A binary integer programming (BIP) model for optimal financial turning points detection

Purpose This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modelling in management Vol. 18; no. 5; pp. 1313 - 1332
Main Authors: Yazdani, Fatemeh, Khashei, Mehdi, Hejazi, Seyed Reza
Format: Journal Article
Language:English
Published: Bradford Emerald Publishing Limited 07.09.2023
Emerald Group Publishing Limited
Subjects:
ISSN:1746-5664, 1746-5664, 1746-5672
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results in earning profit by offering the opportunity to buy at low and selling at high. TPs detected from the history of time series will be used as the prediction model’s input. According to the literature, the predicted TPs’ profitability depends on the detected TPs’ profitability. Therefore, research for improving the profitability of detection methods has been never given up. Nevertheless, to the best of our knowledge, none of the existing methods can detect the optimal TPs. Design/methodology/approach The objective function of our model maximizes the profit of adopting all the trading strategies. The decision variables represent whether or not to detect the breakpoints as TPs. The assumptions of the model are as follows. Short-selling is possible. The time value for the money is not considered. Detection of consecutive buying (selling) TPs is not possible. Findings Empirical results with 20 data sets from Shanghai Stock Exchange indicate that the model detects the optimal TPs. Originality/value The proposed model, in contrast to the other methods, can detect the optimal TPs. Additionally, the proposed model, in contrast to the other methods, requires transaction cost as its only input parameter. This advantage reduces the process’ calculations.
AbstractList PurposeThis paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results in earning profit by offering the opportunity to buy at low and selling at high. TPs detected from the history of time series will be used as the prediction model’s input. According to the literature, the predicted TPs’ profitability depends on the detected TPs’ profitability. Therefore, research for improving the profitability of detection methods has been never given up. Nevertheless, to the best of our knowledge, none of the existing methods can detect the optimal TPs.Design/methodology/approachThe objective function of our model maximizes the profit of adopting all the trading strategies. The decision variables represent whether or not to detect the breakpoints as TPs. The assumptions of the model are as follows. Short-selling is possible. The time value for the money is not considered. Detection of consecutive buying (selling) TPs is not possible.FindingsEmpirical results with 20 data sets from Shanghai Stock Exchange indicate that the model detects the optimal TPs.Originality/valueThe proposed model, in contrast to the other methods, can detect the optimal TPs. Additionally, the proposed model, in contrast to the other methods, requires transaction cost as its only input parameter. This advantage reduces the process’ calculations.
Purpose This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming (BIP) model. TPs prediction problem is one of the most popular yet challenging topics in financial planning. Predicting profitable TPs results in earning profit by offering the opportunity to buy at low and selling at high. TPs detected from the history of time series will be used as the prediction model’s input. According to the literature, the predicted TPs’ profitability depends on the detected TPs’ profitability. Therefore, research for improving the profitability of detection methods has been never given up. Nevertheless, to the best of our knowledge, none of the existing methods can detect the optimal TPs. Design/methodology/approach The objective function of our model maximizes the profit of adopting all the trading strategies. The decision variables represent whether or not to detect the breakpoints as TPs. The assumptions of the model are as follows. Short-selling is possible. The time value for the money is not considered. Detection of consecutive buying (selling) TPs is not possible. Findings Empirical results with 20 data sets from Shanghai Stock Exchange indicate that the model detects the optimal TPs. Originality/value The proposed model, in contrast to the other methods, can detect the optimal TPs. Additionally, the proposed model, in contrast to the other methods, requires transaction cost as its only input parameter. This advantage reduces the process’ calculations.
Author Yazdani, Fatemeh
Hejazi, Seyed Reza
Khashei, Mehdi
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Yazdani
  fullname: Yazdani, Fatemeh
  email: yazdanifateme@in.iut.ac.ir
– sequence: 2
  givenname: Mehdi
  surname: Khashei
  fullname: Khashei, Mehdi
  email: khashei@cc.iut.ac.ir
– sequence: 3
  givenname: Seyed Reza
  surname: Hejazi
  fullname: Hejazi, Seyed Reza
  email: rhejazi@cc.iut.ac.ir
BookMark eNp9kTtPwzAUhS1UJNrCzmiJBYZQPxLHGUvFo6gIhkqMlutcV6mSODju0H-PozIAQkz3DOe79_h4gkatawGhS0puKSVy9vzCEiITRhhNCJXsBI1pnookEyIdfdNnaNL3O0KETPN8jN7neFO12h9w1QbYgsedd1uvm6Zqt_j6bvl2gxtXQo2t89h1oWp01BFpTRVV2Pt2cHYu8j0uIYAJlWvP0anVdQ8XX3OK1g_368VTsnp9XC7mq8RwIUNSMFtqolPIU8sKsGCzTVFwKUkOWW44A86KlGSy1Jqm2ppMiyK-0UgLUhR8iq6Oa2Pqjz30Qe1cTBQvKiYFEYQzTqNLHF3Gu773YJWpgh5iBq-rWlGihg5V7FDFMXSohg4jSH6BnY8F-MN_yOyIQANe1-VfxI-P4p9CO4NI
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105464
Cites_doi 10.1002/asmb.1945
10.1016/j.asoc.2019.02.039
10.1016/j.asoc.2012.10.026
10.1002/(SICI)1099-131X(199905)18:3<151::AID-FOR716>3.0.CO;2-V
10.1108/JM2-11-2011-0057
10.1016/j.eswa.2008.11.014
10.1016/j.knosys.2015.04.001
10.1080/21681015.2017.1370742
10.1016/j.asoc.2017.03.007
10.1007/s00500-019-04650-8
10.1016/j.eswa.2010.09.037
10.1109/TSMCB.2005.856720
10.1080/10800379.2017.12097315
10.1108/JM2-02-2017-0021
10.1002/sam.11411
10.1023/A:1010884214864
10.1108/JM2-12-2018-0217
10.1007/s11280-018-0534-9
10.1016/S0278-4319(99)00011-0
10.1016/j.jfds.2016.03.002
10.1109/TEVC.2008.911682
10.1111/j.1467-842X.2012.00681.x
10.1080/21681015.2017.1374308
10.1016/j.eswa.2009.05.054
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0U~
1-H
7WY
7WZ
7XB
AFKRA
BENPR
BEZIV
CCPQU
DWQXO
F~G
K6~
K8~
L.-
L.0
M0C
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1108/JM2-08-2021-0182
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
ProQuest One
ProQuest Central
ABI/INFORM Global (Corporate)
ProQuest Business Collection
DELNET Management Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Business Premium Collection
ABI/INFORM Global (Corporate)
ProQuest One Business
ABI/INFORM Global
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest One Community College
Trade PRO
ProQuest Business Collection
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
ProQuest One Academic UKI Edition
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest DELNET Management Collection
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList Business Premium Collection

Database_xml – sequence: 1
  dbid: 7WY
  name: ABI/INFORM Collection
  url: https://www.proquest.com/abicomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1746-5664
1746-5672
EndPage 1332
ExternalDocumentID 10_1108_JM2_08_2021_0182
10.1108/JM2-08-2021-0182
GroupedDBID .WS
0R~
29L
3FY
4.4
5GY
5VS
70U
7WY
8R4
8R5
9F-
AAGBP
AAGMD
AAKOT
AAMCF
AAPSD
AARQV
AAUDR
ABEAN
ABIJV
ABJNI
ABSDC
ABYQI
ACGFO
ACGFS
ACPVR
ACTSA
ADOMW
ADQHX
AEBZA
AEDOK
AEMMR
AETHF
AFKRA
AFNZV
AFZLO
AGTVX
AIAFM
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ASMFL
ATGMP
AUCOK
BENPR
BEZIV
BPHCQ
CCPQU
CS3
DU5
DWQXO
ECCUG
FNNZZ
GEI
GMM
GMN
GMX
GQ.
H13
HZ~
IPNFZ
J1Y
JI-
JL0
K6~
K8~
KBGRL
M0C
O9-
P2P
PQBIZ
PQQKQ
PROAC
Q2X
RIG
TDY
TEM
TGG
TMD
TMF
Z11
Z12
ZYZAG
AAPWK
AAXBI
AAYXX
ADWNT
AFFHD
AHMHQ
CITATION
EBS
PHGZM
PHGZT
0U~
1-H
7XB
AFNTC
L.-
L.0
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c368t-92fda0a4e74f29efef5b9938807e57c32e3294058daa14afc5a69202c8fe8693
IEDL.DBID M0C
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000773952000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-5664
IngestDate Mon Jun 30 13:37:43 EDT 2025
Sat Nov 29 07:39:25 EST 2025
Tue Nov 18 22:39:14 EST 2025
Thu Oct 10 06:54:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Linear programming
Profitability
Financial analysis
Time series
Turning points (TPs) detection
Binary integer programming (BIP)
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-92fda0a4e74f29efef5b9938807e57c32e3294058daa14afc5a69202c8fe8693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2860603231
PQPubID 28934
PageCount 20
ParticipantIDs proquest_journals_2860603231
emerald_primary_10_1108_JM2-08-2021-0182
crossref_citationtrail_10_1108_JM2_08_2021_0182
crossref_primary_10_1108_JM2_08_2021_0182
PublicationCentury 2000
PublicationDate 2023-09-07
PublicationDateYYYYMMDD 2023-09-07
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-07
  day: 07
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Journal of modelling in management
PublicationYear 2023
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2023090513255319500_ref008) 2020; 24
(key2023090513255319500_ref027) 1992
(key2023090513255319500_ref046) 2019; 15
(key2023090513255319500_ref043) 2017; 56
(key2023090513255319500_ref041) 2014
(key2023090513255319500_ref031) 2010
(key2023090513255319500_ref044) 2011
(key2023090513255319500_ref016) 2016; 2
(key2023090513255319500_ref019) 2021
(key2023090513255319500_ref050) 1999; 18
(key2023090513255319500_ref004) 2019; 12
(key2023090513255319500_ref051) 2016
(key2023090513255319500_ref047) 2018
(key2023090513255319500_ref055) 2011
(key2023090513255319500_ref011) 2016; 7
(key2023090513255319500_ref018) 2020
(key2023090513255319500_ref037) 2014; 9
(key2023090513255319500_ref033) 1994
(key2023090513255319500_ref035) 2020; 16
(key2023090513255319500_ref042) 2013; 13
(key2023090513255319500_ref022) 2011; 38
(key2023090513255319500_ref005) 2008; 39
(key2023090513255319500_ref028) 2019; 6
(key2023090513255319500_ref015) 2014
(key2023090513255319500_ref040) 2009; 36
(key2023090513255319500_ref012) 1999; 18
(key2023090513255319500_ref029) 2009; 13
(key2023090513255319500_ref007) 2015
(key2023090513255319500_ref052) 2018
(key2023090513255319500_ref054) 2017; 41
(key2023090513255319500_ref023) 2001; 44
(key2023090513255319500_ref032) 2011
(key2023090513255319500_ref001) 2009
(key2023090513255319500_ref003) 2018; 13
(key2023090513255319500_ref048) 2015; 84
(key2023090513255319500_ref056) 2010
(key2023090513255319500_ref009) 2007
(key2023090513255319500_ref039) 2007
(key2023090513255319500_ref017) 2006; 36
(key2023090513255319500_ref030) 2018; 21
(key2023090513255319500_ref020) 2017; 34
(key2023090513255319500_ref049) 2011
(key2023090513255319500_ref053) 2019; 78
(key2023090513255319500_ref045) 2008
(key2023090513255319500_ref036) 2013
(key2023090513255319500_ref038) 2008
(key2023090513255319500_ref002) 2016
(key2023090513255319500_ref010) 2009; 36
(key2023090513255319500_ref026) 2014; 30
(key2023090513255319500_ref025) 2012; 54
(key2023090513255319500_ref024) 1989
(key2023090513255319500_ref021) 2018; 35
(key2023090513255319500_ref014) 2021; 80
(key2023090513255319500_ref034) 1992
(key2023090513255319500_ref006) 2009
(key2023090513255319500_ref013) 2012; 9
References_xml – volume: 16
  start-page: 668
  issue: 2
  year: 2020
  ident: key2023090513255319500_ref035
  article-title: Deriving wisdom from virtual investing communities: an alternative strategy to stock recommendations
  publication-title: Journal of Modelling in Management
– start-page: 1
  volume-title: The International Conference on Intelligent Computing
  year: 2009
  ident: key2023090513255319500_ref006
  article-title: An ensemble of neural networks for stock trading decision making
– start-page: 213
  volume-title: The Workshops on Applications of Evolutionary Computation
  year: 2009
  ident: key2023090513255319500_ref001
  article-title: Predicting turning points in financial markets with fuzzy-evolutionary and neuro-evolutionary modeling
– start-page: 429
  year: 2011
  ident: key2023090513255319500_ref032
  article-title: A new approach to neural network based stock trading strategy
– volume: 30
  start-page: 132
  issue: 2
  year: 2014
  ident: key2023090513255319500_ref026
  article-title: Sequential smoothing for turning point detection with application to financial decisions
  publication-title: Applied Stochastic Models in Business and Industry
  doi: 10.1002/asmb.1945
– start-page: 1659
  year: 2011
  ident: key2023090513255319500_ref044
  article-title: Enhanced rule extraction and classification mechanism of genetic network programming for stock trading signal generation
– volume-title: Genetic Programming: On the programming of Computers by Means of Natural Selection
  year: 1992
  ident: key2023090513255319500_ref034
– start-page: 1187
  year: 2018
  ident: key2023090513255319500_ref052
  article-title: Design and research of intelligent quantitative investment model based on PLR-IRF and DRNN algorithm
– volume: 78
  start-page: 685
  year: 2019
  ident: key2023090513255319500_ref053
  article-title: A new approach of integrating piecewise linear representation and weighted support vector machine for forecasting stock turning points
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.02.039
– volume-title: Genetic Programming II: Automatic Discovery of Reusable Subprograms
  year: 1994
  ident: key2023090513255319500_ref033
– volume: 13
  start-page: 806
  issue: 2
  year: 2013
  ident: key2023090513255319500_ref042
  article-title: Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.10.026
– start-page: 220
  year: 2007
  ident: key2023090513255319500_ref009
  article-title: Genetic network programming with sarsa learning and its application to creating stock trading rules
– start-page: 135
  year: 2016
  ident: key2023090513255319500_ref051
  article-title: A rough petri nets model for stock trading signal detection
– start-page: 3459
  year: 2008
  ident: key2023090513255319500_ref038
  article-title: Prediction of turning points for chaotic time series using ensemble ANN model
– start-page: 1
  year: 2021
  ident: key2023090513255319500_ref019
  article-title: Testing the application of support vector machine (SVM) to technical trading rules
– start-page: 159
  year: 2010
  ident: key2023090513255319500_ref031
  article-title: A neural networks filtering mechanism for foreign exchange trading signals
– start-page: 1
  year: 2010
  ident: key2023090513255319500_ref056
  article-title: Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms
– volume: 18
  start-page: 151
  issue: 3
  year: 1999
  ident: key2023090513255319500_ref050
  article-title: Economic factors and the stock market: a new perspective
  publication-title: Journal of Forecasting
  doi: 10.1002/(SICI)1099-131X(199905)18:3<151::AID-FOR716>3.0.CO;2-V
– volume: 9
  start-page: 36
  issue: 1
  year: 2014
  ident: key2023090513255319500_ref037
  article-title: Using portfolio optimisation models to enhance decision making and prediction
  publication-title: Journal of Modelling in Management
  doi: 10.1108/JM2-11-2011-0057
– volume: 36
  start-page: 7818
  issue: 4
  year: 2009
  ident: key2023090513255319500_ref040
  article-title: Trading strategy design in financial investment through a turning points prediction scheme
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.11.014
– volume: 84
  start-page: 98
  year: 2015
  ident: key2023090513255319500_ref048
  article-title: Optimization of a multiproduct economic production quantity problem with stochastic constraints using sequential quadratic programming
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.04.001
– volume: 9
  start-page: 202
  issue: 6
  year: 2012
  ident: key2023090513255319500_ref013
  article-title: Trading signal generation using a combination of chart patterns and indicators
  publication-title: International Journal of Computer Science Issues (IJCSI)
– volume: 34
  start-page: 529
  issue: 7
  year: 2017
  ident: key2023090513255319500_ref020
  article-title: Modeling and optimization of four-level integrated supply chain with the aim of determining the optimum stockpile and period length: sequential quadratic programming
  publication-title: Journal of Industrial and Production Engineering
  doi: 10.1080/21681015.2017.1370742
– volume: 56
  start-page: 199
  year: 2017
  ident: key2023090513255319500_ref043
  article-title: Improving the integration of piece wise linear representation and weighted support vector machine for stock trading signal prediction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.03.007
– volume: 24
  start-page: 12111
  issue: 16
  year: 2020
  ident: key2023090513255319500_ref008
  article-title: A novel framework for stock trading signals forecasting
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04650-8
– volume: 6
  start-page: 237
  issue: 3
  year: 2019
  ident: key2023090513255319500_ref028
  article-title: Modeling and optimal lot-sizing of integrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: generalized outer approximation
  publication-title: International Journal of Systems Science: Operations and Logistics
– start-page: 174
  year: 2011
  ident: key2023090513255319500_ref049
  article-title: Application of artificial neural networks to predict intraday trading signals
– volume: 38
  start-page: 3765
  issue: 4
  year: 2011
  ident: key2023090513255319500_ref022
  article-title: Dynamic ridge polynomial neural network: forecasting the univariate non-stationary and stationary trading signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.037
– volume: 36
  start-page: 179
  issue: 1
  year: 2006
  ident: key2023090513255319500_ref017
  article-title: A study of evolutionary multiagent models based on symbiosis
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2005.856720
– start-page: 651
  year: 2015
  ident: key2023090513255319500_ref007
  article-title: Prediction of stock trading signal based on support vector machine
– start-page: 1029
  year: 2013
  ident: key2023090513255319500_ref036
  article-title: Dynamic stock trading system based on quantum-inspired Tabu search algorithm
– volume: 41
  start-page: 111
  issue: 2
  year: 2017
  ident: key2023090513255319500_ref054
  article-title: From the business cycle to the output cycle: predicting South African economic activity
  publication-title: Studies in Economics and Econometrics
  doi: 10.1080/10800379.2017.12097315
– volume: 13
  start-page: 394
  issue: 2
  year: 2018
  ident: key2023090513255319500_ref003
  article-title: Investment portfolio formation via multicriteria decision aid: a Brazilian stock market study
  publication-title: Journal of Modelling in Management
  doi: 10.1108/JM2-02-2017-0021
– volume: 12
  start-page: 426
  issue: 5
  year: 2019
  ident: key2023090513255319500_ref004
  article-title: Online detection of financial time series peaks and troughs: a probability‐based approach
  publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal
  doi: 10.1002/sam.11411
– volume: 39
  start-page: 80
  issue: 1
  year: 2008
  ident: key2023090513255319500_ref005
  article-title: Integrating a piecewise linear representation method and a neural network model for stock trading points prediction
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– start-page: 112
  year: 2014
  ident: key2023090513255319500_ref015
  article-title: A dynamic stock trading system based on a multi-objective quantum-inspired Tabu search algorithm
– volume: 80
  start-page: 1
  issue: 28/29
  year: 2021
  ident: key2023090513255319500_ref014
  article-title: Multiple strategies for trading short-term stock index futures based on visual trend bands
  publication-title: Multimedia Tools and Applications
– start-page: 333
  year: 2020
  ident: key2023090513255319500_ref018
  article-title: Exploring the use of data at multiple granularity levels in machine learning-based stock trading
– volume: 44
  start-page: 161
  issue: 1/2
  year: 2001
  ident: key2023090513255319500_ref023
  article-title: Noisy time series prediction using recurrent neural networks and grammatical inference
  publication-title: Machine Learning
  doi: 10.1023/A:1010884214864
– volume: 15
  start-page: 647
  issue: 2
  year: 2019
  ident: key2023090513255319500_ref046
  article-title: Making investment decisions in stock markets using a forecasting-Markowitz based decision-making approaches
  publication-title: Journal of Modelling in Management
  doi: 10.1108/JM2-12-2018-0217
– volume: 21
  start-page: 1473
  issue: 6
  year: 2018
  ident: key2023090513255319500_ref030
  article-title: Discovery of trading points based on Bayesian modeling of trading rules
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0534-9
– start-page: 331
  year: 2007
  ident: key2023090513255319500_ref039
  article-title: A machine learning approach to predict turning points for chaotic financial time series
– volume: 7
  start-page: 254
  issue: 10
  year: 2016
  ident: key2023090513255319500_ref011
  article-title: Backpropagation neural network model for stock trading points prediction
  publication-title: International Research Journal of Applied Finance
– volume: 18
  start-page: 159
  issue: 2
  year: 1999
  ident: key2023090513255319500_ref012
  article-title: Forecasting industry turning points: the US hotel industry cycle model
  publication-title: International Journal of Hospitality Management
  doi: 10.1016/S0278-4319(99)00011-0
– volume: 2
  start-page: 42
  issue: 1
  year: 2016
  ident: key2023090513255319500_ref016
  article-title: A hybrid stock trading framework integrating technical analysis with machine learning techniques
  publication-title: The Journal of Finance and Data Science
  doi: 10.1016/j.jfds.2016.03.002
– volume: 13
  start-page: 56
  issue: 1
  year: 2009
  ident: key2023090513255319500_ref029
  article-title: Financial market trading system with a hierarchical coevolutionary fuzzy predictive model
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.911682
– volume-title: Genetic Algorithms in Search, Optimization, and MachineLearning
  year: 1989
  ident: key2023090513255319500_ref024
– volume: 54
  start-page: 325
  issue: 3
  year: 2012
  ident: key2023090513255319500_ref025
  article-title: Evaluation of recursive detection methods for turning points in financial time series
  publication-title: Australian and New Zealand Journal of Statistics
  doi: 10.1111/j.1467-842X.2012.00681.x
– start-page: 316
  year: 2011
  ident: key2023090513255319500_ref055
  article-title: Genetic algorithm for trading signal generation
– start-page: 1
  year: 2008
  ident: key2023090513255319500_ref045
  article-title: An empirical study of genetic programming generated trading rules in computerized stock trading service system
– volume: 35
  start-page: 6
  issue: 1
  year: 2018
  ident: key2023090513255319500_ref021
  article-title: An optimal integrated lot sizing policy of inventory in a bi-objective multi-level supply chain with stochastic constraints and imperfect products
  publication-title: Journal of Industrial and Production Engineering
  doi: 10.1080/21681015.2017.1374308
– volume-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  year: 1992
  ident: key2023090513255319500_ref027
– start-page: 200
  year: 2014
  ident: key2023090513255319500_ref041
  article-title: Can web news media sentiments improve stock trading signal prediction?
– volume: 36
  start-page: 12537
  issue: 10
  year: 2009
  ident: key2023090513255319500_ref010
  article-title: A genetic network programming with learning approach for enhanced stock trading model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.05.054
– start-page: 1
  year: 2018
  ident: key2023090513255319500_ref047
  article-title: Neural network based trading signal generation in Cypto-Currency markets
– start-page: 1
  year: 2016
  ident: key2023090513255319500_ref002
  article-title: Generating ternary stock trading signals using fuzzy genetic network programming
SSID ssj0068477
ssib023131022
Score 2.2686849
Snippet Purpose This paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming...
PurposeThis paper aims to detect the most profitable, i.e. optimal turning points (TPs), from the history of time series using a binary integer programming...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1313
SubjectTerms Business cycles
Data compression
Decision making
History
Integer programming
Inventory
Investments
Linear programming
Performance evaluation
Profitability
Profits
Securities markets
Time series
Title A binary integer programming (BIP) model for optimal financial turning points detection
URI https://www.emerald.com/insight/content/doi/10.1108/JM2-08-2021-0182/full/html
https://www.proquest.com/docview/2860603231
Volume 18
WOSCitedRecordID wos000773952000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1746-5664
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0068477
  issn: 1746-5664
  databaseCode: 7WY
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM global
  customDbUrl:
  eissn: 1746-5664
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0068477
  issn: 1746-5664
  databaseCode: M0C
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1746-5664
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0068477
  issn: 1746-5664
  databaseCode: BENPR
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6sinjxLdZHycGDHkK32WySPYlKRQVLEUE9LdlNAoK2ta3-fidpVlHEi6c95MGSbzLzZTKZATjMBBfCOUOVMoxyriUtubRUJymzucBzS-lCsQnZ66mHh7wfHW6TGFZZ68SgqM2w8j7yNlNItXGCtHMyeqW-apS_XY0lNBqw4JmND-m7Sc5recK-qT_Q1JpZoCaWsweSgiKN4fW1ZaLa1zfMewqZj1hIOop9M1M_3up-6etghC5W__v7a7AS6Sc5ncnLOszZwQYs1dHvm3B_SsrwQpeEPBJ2TGIA1wuaOHJ0dtU_JqF4DkGyS4aob15wOlen7SBowLyjhYyGOH5CjJ2GUK_BFtxddO_OL2msvUCrVKgpzZkzOtHcSu5Ybp11WYlUBne7tJmsEMiU5Uj2lNG6w7WrMi1yXL1KOatEnm7D_GA4sDtAysykSpiE6VTxLDOlYG6WVQflxyjbhHa90kUV85L78hjPRTifJKpAbAr8eGwKj00Tjj9HjGY5Of7oexTB-63rN8ibsF9DV8SNPCm-cNv9u3kPln0l-hB-Jvdhfjp-swewWL1PnybjFjTk_WMLFs66vf5tK0jpB4Ot5v4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH4hYMALKmJYRe1BEzg0O9vptJ0DIagQVmDDYRPw1HSmbWICu-vuCuGP4n_0tTOVYAw3DpzmMG3TmX5933vt-wHwqRBcCO8tVcoyyrmRtOLSUZPlzJUC7ZbKx2ITcjBQ5-fl6QLcpliY4FaZZGIU1HZchzPyLlOoauMAeW938ouGqlHhdjWV0GhgceRurtFkm-30v-H6fmbsYH_49ZC2VQVonQs1pyXz1mSGO8k9K513vqiQpBHH0hWyxinmrEQ1Rlljetz4ujCiZBmrlXdKhNxLKPGXUIyLUDBBnv1I8MWp5cF-SkQgUPDLJh5TUNSaeLolzVT3-wkLB5MsOEhkPcXuseI_ocF39BA57-DFE_tbL2G1Va7JXrMbXsGCG63BcvLtfw1ne6SK8cckZslwU9K6p10igZOtL_3TbRJLAxFU5ckYpeklDudTUhKC9ByOkchkjP1nxLp5dGQbrcPwMb7qDSyOxiO3AaQqbK6EzZjJFS8KWwnmm5xBuDusch3opoXVdZt1PRT_uNDR-sqURihofAQo6ACFDmz_7TFpMo480Harxcr_mt5DWAc2E1J0K6Zm-g4mbx9-_RFWDocnx_q4Pzh6B89x1Dw62slNWJxPf7v38Ky-mv-cTT_ELUFAPzKo_gBoC0Eh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKaq4lLcIFPABpPZgZWN7be8BoZY2IhSiCFWiN8u7tiWkNglJoOpP498x9q6pilBvPXDaw9qWd_15vhl7HgCvSymkDMFRrR2jQlhFa6E8tQVnvpJot9QhFZtQk4k-Pa2mG_Arx8JEt8osE5OgdvMmnpEPmEZVGwfgw0Ho3CKmh6N3i-80VpCKN625nEYLkWN_eYHm2-rt-BDX-g1jo6OT9x9oV2GANlzqNa1YcLawwisRWOWDD2WNhI2YVr5UDU6XswpVGu2sHQobmtLKihWs0cFrGfMwofTfVBxtnh5sHhxNpl8ymHGiPFpTmRYk0oBqozMlRR1K5DvTQg8-fmbxmJJFd4liqNk1jvwrUPiKLBIDju79x__uPmx3ajfZb_fJA9jws4ewlb3-H8HXfVKnyGSS8mf4Jekc186R2snuwXi6R1LRIIJKPpmjnD3H4UJOV0KQuOMBE1nMsf-KOL9OLm6zx3ByG1_1BHqz-cw_BVKXjmvpCma5FmXpaslCm00I943Tvg-DvMim6fKxx7IgZybZZYU2CAuDjwgLE2HRh70_PRZtLpIb2u52uPlX02to68NORo3pBNjKXEHm2c2vX8EWYsl8Gk-On8NdHJQnDzy1A7318od_AXean-tvq-XLbn8QMLeMqt9YLksH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+integer+programming+%28BIP%29+model+for+optimal+financial+turning+points+detection&rft.jtitle=Journal+of+modelling+in+management&rft.au=Yazdani%2C+Fatemeh&rft.au=Khashei%2C+Mehdi&rft.au=Hejazi%2C+Seyed+Reza&rft.date=2023-09-07&rft.issn=1746-5664&rft.eissn=1746-5664&rft.volume=18&rft.issue=5&rft.spage=1313&rft.epage=1332&rft_id=info:doi/10.1108%2FJM2-08-2021-0182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_JM2_08_2021_0182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-5664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-5664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-5664&client=summon