy9vzCEiITRhhNCJXsBI1pnookEyIdfdNnaNL3O0KETPN8jN7neFO12h9w1QbYgsedd1uvm6Zqt_j6bvl2gxtXQo2t89h1oWp01BFpTRVV2Pt2cHYu8j0uIYAJlWvP0anVdQ8XX3OK1g_368VTsnp9XC7mq8RwIUNSMFtqolPIU8sKsGCzTVFwKUkOWW44A86KlGSy1Jqm2ppMiyK-0UgLUhR8iq6Oa2Pqjz30Qe1cTBQvKiYFEYQzTqNLHF3Gu773YJWpgh5iBq-rWlGihg5V7FDFMXSohg4jSH6BnY8F-MN_yOyIQANe1-VfxI-P4p9CO4NI |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105464 |
| Cites_doi | 10.1002/asmb.1945 10.1016/j.asoc.2019.02.039 10.1016/j.asoc.2012.10.026 10.1002/(SICI)1099-131X(199905)18:3<151::AID-FOR716>3.0.CO;2-V 10.1108/JM2-11-2011-0057 10.1016/j.eswa.2008.11.014 10.1016/j.knosys.2015.04.001 10.1080/21681015.2017.1370742 10.1016/j.asoc.2017.03.007 10.1007/s00500-019-04650-8 10.1016/j.eswa.2010.09.037 10.1109/TSMCB.2005.856720 10.1080/10800379.2017.12097315 10.1108/JM2-02-2017-0021 10.1002/sam.11411 10.1023/A:1010884214864 10.1108/JM2-12-2018-0217 10.1007/s11280-018-0534-9 10.1016/S0278-4319(99)00011-0 10.1016/j.jfds.2016.03.002 10.1109/TEVC.2008.911682 10.1111/j.1467-842X.2012.00681.x 10.1080/21681015.2017.1374308 10.1016/j.eswa.2009.05.054 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 0U~ 1-H 7WY 7WZ 7XB AFKRA BENPR BEZIV CCPQU DWQXO F~G K6~ K8~ L.- L.0 M0C PHGZM PHGZT PKEHL PQBIZ PQEST PQQKQ PQUKI Q9U |
| DOI | 10.1108/JM2-08-2021-0182 |
| DatabaseName | CrossRef Global News & ABI/Inform Professional Trade PRO ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection ProQuest One ProQuest Central ABI/INFORM Global (Corporate) ProQuest Business Collection DELNET Management Collection ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Business Premium Collection ABI/INFORM Global (Corporate) ProQuest One Business ABI/INFORM Global ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest One Community College Trade PRO ProQuest Business Collection ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced ProQuest One Academic UKI Edition ABI/INFORM Professional Standard ProQuest Central Korea ProQuest DELNET Management Collection ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | Business Premium Collection |
| Database_xml | – sequence: 1 dbid: 7WY name: ABI/INFORM Collection url: https://www.proquest.com/abicomplete sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1746-5664 1746-5672 |
| EndPage | 1332 |
| ExternalDocumentID | 10_1108_JM2_08_2021_0182 10.1108/JM2-08-2021-0182 |
| GroupedDBID | .WS 0R~ 29L 3FY 4.4 5GY 5VS 70U 7WY 8R4 8R5 9F- AAGBP AAGMD AAKOT AAMCF AAPSD AARQV AAUDR ABEAN ABIJV ABJNI ABSDC ABYQI ACGFO ACGFS ACPVR ACTSA ADOMW ADQHX AEBZA AEDOK AEMMR AETHF AFKRA AFNZV AFZLO AGTVX AIAFM AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ASMFL ATGMP AUCOK BENPR BEZIV BPHCQ CCPQU CS3 DU5 DWQXO ECCUG FNNZZ GEI GMM GMN GMX GQ. H13 HZ~ IPNFZ J1Y JI- JL0 K6~ K8~ KBGRL M0C O9- P2P PQBIZ PQQKQ PROAC Q2X RIG TDY TEM TGG TMD TMF Z11 Z12 ZYZAG AAPWK AAXBI AAYXX ADWNT AFFHD AHMHQ CITATION EBS PHGZM PHGZT 0U~ 1-H 7XB AFNTC L.- L.0 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c368t-92fda0a4e74f29efef5b9938807e57c32e3294058daa14afc5a69202c8fe8693 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773952000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-5664 |
| IngestDate | Mon Jun 30 13:37:43 EDT 2025 Sat Nov 29 07:39:25 EST 2025 Tue Nov 18 22:39:14 EST 2025 Thu Oct 10 06:54:00 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Linear programming Profitability Financial analysis Time series Turning points (TPs) detection Binary integer programming (BIP) |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-92fda0a4e74f29efef5b9938807e57c32e3294058daa14afc5a69202c8fe8693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2860603231 |
| PQPubID | 28934 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2860603231 emerald_primary_10_1108_JM2-08-2021-0182 crossref_citationtrail_10_1108_JM2_08_2021_0182 crossref_primary_10_1108_JM2_08_2021_0182 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-07 |
| PublicationDateYYYYMMDD | 2023-09-07 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Bradford |
| PublicationPlace_xml | – name: Bradford |
| PublicationTitle | Journal of modelling in management |
| PublicationYear | 2023 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2023090513255319500_ref008) 2020; 24 (key2023090513255319500_ref027) 1992 (key2023090513255319500_ref046) 2019; 15 (key2023090513255319500_ref043) 2017; 56 (key2023090513255319500_ref041) 2014 (key2023090513255319500_ref031) 2010 (key2023090513255319500_ref044) 2011 (key2023090513255319500_ref016) 2016; 2 (key2023090513255319500_ref019) 2021 (key2023090513255319500_ref050) 1999; 18 (key2023090513255319500_ref004) 2019; 12 (key2023090513255319500_ref051) 2016 (key2023090513255319500_ref047) 2018 (key2023090513255319500_ref055) 2011 (key2023090513255319500_ref011) 2016; 7 (key2023090513255319500_ref018) 2020 (key2023090513255319500_ref037) 2014; 9 (key2023090513255319500_ref033) 1994 (key2023090513255319500_ref035) 2020; 16 (key2023090513255319500_ref042) 2013; 13 (key2023090513255319500_ref022) 2011; 38 (key2023090513255319500_ref005) 2008; 39 (key2023090513255319500_ref028) 2019; 6 (key2023090513255319500_ref015) 2014 (key2023090513255319500_ref040) 2009; 36 (key2023090513255319500_ref012) 1999; 18 (key2023090513255319500_ref029) 2009; 13 (key2023090513255319500_ref007) 2015 (key2023090513255319500_ref052) 2018 (key2023090513255319500_ref054) 2017; 41 (key2023090513255319500_ref023) 2001; 44 (key2023090513255319500_ref032) 2011 (key2023090513255319500_ref001) 2009 (key2023090513255319500_ref003) 2018; 13 (key2023090513255319500_ref048) 2015; 84 (key2023090513255319500_ref056) 2010 (key2023090513255319500_ref009) 2007 (key2023090513255319500_ref039) 2007 (key2023090513255319500_ref017) 2006; 36 (key2023090513255319500_ref030) 2018; 21 (key2023090513255319500_ref020) 2017; 34 (key2023090513255319500_ref049) 2011 (key2023090513255319500_ref053) 2019; 78 (key2023090513255319500_ref045) 2008 (key2023090513255319500_ref036) 2013 (key2023090513255319500_ref038) 2008 (key2023090513255319500_ref002) 2016 (key2023090513255319500_ref010) 2009; 36 (key2023090513255319500_ref026) 2014; 30 (key2023090513255319500_ref025) 2012; 54 (key2023090513255319500_ref024) 1989 (key2023090513255319500_ref021) 2018; 35 (key2023090513255319500_ref014) 2021; 80 (key2023090513255319500_ref034) 1992 (key2023090513255319500_ref006) 2009 (key2023090513255319500_ref013) 2012; 9 |
| References_xml | – volume: 16 start-page: 668 issue: 2 year: 2020 ident: key2023090513255319500_ref035 article-title: Deriving wisdom from virtual investing communities: an alternative strategy to stock recommendations publication-title: Journal of Modelling in Management – start-page: 1 volume-title: The International Conference on Intelligent Computing year: 2009 ident: key2023090513255319500_ref006 article-title: An ensemble of neural networks for stock trading decision making – start-page: 213 volume-title: The Workshops on Applications of Evolutionary Computation year: 2009 ident: key2023090513255319500_ref001 article-title: Predicting turning points in financial markets with fuzzy-evolutionary and neuro-evolutionary modeling – start-page: 429 year: 2011 ident: key2023090513255319500_ref032 article-title: A new approach to neural network based stock trading strategy – volume: 30 start-page: 132 issue: 2 year: 2014 ident: key2023090513255319500_ref026 article-title: Sequential smoothing for turning point detection with application to financial decisions publication-title: Applied Stochastic Models in Business and Industry doi: 10.1002/asmb.1945 – start-page: 1659 year: 2011 ident: key2023090513255319500_ref044 article-title: Enhanced rule extraction and classification mechanism of genetic network programming for stock trading signal generation – volume-title: Genetic Programming: On the programming of Computers by Means of Natural Selection year: 1992 ident: key2023090513255319500_ref034 – start-page: 1187 year: 2018 ident: key2023090513255319500_ref052 article-title: Design and research of intelligent quantitative investment model based on PLR-IRF and DRNN algorithm – volume: 78 start-page: 685 year: 2019 ident: key2023090513255319500_ref053 article-title: A new approach of integrating piecewise linear representation and weighted support vector machine for forecasting stock turning points publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.02.039 – volume-title: Genetic Programming II: Automatic Discovery of Reusable Subprograms year: 1994 ident: key2023090513255319500_ref033 – volume: 13 start-page: 806 issue: 2 year: 2013 ident: key2023090513255319500_ref042 article-title: Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.10.026 – start-page: 220 year: 2007 ident: key2023090513255319500_ref009 article-title: Genetic network programming with sarsa learning and its application to creating stock trading rules – start-page: 135 year: 2016 ident: key2023090513255319500_ref051 article-title: A rough petri nets model for stock trading signal detection – start-page: 3459 year: 2008 ident: key2023090513255319500_ref038 article-title: Prediction of turning points for chaotic time series using ensemble ANN model – start-page: 1 year: 2021 ident: key2023090513255319500_ref019 article-title: Testing the application of support vector machine (SVM) to technical trading rules – start-page: 159 year: 2010 ident: key2023090513255319500_ref031 article-title: A neural networks filtering mechanism for foreign exchange trading signals – start-page: 1 year: 2010 ident: key2023090513255319500_ref056 article-title: Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms – volume: 18 start-page: 151 issue: 3 year: 1999 ident: key2023090513255319500_ref050 article-title: Economic factors and the stock market: a new perspective publication-title: Journal of Forecasting doi: 10.1002/(SICI)1099-131X(199905)18:3<151::AID-FOR716>3.0.CO;2-V – volume: 9 start-page: 36 issue: 1 year: 2014 ident: key2023090513255319500_ref037 article-title: Using portfolio optimisation models to enhance decision making and prediction publication-title: Journal of Modelling in Management doi: 10.1108/JM2-11-2011-0057 – volume: 36 start-page: 7818 issue: 4 year: 2009 ident: key2023090513255319500_ref040 article-title: Trading strategy design in financial investment through a turning points prediction scheme publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.11.014 – volume: 84 start-page: 98 year: 2015 ident: key2023090513255319500_ref048 article-title: Optimization of a multiproduct economic production quantity problem with stochastic constraints using sequential quadratic programming publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.04.001 – volume: 9 start-page: 202 issue: 6 year: 2012 ident: key2023090513255319500_ref013 article-title: Trading signal generation using a combination of chart patterns and indicators publication-title: International Journal of Computer Science Issues (IJCSI) – volume: 34 start-page: 529 issue: 7 year: 2017 ident: key2023090513255319500_ref020 article-title: Modeling and optimization of four-level integrated supply chain with the aim of determining the optimum stockpile and period length: sequential quadratic programming publication-title: Journal of Industrial and Production Engineering doi: 10.1080/21681015.2017.1370742 – volume: 56 start-page: 199 year: 2017 ident: key2023090513255319500_ref043 article-title: Improving the integration of piece wise linear representation and weighted support vector machine for stock trading signal prediction publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.03.007 – volume: 24 start-page: 12111 issue: 16 year: 2020 ident: key2023090513255319500_ref008 article-title: A novel framework for stock trading signals forecasting publication-title: Soft Computing doi: 10.1007/s00500-019-04650-8 – volume: 6 start-page: 237 issue: 3 year: 2019 ident: key2023090513255319500_ref028 article-title: Modeling and optimal lot-sizing of integrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: generalized outer approximation publication-title: International Journal of Systems Science: Operations and Logistics – start-page: 174 year: 2011 ident: key2023090513255319500_ref049 article-title: Application of artificial neural networks to predict intraday trading signals – volume: 38 start-page: 3765 issue: 4 year: 2011 ident: key2023090513255319500_ref022 article-title: Dynamic ridge polynomial neural network: forecasting the univariate non-stationary and stationary trading signals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.09.037 – volume: 36 start-page: 179 issue: 1 year: 2006 ident: key2023090513255319500_ref017 article-title: A study of evolutionary multiagent models based on symbiosis publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2005.856720 – start-page: 651 year: 2015 ident: key2023090513255319500_ref007 article-title: Prediction of stock trading signal based on support vector machine – start-page: 1029 year: 2013 ident: key2023090513255319500_ref036 article-title: Dynamic stock trading system based on quantum-inspired Tabu search algorithm – volume: 41 start-page: 111 issue: 2 year: 2017 ident: key2023090513255319500_ref054 article-title: From the business cycle to the output cycle: predicting South African economic activity publication-title: Studies in Economics and Econometrics doi: 10.1080/10800379.2017.12097315 – volume: 13 start-page: 394 issue: 2 year: 2018 ident: key2023090513255319500_ref003 article-title: Investment portfolio formation via multicriteria decision aid: a Brazilian stock market study publication-title: Journal of Modelling in Management doi: 10.1108/JM2-02-2017-0021 – volume: 12 start-page: 426 issue: 5 year: 2019 ident: key2023090513255319500_ref004 article-title: Online detection of financial time series peaks and troughs: a probability‐based approach publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal doi: 10.1002/sam.11411 – volume: 39 start-page: 80 issue: 1 year: 2008 ident: key2023090513255319500_ref005 article-title: Integrating a piecewise linear representation method and a neural network model for stock trading points prediction publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – start-page: 112 year: 2014 ident: key2023090513255319500_ref015 article-title: A dynamic stock trading system based on a multi-objective quantum-inspired Tabu search algorithm – volume: 80 start-page: 1 issue: 28/29 year: 2021 ident: key2023090513255319500_ref014 article-title: Multiple strategies for trading short-term stock index futures based on visual trend bands publication-title: Multimedia Tools and Applications – start-page: 333 year: 2020 ident: key2023090513255319500_ref018 article-title: Exploring the use of data at multiple granularity levels in machine learning-based stock trading – volume: 44 start-page: 161 issue: 1/2 year: 2001 ident: key2023090513255319500_ref023 article-title: Noisy time series prediction using recurrent neural networks and grammatical inference publication-title: Machine Learning doi: 10.1023/A:1010884214864 – volume: 15 start-page: 647 issue: 2 year: 2019 ident: key2023090513255319500_ref046 article-title: Making investment decisions in stock markets using a forecasting-Markowitz based decision-making approaches publication-title: Journal of Modelling in Management doi: 10.1108/JM2-12-2018-0217 – volume: 21 start-page: 1473 issue: 6 year: 2018 ident: key2023090513255319500_ref030 article-title: Discovery of trading points based on Bayesian modeling of trading rules publication-title: World Wide Web doi: 10.1007/s11280-018-0534-9 – start-page: 331 year: 2007 ident: key2023090513255319500_ref039 article-title: A machine learning approach to predict turning points for chaotic financial time series – volume: 7 start-page: 254 issue: 10 year: 2016 ident: key2023090513255319500_ref011 article-title: Backpropagation neural network model for stock trading points prediction publication-title: International Research Journal of Applied Finance – volume: 18 start-page: 159 issue: 2 year: 1999 ident: key2023090513255319500_ref012 article-title: Forecasting industry turning points: the US hotel industry cycle model publication-title: International Journal of Hospitality Management doi: 10.1016/S0278-4319(99)00011-0 – volume: 2 start-page: 42 issue: 1 year: 2016 ident: key2023090513255319500_ref016 article-title: A hybrid stock trading framework integrating technical analysis with machine learning techniques publication-title: The Journal of Finance and Data Science doi: 10.1016/j.jfds.2016.03.002 – volume: 13 start-page: 56 issue: 1 year: 2009 ident: key2023090513255319500_ref029 article-title: Financial market trading system with a hierarchical coevolutionary fuzzy predictive model publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.911682 – volume-title: Genetic Algorithms in Search, Optimization, and MachineLearning year: 1989 ident: key2023090513255319500_ref024 – volume: 54 start-page: 325 issue: 3 year: 2012 ident: key2023090513255319500_ref025 article-title: Evaluation of recursive detection methods for turning points in financial time series publication-title: Australian and New Zealand Journal of Statistics doi: 10.1111/j.1467-842X.2012.00681.x – start-page: 316 year: 2011 ident: key2023090513255319500_ref055 article-title: Genetic algorithm for trading signal generation – start-page: 1 year: 2008 ident: key2023090513255319500_ref045 article-title: An empirical study of genetic programming generated trading rules in computerized stock trading service system – volume: 35 start-page: 6 issue: 1 year: 2018 ident: key2023090513255319500_ref021 article-title: An optimal integrated lot sizing policy of inventory in a bi-objective multi-level supply chain with stochastic constraints and imperfect products publication-title: Journal of Industrial and Production Engineering doi: 10.1080/21681015.2017.1374308 – volume-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence year: 1992 ident: key2023090513255319500_ref027 – start-page: 200 year: 2014 ident: key2023090513255319500_ref041 article-title: Can web news media sentiments improve stock trading signal prediction? – volume: 36 start-page: 12537 issue: 10 year: 2009 ident: key2023090513255319500_ref010 article-title: A genetic network programming with learning approach for enhanced stock trading model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.05.054 – start-page: 1 year: 2018 ident: key2023090513255319500_ref047 article-title: Neural network based trading signal generation in Cypto-Currency markets – start-page: 1 year: 2016 ident: key2023090513255319500_ref002 article-title: Generating ternary stock trading signals using fuzzy genetic network programming |
| SSID | ssj0068477 ssib023131022 |
| Score | 2.2686849 |
| Snippet | Purpose
This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming... PurposeThis paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1313 |
| SubjectTerms | Business cycles Data compression Decision making History Integer programming Inventory Investments Linear programming Performance evaluation Profitability Profits Securities markets Time series |
| Title | A binary integer programming (BIP) model for optimal financial turning points detection |
| URI | https://www.emerald.com/insight/content/doi/10.1108/JM2-08-2021-0182/full/html https://www.proquest.com/docview/2860603231 |
| Volume | 18 |
| WOSCitedRecordID | wos000773952000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1746-5664 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0068477 issn: 1746-5664 databaseCode: 7WY dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM global customDbUrl: eissn: 1746-5664 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0068477 issn: 1746-5664 databaseCode: M0C dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1746-5664 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0068477 issn: 1746-5664 databaseCode: BENPR dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6sinjxLdZHycGDHkK32WySPYlKRQVLEUE9LdlNAoK2ta3-fidpVlHEi6c95MGSbzLzZTKZATjMBBfCOUOVMoxyriUtubRUJymzucBzS-lCsQnZ66mHh7wfHW6TGFZZ68SgqM2w8j7yNlNItXGCtHMyeqW-apS_XY0lNBqw4JmND-m7Sc5recK-qT_Q1JpZoCaWsweSgiKN4fW1ZaLa1zfMewqZj1hIOop9M1M_3up-6etghC5W__v7a7AS6Sc5ncnLOszZwQYs1dHvm3B_SsrwQpeEPBJ2TGIA1wuaOHJ0dtU_JqF4DkGyS4aob15wOlen7SBowLyjhYyGOH5CjJ2GUK_BFtxddO_OL2msvUCrVKgpzZkzOtHcSu5Ybp11WYlUBne7tJmsEMiU5Uj2lNG6w7WrMi1yXL1KOatEnm7D_GA4sDtAysykSpiE6VTxLDOlYG6WVQflxyjbhHa90kUV85L78hjPRTifJKpAbAr8eGwKj00Tjj9HjGY5Of7oexTB-63rN8ibsF9DV8SNPCm-cNv9u3kPln0l-hB-Jvdhfjp-swewWL1PnybjFjTk_WMLFs66vf5tK0jpB4Ot5v4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH4hYMALKmJYRe1BEzg0O9vptJ0DIagQVmDDYRPw1HSmbWICu-vuCuGP4n_0tTOVYAw3DpzmMG3TmX5933vt-wHwqRBcCO8tVcoyyrmRtOLSUZPlzJUC7ZbKx2ITcjBQ5-fl6QLcpliY4FaZZGIU1HZchzPyLlOoauMAeW938ouGqlHhdjWV0GhgceRurtFkm-30v-H6fmbsYH_49ZC2VQVonQs1pyXz1mSGO8k9K513vqiQpBHH0hWyxinmrEQ1Rlljetz4ujCiZBmrlXdKhNxLKPGXUIyLUDBBnv1I8MWp5cF-SkQgUPDLJh5TUNSaeLolzVT3-wkLB5MsOEhkPcXuseI_ocF39BA57-DFE_tbL2G1Va7JXrMbXsGCG63BcvLtfw1ne6SK8cckZslwU9K6p10igZOtL_3TbRJLAxFU5ckYpeklDudTUhKC9ByOkchkjP1nxLp5dGQbrcPwMb7qDSyOxiO3AaQqbK6EzZjJFS8KWwnmm5xBuDusch3opoXVdZt1PRT_uNDR-sqURihofAQo6ACFDmz_7TFpMo480Harxcr_mt5DWAc2E1J0K6Zm-g4mbx9-_RFWDocnx_q4Pzh6B89x1Dw62slNWJxPf7v38Ky-mv-cTT_ELUFAPzKo_gBoC0Eh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKaq4lLcIFPABpPZgZWN7be8BoZY2IhSiCFWiN8u7tiWkNglJoOpP498x9q6pilBvPXDaw9qWd_15vhl7HgCvSymkDMFRrR2jQlhFa6E8tQVnvpJot9QhFZtQk4k-Pa2mG_Arx8JEt8osE5OgdvMmnpEPmEZVGwfgw0Ho3CKmh6N3i-80VpCKN625nEYLkWN_eYHm2-rt-BDX-g1jo6OT9x9oV2GANlzqNa1YcLawwisRWOWDD2WNhI2YVr5UDU6XswpVGu2sHQobmtLKihWs0cFrGfMwofTfVBxtnh5sHhxNpl8ymHGiPFpTmRYk0oBqozMlRR1K5DvTQg8-fmbxmJJFd4liqNk1jvwrUPiKLBIDju79x__uPmx3ajfZb_fJA9jws4ewlb3-H8HXfVKnyGSS8mf4Jekc186R2snuwXi6R1LRIIJKPpmjnD3H4UJOV0KQuOMBE1nMsf-KOL9OLm6zx3ByG1_1BHqz-cw_BVKXjmvpCma5FmXpaslCm00I943Tvg-DvMim6fKxx7IgZybZZYU2CAuDjwgLE2HRh70_PRZtLpIb2u52uPlX02to68NORo3pBNjKXEHm2c2vX8EWYsl8Gk-On8NdHJQnDzy1A7318od_AXean-tvq-XLbn8QMLeMqt9YLksH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+integer+programming+%28BIP%29+model+for+optimal+financial+turning+points+detection&rft.jtitle=Journal+of+modelling+in+management&rft.au=Yazdani%2C+Fatemeh&rft.au=Khashei%2C+Mehdi&rft.au=Hejazi%2C+Seyed+Reza&rft.date=2023-09-07&rft.issn=1746-5664&rft.eissn=1746-5664&rft.volume=18&rft.issue=5&rft.spage=1313&rft.epage=1332&rft_id=info:doi/10.1108%2FJM2-08-2021-0182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_JM2_08_2021_0182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-5664&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-5664&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-5664&client=summon |