Improving Deep Neural Networks' Training for Image Classification With Nonlinear Conjugate Gradient-Style Adaptive Momentum

Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 9; s. 12288 - 12300
Hlavní autoři: Wang, Bao, Ye, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2024
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant computational burden. In this article, we propose a novel adaptive momentum for improving DNNs training; this adaptive momentum, with no momentum-related hyperparameter required, is motivated by the nonlinear conjugate gradient (NCG) method. Stochastic gradient descent (SGD) with this new adaptive momentum eliminates the need for the momentum hyperparameter calibration, allows using a significantly larger learning rate, accelerates DNN training, and improves the final accuracy and robustness of the trained DNNs. For instance, SGD with this adaptive momentum reduces classification errors for training ResNet110 for CIFAR10 and CIFAR100 from 5.25% to 4.64% and 23.75% to 20.03%, respectively. Furthermore, SGD, with the new adaptive momentum, also benefits adversarial training and, hence, improves the adversarial robustness of the trained DNNs.
AbstractList Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant computational burden. In this article, we propose a novel adaptive momentum for improving DNNs training; this adaptive momentum, with no momentum-related hyperparameter required, is motivated by the nonlinear conjugate gradient (NCG) method. Stochastic gradient descent (SGD) with this new adaptive momentum eliminates the need for the momentum hyperparameter calibration, allows using a significantly larger learning rate, accelerates DNN training, and improves the final accuracy and robustness of the trained DNNs. For instance, SGD with this adaptive momentum reduces classification errors for training ResNet110 for CIFAR10 and CIFAR100 from 5.25% to 4.64% and 23.75% to 20.03%, respectively. Furthermore, SGD, with the new adaptive momentum, also benefits adversarial training and, hence, improves the adversarial robustness of the trained DNNs.Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant computational burden. In this article, we propose a novel adaptive momentum for improving DNNs training; this adaptive momentum, with no momentum-related hyperparameter required, is motivated by the nonlinear conjugate gradient (NCG) method. Stochastic gradient descent (SGD) with this new adaptive momentum eliminates the need for the momentum hyperparameter calibration, allows using a significantly larger learning rate, accelerates DNN training, and improves the final accuracy and robustness of the trained DNNs. For instance, SGD with this adaptive momentum reduces classification errors for training ResNet110 for CIFAR10 and CIFAR100 from 5.25% to 4.64% and 23.75% to 20.03%, respectively. Furthermore, SGD, with the new adaptive momentum, also benefits adversarial training and, hence, improves the adversarial robustness of the trained DNNs.
Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning practice, the momentum is usually weighted by a well-calibrated constant. However, tuning the hyperparameter for momentum can be a significant computational burden. In this article, we propose a novel adaptive momentum for improving DNNs training; this adaptive momentum, with no momentum-related hyperparameter required, is motivated by the nonlinear conjugate gradient (NCG) method. Stochastic gradient descent (SGD) with this new adaptive momentum eliminates the need for the momentum hyperparameter calibration, allows using a significantly larger learning rate, accelerates DNN training, and improves the final accuracy and robustness of the trained DNNs. For instance, SGD with this adaptive momentum reduces classification errors for training ResNet110 for CIFAR10 and CIFAR100 from 5.25% to 4.64% and 23.75% to 20.03%, respectively. Furthermore, SGD, with the new adaptive momentum, also benefits adversarial training and, hence, improves the adversarial robustness of the trained DNNs.
Author Wang, Bao
Ye, Qiang
Author_xml – sequence: 1
  givenname: Bao
  orcidid: 0000-0002-4848-4791
  surname: Wang
  fullname: Wang, Bao
  email: wangbaonj@gmail.com
  organization: Department of Mathematics and Scientific Computing and Imaging Institute, The University of Utah, Salt Lake City, UT, USA
– sequence: 2
  givenname: Qiang
  surname: Ye
  fullname: Ye, Qiang
  email: qye3@uky.edu
  organization: Department of Mathematics, University of Kentucky, Lexington, KY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37030680$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha2Kqjz_QIUq72AzqR_z8CxRCjRSCAuC6G7kca6D6Yyd2h5Q1D9fh6SoYlFvrnXvd2zdcw7RnnUWEPpMyYhSUn-dz2bTuxEjjI84K4pK8A_ogNGSZYwLsfd2r37so5MQnkg6JSnKvP6E9nlFOCkFOUC_J_3Ku2djl_gbwArPYPCySyW-OP8znOG5l8Zuxtp5POnlEvC4kyEYbZSMxln8YOIjnjnbGQvS47GzT8NSRsDXXi4M2JjdxXUH-GIhV9E8A75xfeoO_TH6qGUX4GRXj9D91eV8_D2b3l5PxhfTTPFSxKxmSmkKqio5B00pL4gURctyVciS5bJlbV4stGqlSqvnpWY6B1CK6KpuaaX5ETrfvps2_TVAiE1vgoKukxbcEBpW1aKivBY8oV926ND2sGhW3vTSr5u_hiWAbQHlXQge9BtCSbMJpnkNptkE0-yCSSLxTqRMfDUvJne7_0tPt1IDAP_8RQQlRc3_ADBznVI
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2025_3548439
crossref_primary_10_1007_s11222_024_10409_5
crossref_primary_10_1109_TNNLS_2024_3395064
Cites_doi 10.1109/ICMEW.2017.8026312
10.1109/ICASSP.2013.6639349
10.1137/21m1453311
10.1137/16M1095056
10.1109/SP.2017.49
10.1137/0802003
10.1007/s10107-013-0677-5
10.1137/18M1224568
10.1007/978-3-319-46493-0_38
10.1137/1.9780898718003
10.1090/psapm/006/0084178
10.1109/ICCVW.2017.95
10.1007/BF01580369
10.1093/comjnl/7.2.149
10.1109/CDC.2014.7040179
10.1093/imanum/5.1.121
10.1016/0041-5553(85)90100-4
10.1109/CVPR.2016.90
10.1137/030601880
10.1007/s11263-015-0816-y
10.1051/m2an/196903R100351
10.1137/S1064827597323415
10.1090/S0025-5718-99-01171-0
10.5555/3454287.3455008
10.1016/S0893-6080(05)80056-5
10.1137/16M1080173
10.1038/nature14539
10.1007/s10208-013-9150-3
10.1016/0041-5553(64)90137-5
10.1137/s1052623497318992
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3255783
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 12300
ExternalDocumentID 37030680
10_1109_TNNLS_2023_3255783
10081059
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: DMS-1924935; DMS-1952339; DMS-2110145; DMS-2152762; DMS-2208361
  funderid: 10.13039/100000001
– fundername: Office of Science of the Department of Energy
  grantid: DE-SC00211424; DE-SC0023490
  funderid: 10.13039/100006132
– fundername: NSF
  grantid: DMS-1821144; DMS-2208314
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c368t-92ccf1ec7633ef11350a85b24c5a624ab2b45dfcbac23846f2f4eecc0f79b17f3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966203200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 12:31:01 EDT 2025
Thu Jan 02 22:38:33 EST 2025
Tue Nov 18 22:13:15 EST 2025
Sat Nov 29 01:40:25 EST 2025
Wed Aug 27 02:02:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-92ccf1ec7633ef11350a85b24c5a624ab2b45dfcbac23846f2f4eecc0f79b17f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4848-4791
OpenAccessLink https://www.osti.gov/biblio/2280651
PMID 37030680
PQID 2798713983
PQPubID 23479
PageCount 13
ParticipantIDs ieee_primary_10081059
crossref_primary_10_1109_TNNLS_2023_3255783
pubmed_primary_37030680
crossref_citationtrail_10_1109_TNNLS_2023_3255783
proquest_miscellaneous_2798713983
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref56
ref15
Le (ref23)
ref52
ref11
ref55
Duchi (ref9) 2011; 12
ref10
Sutskever (ref48)
ref17
ref19
ref18
Zeiler (ref54) 2012
Dozat (ref8)
Carmon (ref5)
ref41
ref44
ref43
Zoutendijk (ref57) 1970
Goodfellow (ref14) 2014
ref49
Vapnik (ref50)
Kingma (ref21) 2014
Nguyen (ref35); 190
ref7
ref4
Reddi (ref42) 2019
ref3
ref6
Nesterov (ref33) 1983; 269
ref40
Saad (ref45) 2003
Hinton (ref20) 2012; 14
Loshchilov (ref27)
Liu (ref26)
ref37
Xia (ref53); 34
Nguyen (ref34); 33
ref36
Liu (ref25) 2019
ref31
ref30
Wang (ref51)
ref2
ref1
ref39
ref38
Krizhevsky (ref22) 2009
Nesterov (ref32) 1998; 3
Loshchilov (ref28)
ref24
Su (ref47)
Shewchuck (ref46) 1994
Hardt (ref16) 2014
Madry (ref29) 2017
References_xml – ident: ref36
  doi: 10.1109/ICMEW.2017.8026312
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref51
  article-title: ResNet ensemble via the Feynman–Kac formalism to improve natural and robust acurcies
– start-page: 10705
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: Analysis of Krylov subspace solutions of regularized non-convex quadratic problems
– volume: 190
  start-page: 189
  volume-title: Proc. Math. Sci. Mach. Learn.
  ident: ref35
  article-title: Momentum transformer: Closing the performance gap between self-attention and its linearization
– ident: ref2
  doi: 10.1109/ICASSP.2013.6639349
– year: 2014
  ident: ref21
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref52
  doi: 10.1137/21m1453311
– ident: ref55
  doi: 10.1137/16M1095056
– ident: ref4
  doi: 10.1109/SP.2017.49
– ident: ref11
  doi: 10.1137/0802003
– ident: ref7
  doi: 10.1007/s10107-013-0677-5
– ident: ref43
  doi: 10.1137/18M1224568
– ident: ref18
  doi: 10.1007/978-3-319-46493-0_38
– volume-title: Iterative Methods for Sparse Linear Systems
  year: 2003
  ident: ref45
  doi: 10.1137/1.9780898718003
– start-page: 1139
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref48
  article-title: On the importance of initialization and momentum in deep learning
– ident: ref19
  doi: 10.1090/psapm/006/0084178
– ident: ref56
  doi: 10.1109/ICCVW.2017.95
– start-page: 37
  volume-title: Integer and Nonlinear Programming
  year: 1970
  ident: ref57
  article-title: Nonlinear programming, computational methods
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref9
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref41
  doi: 10.1007/BF01580369
– volume: 3
  start-page: 5
  issue: 4
  year: 1998
  ident: ref32
  article-title: Introductory lectures on convex programming volume I: Basic course
  publication-title: Lecture Notes
– start-page: 265
  volume-title: Proc. 28th Int. Conf. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: On optimization methods for deep learning
– ident: ref10
  doi: 10.1093/comjnl/7.2.149
– ident: ref12
  doi: 10.1109/CDC.2014.7040179
– year: 2014
  ident: ref14
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv:1412.6572
– ident: ref1
  doi: 10.1093/imanum/5.1.121
– volume: 33
  start-page: 1924
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Momentumrnn: Integrating momentum into recurrent neural networks
– year: 2017
  ident: ref29
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: arXiv:1706.06083
– ident: ref31
  doi: 10.1016/0041-5553(85)90100-4
– ident: ref17
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref28
  article-title: Fixing weight decay regularization in Adam
– ident: ref15
  doi: 10.1137/030601880
– year: 1994
  ident: ref46
  article-title: An introduction to the conjugate gradient method without agonizing pain
– year: 2012
  ident: ref54
  article-title: ADADELTA: An adaptive learning rate method
  publication-title: arXiv:1212.5701
– volume: 14
  start-page: 2
  issue: 8
  year: 2012
  ident: ref20
  article-title: Neural networks for machine learning lecture 6A overview of mini-batch gradient descent
– start-page: 2510
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref47
  article-title: A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights
– year: 2019
  ident: ref42
  article-title: On the convergence of Adam and beyond
  publication-title: arXiv:1904.09237
– volume-title: Robustness Versus Acceleration
  year: 2014
  ident: ref16
– ident: ref44
  doi: 10.1007/s11263-015-0816-y
– ident: ref39
  doi: 10.1051/m2an/196903R100351
– volume-title: Radam
  year: 2019
  ident: ref25
– ident: ref13
  doi: 10.1137/S1064827597323415
– ident: ref49
  doi: 10.1090/S0025-5718-99-01171-0
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref26
  article-title: On the variance of the adaptive learning rate and beyond
– volume: 269
  start-page: 543
  issue: 3
  year: 1983
  ident: ref33
  article-title: A method for solving the convex programming problem with convergence rate O(1/k2)
  publication-title: Doklady Akademii Nauk SSSR
– ident: ref38
  doi: 10.5555/3454287.3455008
– volume: 34
  start-page: 18646
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref53
  article-title: Heavy ball neural ordinary differential equations
– start-page: 831
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Principles of risk minimization for learning theory
– ident: ref30
  doi: 10.1016/S0893-6080(05)80056-5
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref8
  article-title: Incorporating Nesterov momentum into Adam
– ident: ref3
  doi: 10.1137/16M1080173
– volume-title: Learning multiple layers of features from tiny images
  year: 2009
  ident: ref22
– ident: ref24
  doi: 10.1038/nature14539
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref27
  article-title: Decoupled weight decay regularization
– ident: ref37
  doi: 10.1007/s10208-013-9150-3
– ident: ref40
  doi: 10.1016/0041-5553(64)90137-5
– ident: ref6
  doi: 10.1137/s1052623497318992
SSID ssj0000605649
Score 2.483582
Snippet Momentum is crucial in stochastic gradient-based optimization algorithms for accelerating or improving training deep neural networks (DNNs). In deep learning...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12288
SubjectTerms Adaptive momentum
Classification algorithms
Convergence
Deep learning
Image classification
nonlinear conjugate gradient (NCG)
Robustness
Stochastic processes
Training
Title Improving Deep Neural Networks' Training for Image Classification With Nonlinear Conjugate Gradient-Style Adaptive Momentum
URI https://ieeexplore.ieee.org/document/10081059
https://www.ncbi.nlm.nih.gov/pubmed/37030680
https://www.proquest.com/docview/2798713983
Volume 35
WOSCitedRecordID wos000966203200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BatwwEBXN0kMvTdomzSZtUKGQQ_FGlmTLPi5p0hZSU8iG7M1IskRTEu-yaxdKfj4zsr3kkkBvxnhswxtJb6SZeYR8diyvmPYsynlcRTIzJjLGpxHerYxULHNBteRCFUU2n-e_-mL1UAvjnAvJZ26Cl-Esv1rYFrfKTrARDfKBLbKlVNoVa202VBgQ8zTQXR6nPOJCzYciGZafzIri4nKCWuETASxaZSigI9DdU-wI-WhNCiIrT_PNsO6cb__nH--Q1z3BpNPOI96QF65-S7YH8Qbaj-V35H6znUC_Orek2KUD7IouLXx9TGe9eAQFWkt_3MG8Q4OCJuYWBTjp9U3zmxZdrw29oqeL-k-Lu3L02yokkjXRZfPv1tFppZc4q9Kf2O6hae92ydX52ez0e9QrMURWpFkDQFrrY2dhMhLOx7FImM4Sw6VNdMqlNtzIpPLWaAsUQKaee-nAOZhXuYmVF3tkVC9qt09o5Zk0GniTVAJCQzD0JjYQWImsSoz1YxIPWJS2b1OOahm3ZQhXWF4GKEuEsuyhHJMvG5tl16Tj2ad3EahHT3YYjcmnAfMSxhgenOjaLdp1yVUOcaXI0fZ95wwb68GHDp546yF5BR-XXVraBzJqVq37SF7av83NenUEjjzPjoIjPwB1DO6h
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aNNBcmj6SdJukVSHQQ_GuLMmvY8ijCd2YQDZ0b0aSJZqSeJddu1D656OR7SWXFHIzxmME30j6RpqZD-DQ0Kyk0tIgY2EZiFSpQCkbB_i2VCKhqfGqJeMkz9PpNLvqitV9LYwxxiefmSE--rv8cqYbPCobYSMa5ANr8DISgtG2XGt1pEIdNY894WVhzALGk2lfJkOz0STPx9dDVAsfcsejkxQldDg6fIw9IR_tSl5m5WnG6Xees61njvkNvO4oJjlqfeItvDDVO9jq5RtIN5vfw7_VgQI5MWZOsE-Hs8vbxPDlVzLp5COII7bk4t6tPMRraGJ2kQeU_Lytf5G87bYhF-R4Vv1u8FyOfF_4VLI6uK7_3hlyVMo5rqvkEhs-1M39NtycnU6Oz4NOiyHQPE5rB6XWNjTaLUfc2DDkEZVppJjQkYyZkIopEZVWK6kdCRCxZVYY5x7UJpkKE8t3YL2aVeYDkNJSoaRjTiLhLjh0hlaFyoVWPC0jpe0Awh6LQneNylEv467wAQvNCg9lgVAWHZQD-LaymbdtOv779TYC9ejLFqMBfOkxL9wsw6sTWZlZsyxYkrnIkmdou9s6w8q696GPT_z1M7w6n1yOi_FF_mMPNt1ARJuktg_r9aIxB7Ch_9S3y8Un784PYlPxAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Deep+Neural+Networks%27+Training+for+Image+Classification+With+Nonlinear+Conjugate+Gradient-Style+Adaptive+Momentum&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Bao&rft.au=Ye%2C+Qiang&rft.date=2024-09-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=9&rft.spage=12288&rft_id=info:doi/10.1109%2FTNNLS.2023.3255783&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon